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Abstract
Algorithm classification consists in determining which algo-
rithm a program implements, given a finite set of candidates.
Classifiers are used in applications such malware identifi-
cation and plagiarism detection. There exist many ways to
implement classifiers. There are also many ways to imple-
ment evaders to deceive the classifiers. This paper analyzes
the state-of-the-art classification and evasion techniques. To
organize this analysis, this paper brings forward a system
of four games that matches classifiers and evaders. Games
vary according to the amount of information that is given to
each player. This setup lets us analyze a space formed by the
combination of nine program encodings; seven obfuscation
passes; and six stochastic classification models. Observations
from this study include: (i) we could not measure substantial
advantages of recent vector-based program representations
over simple histograms of opcodes; (ii) deep neural networks
recently proposed for program classification are no better
than random forests; (iii) program optimizations are almost
as effective as classic obfuscation techniques to evade clas-
sifiers; (iv) off-the-shelf code optimizations can completely
remove the evasion power of naïve obfuscators; (v) control-
flow flattening and bogus-control flow tend to resist the
normalizing power of code optimizations.

CCS Concepts: • Software and its engineering → Com-
pilers; Software libraries and repositories.

Keywords: algorithm classification, obfuscation
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1 Introduction
The problem of algorithm classification can be informally
defined as follows: given a finite set of different specifica-
tions of algorithms, plus a program that implements one of
them, find which algorithm the problem implements. This
challenge has been called task classification by Allamanis
et al. [1] and program classification by Mou et al. [27]. The
name algorithm classification seems to have its origin in Ben-
Nun et al. [4]’s work. The problem of algorithm classification
has been much studied in the machine learning literature—
for an overview, we recommend Section 2 of Peng et al.
[32]. Algorithm classification is important because it has
many applications: redundancy elimination [3] and name re-
placement [2, 21] in source code, malware identification [22],
plagiarism detection [6, 29], task identification [42], etc.

Classifiers: the Good Side. As consequence of Rice [35]’s
Theorem, constructing a perfect algorithm classifier is impos-
sible. Thus, typical solutions to this problem are of stochastic
nature. Given the importance of the problem, and its open
essence, in recent years, many approaches have been pro-
posed for the construction of classifiers. These approaches
vary in terms of the way to represent programs, or in the
classification model adopted, or in the dataset used to train
the classifier. Program representations include, for example,
Inst2Vec [4], Code2Vec [2], Ir2Vec [40], Asm2Vec [16],
Milepost [28] and ProGraML [8]. Classification models in-
clude neural networks proposed byMou et al. [27], Cummins
et al. [9] and Brauckmann et al. [5], for instance. And large
datasets of reference algorithms have been released by Mou
et al. [27], and Puri et al. [33], for instance.
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Evaders: the Bad Side. Just like there exists much effort
to improve the precision of algorithm classifiers, there ex-
ists also effort to evade them. Evasion enhances the ability
of malware to escape anti-virus systems [44] or improves
the chances that plagiarism might rest undiscovered [15].
The common approach to defeat algorithm classifiers is code
transformation [36]. Typically, evaders transform programs
via code obfuscation; however, recent studies have demon-
strated that standard compiler optimizations are also effec-
tive to hide programs [34]. Given that there are so many
evasion techniques, and yet so many ways to implement
classifiers, an immediate question that we pose, as a research
community, is where do we stand in this arms race. The goal
of this paper is to provide some answers to this question.

The Contributions of This Work. This paper proposes a
system of four games to compare algorithm classifiers (“clas-
sifiers" for short) and evaders. Every game uses a variation
of Mou et al. [27]’s balanced data set of solutions to program-
ming problems. The classifier is trained with part of this
dataset, and the evader challenges it with the rest. As we ex-
plain in Section 2, games differ on the resources given to each
player. Two games are symmetric: the classifier knows any
obfuscation strategy that is allowed to the evader. The two
other games are asymmetric: the evader can transform pro-
grams with an unknown obfuscator. In one of these games,
the classifier can try to revert the effects of obfuscation using
code optimizations as a normalization strategy.
The Arena. This paper does not propose classification ap-
proaches nor obfuscation strategies. Instead, as we explain
in Section 3, we create a playing arena by extracting arti-
facts from previous work. In common these artifacts have
the fact that they manipulate programs in the LLVM [23]
intermediate representation (IR). We have built classifiers
by combining nine different program embeddings (i.e., a
vector-based representation of a program) with six different
stochastic classification models. We have built evaders out
of eight code obfuscation techniques. Section 4 compares
classifiers and evaders using a curated version of Mou et al.
[27]’s Poj-104 dataset, plus 48 implementations of theMirai
malware [19]. From this comparison, we draw a number of
conclusions, some of which we list below.

Histograms: When evaluating symmetric games, we ob-
served no advantage of program embeddings designed
for code classification over histograms of opcodes. Al-
though simple, histograms resist well against transfor-
mations such as control-flow flattening, and can work
in tandem with different classification models.

Models: we could observe no improvement of neural
networks previously used for program classification [45]
over an off-the-shelf implementation of random forests.
Random forests seem to surpass Zhang et al.’s neural
networks by a wider margin once evaders are allowed
to transform programs.

Optimizers: optimizers are as effective as code obfus-
cators as an evasion strategy, while producing code
about 60x faster. However, code optimization tends to
resist poorly to a classifier that is aware of the opti-
mization approach used by the evader, whereas there
exist obfuscation techniques that can resist disclosure.

Normalization: code optimizations revert the effects
of many obfuscation strategies. A classifier that is al-
lowed to optimize programs with clang-O3 is imper-
vious to transformations like those proposed by Zhang
et al. [46] (built after Devore-McDonald and Berger
[15]’s). However, obfuscation approaches like control-
flow flattening and bogus control flow tend to resist
optimization-based normalization.

2 The Game Framework
Definition 2.1 formalizes the notion of programming prob-
lem. Definition 2.1 leaves the concept of reference function
vague on purpose: it could be a black-box implementation
of a program; a table with inputs and expected outputs; a
specification written in natural language, etc. Example 2.2
shows examples of typical programming problems.

Definition 2.1 (Programming Problem). Let 𝑓ref be a refer-
ence oracle: a function whose implementation is unknown,
but that can be consulted (i.e., invoked). Function 𝑓ref de-
fines a programming problem. A solution to this problem is a
function 𝑠 of known implementation that produces the same
output as 𝑓ref , when given the same inputs.

Example 2.2. Poj-104 [27] is a set of 104 problems taken
from an online programming judge. Each problem consists of
500 sample solutions, each written by a potentially different
human programmer. Problems are defined by a set of inputs
and the expected outputs. CodeNet [33] is a set of 4,053
programming problems with 13,916,868 submissions written
in 55 different programming languages, out of which 53.6%
represent correct solutions to the reference oracles. These
oracles are tables with inputs and expected outputs.

Definition 2.3 formalizes algorithm classification as the
challenge of guessing which problem a program solves. No-
tice that algorithm classification deals with a closed universe
of algorithms: it involves a finite set of possible problems
from which the classifier must choose one. This restriction is
in contrast to the problem of code summarization [38], which
assumes an open universe of possible algorithms.

Definition 2.3 (Algorithm Classification). Given a set {𝑓1,
𝑓2, . . . 𝑓𝑚} of𝑚 different programming problems, plus a solu-
tion 𝑠 for one of them, the algorithm classification problem
asks to find the problem 𝑓𝑖 , 1 ≤ 𝑖 ≤ 𝑚 that 𝑠 solves.

A classifier categorizes programs into algorithms. A pro-
gram that transforms other programs to evade classification
is an evader. In this paper, transformations are either opti-
mizations, which try to make a program more efficient; or
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obfuscations, which try to hide the purpose of the program,
often making it less efficient. From these concepts, we define
an adversarial game as follows:

Definition 2.4 (Adversarial Game). A game consists of a
classifier𝐶 , an evader 𝐸, a set 𝐹 of𝑚 programming problems
{𝑓1, 𝑓2, . . . , 𝑓𝑚}, a set 𝑆 of 𝑛 challenges {𝑠1, 𝑠2, . . . , 𝑠𝑛} and an
accuracy threshold 𝐾, 0 ≤ 𝐾 ≤ 1. Each challenge 𝑠𝑖 ∈ 𝑆, 1 ≤
𝑖 ≤ 𝑛 must solve exactly one problem 𝑓𝑗 ∈ 𝐹, 1 ≤ 𝑗 ≤ 𝑚. For
each 𝑠𝑖 , the game proceeds as follows:

1. The evader produces a solution 𝑠 ′𝑖 = 𝐸 (𝑠𝑖 );
2. The classifier chooses problem 𝑓𝑗 = 𝐶 (𝑠 ′𝑖 ), 1 ≤ 𝑗 ≤ 𝑚.

The classifier wins the game if it can find the right problem
𝑓𝑗 that the solution 𝑠 ′𝑖 solves with probability greater than 𝐾 .
It loses the game otherwise.

The evader, according to Definition 2.4, is allowed to mod-
ify a program before giving it to the classifier. Modifications
must preserve semantics. Thus, if 𝑠 is a solution to a program-
ming problem 𝑓 (as per Definition 2.1), and 𝐸 is an evader,
then 𝑠 ′ = 𝐸 (𝑠) is also a solution to 𝑓 . From this observation,
Figure 1 lists the four games that we consider in this paper.

Game 0 (symmetric) Game 1 (asymmetric)

Game 2 (symmetric) Game 3 (asymmetric)

Classifier

Evader

0.8 Dataset

0.2 Dataset

Classifier

Evader

0.8 Dataset

0.2 Dataset +
Transformer

Classifier 0.8 Dataset +
Transformer

Evader 0.2 Dataset +
Transformer

Classifier 0.8 Dataset +
Optimizer

Evader 0.2 Dataset +
Transformer

Figure 1. The four games to evaluate classifiers and evaders.

Symmetric vs Asymmetric Games. In Figure 1, a “sym-
metric" game means that classifiers and evaders have access
to the same resources. An “asymmetric" game means that
classifiers and evaders have access to different resources. In
Game0, programs are used without transformation, e.g., the
evader 𝐸 is the identity function. In Game1, the evader is al-
lowed to transform the challenge that it gives to the classifier,
but the classifier is tuned with the original training set. In
Game2, classifier and evader have access to the same code
transformation, which can be either an obfuscation or an op-
timization. The transformation is one-way: if 𝑠 ′ = 𝐸 (𝑠), the
classifier cannot recover 𝑠 by inspecting 𝑠 ′. However, it can
apply the transformation onto the training set. In Game3,
the two players have access to some code transformation,
albeit not the same. Our hypothesis is that optimizing trans-
formations let the classifier normalize programs, approxi-
mating challenges to the training set. Example 2.5 backs up
this hypothesis with some intuition.

Example 2.5. Figure 2 illustratesGame3. The evader modi-
fies a program before challenging the classifier. In this exam-
ple, the evader uses O-LLVM’s “instruction substitution" [20].
This pass replaces arithmetic instructions with other instruc-
tions that implement the same semantics. The classifier, in
turn, can optimize programs in its training set, using, for in-
stance, the -O1 level of clang. When given a challenge, like
function foo, the classifier applies the same transformation,
e.g., clang -O1, onto foo, before classifying it. In this exam-
ple, clang -O1 partially undoes the transformations carried
out by the evader. Notice that the example uses source code
for clarity, but the transformations that we evaluate in this
paper happen in the LLVM intermediate representation.

int foo(int b, int c) {
  int a = b + c;
  return a;
}

01
02
03
04

int foo(int b, int c) {
  int r = rand();
  int a = b + r;
  a = a + c;
  a = a - r;
  return a;
}

01
02
03
04
05
06
07

%add = add i32 %c, %b
ret i32 %add

01
02

%call = call i32 @rand()
%add = add i32 %c, %b
ret i32 %add

01
02

(a)

(b)

(c)

(d)

clang -O1 ollvm inst-sub

Figure 2. (a) A solution to the programming problem “sum
up two integers". (b) The optimized LLVM representation of
function foo. (c) A version of foo obfuscated with O-LLVM’s
instruction substitution. (d) The version of the obfuscated
function optimized with clang -O1.

3 The Classification Arena
This paper reuses artifacts from previous works to build
classifiers and evaders. These artifacts work on programs in
the LLVM intermediate representation; hence, support some
level of cross-language analysis [30]. However, our exper-
iments use only codes derived from C and C++ programs.
Figure 3 shows the two embeddings, nine models and six
code normalizers used to build classifiers. In total, this paper
evaluates 2×9×6 classifiers. Figure 4 shows the nine evaders
tried in this paper. Evaders differ on the transformation that
they apply on the challenge, before giving it to the classi-
fier. Game0 uses a passive evader, which does not use any
transformation. Figure 4 places this player in the last row.
The rest of this section explains the embeddings, models and
transformations that we have used in this paper.

3.1 Program Embeddings
A program is a string of characters. This string needs to be
transformed into a numerical format to be classified. Defini-
tion 3.1 calls this format a program embedding.
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Zhang et al. [46]

Figure 4. The nine evaders evaluated in this paper.

Definition 3.1 (Program Embedding). A program embed-
ding is an array of numerical values, i.e., a tensor, that rep-
resents a program. The function that maps programs onto
embeddings is called an embedding function.

This paper evaluates the embedding functions in Figure 3.
Our criteria to choose embeddings was (i) the existence of a
publicly available artifact and (ii) the input of said artifact
being the LLVM intermediate representation (IR)1. Ir2Vec,
Milepost and Histogram map programs in the LLVM IR
into arrays. The other embeddings transform a graph-based
representation of the program into a tensor formed by three
arrays representing vertex attributes, edge attributes and
adjacencies. Figure 7 of Brauckmann et al. [5] shows how
a graph can be converted into an array. Graph-based for-
mats are extracted from programs in the LLVM IR. These
graphs differ on the amount of information that they ex-
pose: instructions, control flow, data dependencies, function
calls, etc. Two graph representations are compact (cfg_c
and cdfg_c) [17], meaning that instructions are grouped
into basic blocks, instead of represented as individual nodes.
1We tried to use Ben-Nun et al. [4]’s Inst2Vec, but failed to reproduce their
experiments: the artifact runs out of memory even for small training sets.

3.2 Classification Models
Classifiers use stochastic models to solve algorithm classifi-
cation. We define a model as follows:

Definition 3.2 (Model). A model is a function that receives
(i) a program embedding; (ii) a set 𝐹 of 𝑚 programming
problems; and (iii) a challenge 𝑠 , and outputs the problem
𝑓𝑖 ∈ 𝐹 that 𝑠 is believed to solve.

This paper evaluates the six models in Figure 3. Five
of these models are standard implementations available in
SciKit-Learn [31]: rf: random forest; svm: support vector
machine; knn: k-nearest neighbors; lr: logistic regression;
and mlp: multi-layer perceptron. The sixth model (dgcnn) is
the Deep Graph Convolutional Neural Network proposed by
Zhang et al. [45]. This model—a learning architecture that
receives attributes characterizing graphs—is built as follows:

1. four graph convolutional layers, with 32, 32, 32, and
one unit with hyperbolic tangent activation;

2. a one-dimensional convolutional layer;
3. a max pooling layer;
4. a one-dimensional convolutional layer;
5. a dense layer followed by a dropout layer;
6. a final dense layer that does the classification.

Zhang et al.’s model will only be used as is in Section 4.1
of this paper, because it requires graph-based program em-
beddings. Thus, dgcnn is used with the six graph-based em-
beddings from Figure 3. When applied onto the three other
embeddings: Ir2Vec, Milepost and Histogram, we use a
simpler version of it, cnn, which lacks the four first layers.
These layers only exist to merge the attributes of vertices
and edges into a single array, which is then used to start
the classification process. Thus, when receiving arrays as
the program embedding, these layers find no service. For
comparison purposes, we shall evaluate a standard imple-
mentation of a neural network from SciKit (the mlpmodel),
with only one hidden layer with 100 perceptrons and ReLu
activation—which uses between 10 and 100x less memory.

3.3 Code Transformations
Evaders transform programs to confuse classifiers. This pa-
per recognizes nine different transformations, which Figure 4
shows. One of these transformations is the identity function;
the other is the sequence of compiler optimizations applied
by clang-O3. Three other transformations, bcf, fla and sub,
are available in O-LLVM [20], a code obfuscation framework
built on top of LLVM. These transformations can be used in
combination or separately. In this paper we either use them
all together (in the pass that we call simply ollvm), or use
them individually. The three transformations are as follows:

bcf: Bogus Control Flow inserts extra jumps into the pro-
gram’s control flow graph. These jumps are controlled
by conditions that are always false, but that are not
resolved by LLVM’s standard optimizations.
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fla: Control-Flow Flattening replaces every jump in the
program’s CFG with a case from a switch statement
within a loop. A counter at the end of every basic block
determines the next block to be executed.

sub: Instruction Substitution replaces logic and arithmetic
instructions with sequences of commands that are se-
mantically equivalent (See Example 2.5).

Three other obfuscations used in this paper were proposed
by Zhang et al. [46] to evade stochastic clone detectors. These
obfuscation techniques operate directly in the source code of
programs. Each of them is a different strategy to combine 15
simpler transformations. These simpler transformations con-
sist, for instance, in replacing a for loop with a while loop;
replacing a switch statement with a chain of conditional
branches; replacing constants with arithmetic operations;
etc. The three strategies that we reuse from Zhang et al. are:

rs: combines the 15 transformations randomly, but with-
out repetition, via a Random Search.

mcmc: uses a Markov-Chain Monte Carlo algorithm to
combine transformations, favoring sequences that lead
to programs harder to understand.

drlsg: uses a Deep Reinforcement Learning to combine
transformations, maximizing the distance between the
new program and its original version.

We could not make Zhang et al.’s scripts work directly.
Thus, we use its dataset: Zhang et al.’s repository contains
transformed versions of all the programs in Poj-104. We
had to fix some of these programs, inserting header files, to
ensure that they could be all compiled via clang.

4 Evaluation
This section provides answers to eight research questions,
discussed in Sections 4.1-4.8. The hardware adopted in these
experiments bears no influence on their results, except in
Section 4.6. Experiments were carried out on Linux Ubuntu
20.4. The intermediate representation of programs was ex-
tracted with LLVM 4.0, except in Section 4.1. In that case, we
use LLVM 15.0. We adopt an old version of LLVM, because
that is the only version which can be used with O-LLVM. Sec-
tion 4.1 uses LLVM 15.0 because that is the only version that
provides passes to extract all the program representations.
Box plots, whenever used, summarize ten samples.
Datasets: Sections 4.1, 4.2, 4.3, 4.4 and 4.7 use a perfectly
balanced dataset formed by the 104 classes of programming
problems released by Mou et al. [27]. Each class contains
500 solutions to a programming problem; hence, in total,
we use 104 × 500 programs (Section 4.1 uses a subset of
this dataset). Solutions were presumably written by different
people. Classifiers are trained with a random selection of 375
samples from each class (the training set), and challenged
with 125 samples (the test set). Training and classification
happens anew in Sections 4.1, 4.2, 4.3, 4.4 and 4.7; thus, results
might vary slightly, even if they discuss the same experiment.

Evaluation Metric: our evaluations of classification games
use perfectly balanced datasets, meaning that the number of
programming problems used to train the classifiers, and the
number of challenges (𝑠 𝑗 in Def. 2.4) are equally distributed
among the different classes of problems. In this case, the
F1-score and the simple Accuracy (number of hits divided
by number of tries) yield the same information (as an illus-
tration, we report both metrics in Figure 12). Therefore, we
shall report only accuracy in most of our analyses.

4.1 RQ1: Comparing Program Embeddings
Question 1 (RQ1). How effective are typical program embed-
dings to support algorithm classification?

This section compares the embeddings in Figure 3 with
32 classes of programming problems taken randomly from
Poj-104. We do not use all the 104 classes of problems in
Poj-104 to reduce evaluation times. In total, running one
round of evaluation (nine representations) takes 11-12 hours
in a commodity machine (2.0GHz); and each experiment
requires ten rounds. The comparison uses Zhang et al. [45]
neural network—the only model that fits all the embeddings.
The other models can only receive histograms.
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Figure 5. Comparison of program embeddings in Game0
using 32 problems. Numbers next to boxes are means.

Discussion: Figure 5 compares nine embeddings in Game0.
The most accurate results were observed when cfg_c was
the embedding used to classify programs. Mean accuracy
was 85.36%. We could not observe statistically significant
differences (pairwise p-values above 0.2) between cdfg_c,
Ir2Vec,Mile- Post and Histogram: they all had mean ac-
curacy between 81 and 82%. We found this result surprising,
because cfg_c also uses histograms: it produces a histogram
of opcodes for every basic block in the program, plus an
adjacency matrix to represent control-flow information. And
yet, it is only marginally better than Histogram, which is a
vector of 63 positions counting instruction opcodes. In other
words, cfg_c is asymptotically more costly thanHistogram,
but its observed benefit is small.
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Figure 6. Comparison of program embeddings in Games 1,
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Trends observed in Figure 5 emerged in the other games,
as Figure 6 shows. In this case, Histogram and cfg_c yield
the best accuracies for Game2: about 76%. Nevertheless, the
different embeddings produce similar results. Accuracy drops
on the asymmetric games. This result is the consequence
of the obfuscator used: O-LLVM with its four transformation
passes. The next sections will discuss this result in more
detail. The cdfg+ embedding seems to better resist code
transformations, but its accuracy was never above 20%.

4.2 RQ2: Comparing Classification Models
Question 2 (RQ2). How effective are typical classification
models to support algorithm classification?

This section compares the accuracy and the memory con-
sumption of different models in regards to Game0. Results
are shown as boxplots aggregating ten executions of each
model. Variations, albeit small, are possible, because the six
different models that we compare, except knn, have parame-
ters that are initialized with random weights.
Discussion: Figure 7 shows the relative performance of the
six models on the test set formed by 104 problems (𝑓𝑖 , 1 ≤
𝑖 ≤ 104); each with 125 challenges (𝑠 𝑗 , 1 ≤ 𝑗 ≤ 125). Random
forest showed the best accuracy (80.0%). This number means
that, given a program and 104 problems that it might solve,
rf is correct in four out of five guesses. However, the dif-
ference to Zhang et al. [45]’s neural network or to SciKit’s
is very small: less than 1.0%. Nevertheless, the difference
is still statistically significant within a confidence level of
0.99. Although the difference between Zhang et al.’s cnn and
SciKit’s mlp is small, the latter uses much less memory: mlp
(also knn, svm and lr) runs with less than 0.5GB of RAM.
Cnn uses 2.0GB, and rf uses 2.2GB.

4.3 RQ3: Measuring Evasion
This section evaluates Game1 and Game2 (see Figure 1)
using the six models analyzed in Section 4.2. We consider
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Figure 7. Comparison of different models used in Game0,
using 104 problems and the Histogram embedding.

only the Histogram embedding, as it is the only one that
can be passed as input to the different models.

Question 3 (RQ3). How effective are typical code obfuscation
techniques as a means to evade algorithm classification?

Figure 8 evaluates Game1. Each dot is the average of ten
measurements. The first column of Figure 8 shows the base-
line; i.e., the average of the accuracy results earlier seen
in Figure 7. Almost every obfuscation strategy reduces the
accuracy of the classifier. Drlsg, which Zhang et al. [46]
have introduced as the most effective obfuscation approach
among their choices (including mcmc and rs) has no ef-
fect upon the classifier. Once we inspect the bytecodes that
drlsg produces, the SSA conversion that LLVM uses reverts
all the effects of it. Control-flow flattening and instruction
substitution have almost no effect on the classifier that uses
random forests. Flattening barely changes the histogram of
instructions in a program—an observation that advocates for
the usage of histograms of opcodes as a classification embed-
ding. Substitution changes the instructions, but preserves
proportions; hence, random forests are still able to perform
effective classification.
Figure 9 evaluates Game2. In this case, the classifier is

aware of the obfuscation strategy adopted by the evader.
Thus, each sample in the training dataset is obfuscated be-
fore being given to the classifier. Notice that the classifier is
trained only with obfuscated codes, not with original pro-
grams. The adversary, similarly, only uses obfuscated chal-
lenges. In this case, classifiers and evaders behave almost like
in Game0. Thus, knowledge of the obfuscation approach is
enough to give the classifier power to resist evasion.

To explain the results seen in Figures 8 and 9, we compare
the average distance between histograms of original and ob-
fuscated programs. We use Euclidean Distance computed in
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Figure 8. Evaluation of Game1 on 104 problems, using the
Histogram embedding plus six different models.

cnn knn mlp svm lr rf

Ac
cu
ra
cy

1.0

0.8

0.6

0.4

0.2

0.0

Ba
se
lin
e

OL
LV
M O3

M
CM

C

SU
B

BC
F

DR
LS
G RSFL
A

Figure 9. Evaluation of Game2 on 104 problems, using the
Histogram embedding plus six different models.

a space of 63 dimensions (the number of opcodes). Figure 10
shows this comparison. The greater the distance between old
and new histograms, the greater the capacity of an evader to
deceive the classifier. In this sense, the most effective evasion
techniques are the optimizations used by clang -O3 and the
combination of transformations used by O-LLVM.

4.4 RQ4: The Normalization Hypothesis
Question 4 (RQ4). Can compiler optimizations improve al-
gorithm classification by reverting the effects of obfuscation?

This section evaluates Game3 to verify if optimizations
can revert the effects of obfuscation techniques. To this end,
we train the classifiers with normalized programs (the clas-
sifier is not aware of any obfuscator the evader can use).
When receiving a challenge—which consists of an obfus-
cated program—the classifier optimizes that code.
Discussion: Figure 11 summarizes the evaluation ofGame3.
O-LLVM is resistant against code optimizations. However,
this ability is due to bogus control flow (bcf)—which cannot
be easily optimized—plus an interesting accident: the appli-
cation of optimizations onto code subject to control-flow

Figure 10. Analysis of the distance between program em-
beddings extracted from different obfuscated codes.
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Figure 11. Evaluation of Game3 with the Histogram em-
bedding plus six models. The normalizer is clang -O3.

flattening changes substantially the mix of instructions in
that code (important: the classifier has no access to flattened
samples). In this case, optimizations caused the opposite of
what we expected: they increase the ability of fla to hide
the purpose of a program. And yet, when used alone, fla
fails to deceive a histogram-based classifier (see Fig. 8). The
obfuscation techniques designed by Zhang et al. [46] are
ineffective in face of optimizations. These transformations
might confuse source-code analyses; however, their effects
disappear from optimized codes.

4.5 RQ5: On the Number of Available Classes
Question 5 (RQ5). How does the effectiveness of algorithm
classifiers vary with the number of classes of algorithms?

Classification becomes harder as the number of classes
grow. For instance, a random classifier has an expected hit
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rate of 50%when dealing with two classes, and of 0.96%when
dealing with the 104 classes from Poj-104. Our classifiers
enjoy higher accuracy. This section investigates how this
accuracy varies with the number of classes of algorithms.
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Figure 12. Evaluation of Game0 using the Histogram em-
bedding, considering a varying number𝑚 of classes of pro-
gramming problems.

Discussion: Figure 12 shows the accuracy (and the F1-score)
of the histogram-based classifiers in Game0, when dealing
with 2𝑖 , 2 ≤ 𝑖 ≤ 6 classes of programming problems. Figure 7
already shows accuracy for the maximum number of classes:
104. As expected, accuracy drops almost linearly with the
number of classes; however, the constant of the linear factor
is small. The classifier built with random forests still shows
a hit rate of about 80% when dealing with 64 classes—more
than 50x the expected accuracy of a random classifier.

4.6 RQ6: Performance Impact
Question 6 (RQ6). How does the performance of code pro-
duced by typical obfuscators and typical optimizers vary?

We evaluate Question 6 on the C programs from “The
Benchmark Game" (https://benchmarksgame-team.pages.
debian.net/benchmarksgame/). We show numbers for clang
-O3 and O- LLVM. Numbers for Zhang et al. [46]’s transfor-
mations cannot be shown, for they have released only obfus-
cated versions of Poj-104, but not the transformers.
Discussion: Figure 13 compares the running times of codes
produced with clang-O3 and with O-LLVM. Times are rela-
tive to programs compiled with clang -O0. O-LLVM slows
down every program; clang-O3 speeds up all of them. The
16 programs, compiled with clang -O0, run in 203.45 sec-
onds (std = 3.08 sec). On average (geometric mean), the 16
obfuscated programs are 8.33x slower than the programs
compiled with clang -O0. The optimized programs are 2.32x
faster than what clang -O0 produces. Yet, variations are
important: obfuscated ary3 experiences a slowdown of more
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Figure 13. Running times of optimized and obfuscated pro-
grams. Times are relative to code produced by clang -O0.

than 30x, and optimized matrix [multiplication] experiences
a speedup of almost 7x. Optimized programs were 1.23x-
136.18x faster than their obfuscated counterparts.

4.7 RQ7: Detecting the Obfuscator
Question 7 (RQ7). Can the algorithm classifiers evaluated in
this paper detect the obfuscator used in games 1 and 2?

Game2 relies on the premise that the classifier “knows"
the obfuscation strategy used by the evader. However, dis-
covering the obfuscation strategy applied onto programs is
not trivial, as this section shows.
Experimental Setup. To answer Question 7, we have eval-
uated a classifier on a game formed by a set of 10 code trans-
formers, plus a dataset of 500 programs. We train the classi-
fier onto 10 × 400 transformed programs, and challenge it
with the 10 × 100 remaining programs. We consider the fol-
lowing transformers: (i): clang -O0; (ii): clang -mem2reg;
(iii): clang -O3; (iv): ollvm -bcf; (v): ollvm -fla; (vi):
ollvm -sub; (vii): drlsc; (viii): mcmc; (ix): rs and (x): ga. We
thus have ten classes to classify programs. Class-ii is formed
by programs in the LLVM IR optimized with just the mem2reg
pass, which maps variables onto symbolic registers, instead
of leaving them in memory. Class-x is the genetic algorithm
used by Zhang et al. [46]. We could not use it in the other ex-
periments, because we could not apply it onto every program
in Poj-104. However, ga was available to answer Question 7,
given the restricted datasets used in this section. We eval-
uate Question 7 onto four datasets, each containing 5,000
samples: dataset1: a transformed version of each one of the
500 programs from a single—random—problem taken from
Poj-104; dataset2: a transformed version of each one of the
5 random solutions of a different problem from Poj-104 (we
eliminated four classes randomly, to remain with 100 classes);
dataset3: same as dataset1, except that each transformer
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is given 500 solutions from the same programming problem.
dataset4: same as dataset2, except that each transformer
is given 5 solutions from the same programming problem.
Notice dataset1 and dataset2 give the same programs to
each transformer, whereas the other two datasets give differ-
ent programs to each transformer.
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Figure 14. Evaluation of Question 7 on four different
datasets. Programs in each dataset are originally produced
with clang -O0, and then transformed via either optimiza-
tions or obfuscations.

Discussion: Figure 14 compares the performance of the
classifier on the four different setups that we consider. No-
tice that in three setups the performance of the classifier
is approximately the same: it obtains a hit rate of 25%. Al-
though higher than a random hit rate (expected 10%), this
result shows that “obfuscation classification" is harder than
algorithm classification—at least given the stochastic tools
evaluated in this paper. The only situation where we ob-
served a high hit rate was in dataset3. However, this is
a spurious correlation: every obfuscator is applied onto a
different programming problem. In this case, the classifier
is rather discovering that programming problem, not the
obfuscator used to transform the program.

4.8 RQ8: Actual Malware
Question 8 (RQ8). Can the algorithm classifiers evaluated in
this paper be used to identify real-world malware?

This section evaluates the classifiers discussed in Section 3
on 48 versions ofMirai2, a malware that turns networked
devices running Linux into remotely controlled bots.
Building Mirai Identifiers. A classifier cannot be effec-
tively trained with 48 samples. Thus, to increase the number
of samples, we proceed as follows. First, we separate 36 posi-
tive samples (i.e., actual malware) for training; and add to
this suite 36 negative samples (i.e., benign software) taken
from SPEC CPU2017. Let this initial collection be the seed
2Retrieved on August 1st, 2022, from https://github.com/vxunderground/
MalwareSourceCode/tree/main/Linux/Mirai-Family

suite. The benign samples were chosen by size: for each neg-
ative sample, we chose the C file from SPEC that had the
closest size, in the number of LLVM instructions. From this
seed collection, we can build seven classifiers by choosing a
classification model (see Figure 3) and varying the training
set. Each training set 𝑡𝑖 , 1 ≤ 𝑖 ≤ 6, is formed by adding to
𝑡𝑖+1 all the programs in 𝑡𝑖 , plus a transformed version of the
seed suite. We obtain these six new versions by applying
the following transformers: clang -O1, clang -O2, clang
-O3, ollvm -fla, ollvm -bcf and , ollvm -sub. Thus, the
classifier 𝑡𝑖 is trained with 36 × 𝑖 positive samples and this
same number of negative samples.
Challenging Mirai Identifiers. Figure 15 shows how the
accuracy of two different families of classifiers vary with the
growth of the training set. We compare a classifier based
on the cnn model adapted from Zhang et al. [45] and the
random forest model (rf). Each challenge consists of 12 posi-
tive samples (malware) and 12 negative samples (from SPEC
CPU2017). We tried seven different challenges. Each chal-
lenge takes the 24 samples, and transforms them using—
exclusively—one of the seven transformers used in training.
Themaximum accuracy is 7.0, in which case the classifier cor-
rectly identifies the 7× (12 + 12) = 168 challenges. Figure 15
shows that the accuracy of the classifiers increases with the
growth of the training set. Both the classifiers considered in
Figure 15 achieve an almost perfect hit rate when trained
with all the 7 × 2 × 36 = 504 samples. The rf approach, in
particular, misses only one out of 168 challenges (a benign
file obfuscated with clang -O1).
Comparison with Anti-Virus Systems. We have com-
pared the accuracy of the classifiers evaluated in Figure 15
with the anti-viruses available at VirusTotal [39]. VirusTo-
tal aggregates several industry-quality anti-virus systems
into a single scanner, which can be tried online. We do not
know how many different anti-viruses are used by Virus-
Total—its website claims that it scans binaries with over 70
implementations [39]. Figure 16 summarizes results for the
168 challenges used to construct Figure 15. We have tried
VirusTotal in two ways: first, asking if a software is mal-
ware; second, asking if it isMirai. We show results for the
best antivirus, and compare them with our best classifier:
the rf model trained with 504 samples. The accuracy of our
classifier is higher. However, whereas VirusTotal has been
engineered to deal with any binary program, our classifier
can only tell if a program is a version of Mirai or not.

5 Related Work
Algorithm classification is a form of code diffing: the problem
of detecting coding patterns within programs. The literature
on code diffing is extensive. For an overview, we recommend
Section 2 of Ren et al. [34]’s recent work. There are, essen-
tially, two approaches to perform code diffing: semantic anal-
ysis and syntactic analysis. The former relies on approaches
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Figure 15. Evaluation of different algorithm classifiers on
168 challenges consisting of different versions of malicious
(Mirai) and benign (SPEC CPU2017) codes.
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Figure 16. Comparison between the best classifier in Fig-
ure 15 and the best antivirus in VirusTotal.

such as symbolic execution/theorem proving [25, 26] or post-
mortem analysis of execution traces [7, 41] to determine
similarities between programs. The latter—syntactic-based
approaches—do not assume any semantic knowledge about
the target programming language. Thus, they tend to be
computationally cheaper. There are also hybrid code diffing
techniques, which combine semantic and syntactic method-
ologies. Algorithm classification is typically solved via ex-
clusively syntactic-based approaches [16, 18, 24, 43].

The Four Games in Perspective. As pointed out by Ren
et al. [34], most of the code diffing literature focus on the
construction of classifiers; hence, they would be described as
instances ofGame0. New program embeddings evaluated as
Game0 include Inst2Vec [4], Code2Vec [2], Ir2Vec [40],
Asm2Vec [16], and ProGraML [10]. Brauckmann et al. [5]
and Siow et al. [37] use Game0 to compare the effectiveness
of abstract syntax trees, sequences of tokens, and a graph-
based embedding. In previous work [11], we have also used
Game0 to compare 13 variations of program embeddings.

However, to make our experiments practical, we have used
only five classes of algorithmic problems.
Work that aims at building evaders tends to focus on

Game1, where the classifier has no previous knowledge
of the transformations allowed to the evader. Such is the
case of Ren et al. [34]’s BinTuner, for instance. David et
al. [13, 14] perform experiments that we classify as varia-
tions of Game3. They try to perform code diffing in binaries
produced by different compilers. To ease this task, David
et al. use optimizations to put binaries into a canonical form.
In this sense, the evader would be a different compiler, not
some code-obfuscation approach.

6 Conclusion
This paper has compared state-of-the-art program classi-
fiers and evaders on a framework formed by four adversarial
games. The current implementation of this framework lets
us evaluate 9 × 6 × 2 classifiers, whose design varies accord-
ing to the representation used to encode programs (nine
embeddings); the stochastic model used to classify programs
(six implementations) and the code normalization approach
pre-applied onto programs (two optimizers). This framework
has allowed us to evaluate nine evaders, which differ in how
they obfuscate programs to hide their purposes. In hindsight,
some of our observations were expected, such as the fact that
optimizers are equally as effective as obfuscators to evade
classification [34]; or the fact that compiler optimizations
can revert naïve code obfuscation [13]. Yet, we found some
of our empirical findings surprising. For instance, in sym-
metric games, we have observed that histograms of opcodes
are as effective as program embeddings recently designed
to do algorithm classification. We also could not observe ad-
vantages of recent models proposed for stochastic algorithm
classifications over off-the-shelf machine learning libraries.
Finally, knowledge of the obfuscator improves substantially
the ability of a classifier to categorize programs (Game2),
but discovering the obfuscator applied onto a program seems
to be a hard task (Sec. 4.7). All this said, our study has limita-
tions. In particular, most of our conclusions have been drawn
from experiments performed on a single dataset, formed by
104 programming problems, each with 500 samples. The only
different dataset that we have evaluated consists of 48 actual
malware plus 48 benign programs of similar sizes. Perhaps,
observations derived from different datasets could lead to
conclusions other than those enumerated in this paper.

Data Availability Statement. Software artifact [12] is
available at https://doi.org/10.5281/zenodo.7374649.
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A Artifact Appendix
A.1 Abstract
This artifact compares different program classification tech-
niques, and pit them against different evasion techniques. In
total, this artifact let us evaluate nine program encoding tech-
niques; seven code obfuscation passes; and seven stochastic
classification models. The artifact consists of a docker con-
tainer with accompanying scripts to replicate Figures 5-15 au-
tomatically, plus the dataset and accompanying instructions
to replicate Figure 16manually. For amore up-to-date version
of this source code, check https://github.com/lac-dcc/yali.

A.2 Artifact Check-List (Meta-Information)
• Program: Seven code classificationmodels: two fromZhang
et al. [45]: “dgcnn" (Deep Graph Convolution Neural Net-
work), “cnn" (Convolutional Neural Network); and five from
SciKit [31]: “rf" (Random Forest); “svm" (Support Vector
Machine); “knn" (K-Nearest Neighbors); “lr" (Logistic Regres-
sion); and “mlp" (Multilayer Perceptron). One code obfusca-
tor: O-LLVM [20]. Optimization passes in clang.

• Compilation: clang, gcc, cmake.
• Dataset: Training data samples are included.
• Run-time environment: Any operating system that sup-
ports Docker, Docker-compose, Python3, Wget, Tar, and Sed.

• Hardware: Any x86-64 machine with at least 64 GB of RAM
memory.

• Metrics: Accuracy, F1-Score, Memory (GB), and time.
• Output: Jupyter notebooks replicating Figures 5-15.
• How much disk space required (approx.)?: 80 GB.
• How much time is needed to prepare workflow (ap-
proximately)?: 1 hour.

• How much time is needed to complete experiments
(approximately)?: All the experiments take approximately
19 days:
– Speedup analysis (Figure 13) takes ∼ 23∗Rounds

60 hours. We
ran 10 rounds, so it takes ∼ 4 hours

– Memory analysis (Figure 7) takes ∼ 14∗𝑅𝑜𝑢𝑛𝑑𝑠
60 hours. We

ran 10 rounds, so it takes ∼ 2 hours and 20 minutes
– Game 0 (Figure 7) takes ∼ 14∗𝑅𝑜𝑢𝑛𝑑𝑠

60 hours. We ran 10
rounds, so it takes ∼ 2 hours and 20 minutes

– Game 1 andGame 2 (Figure 8 and Figure 9) take∼ 112∗𝑅𝑛𝑑𝑠
60

hours. We ran 10 rounds, so each one of them takes ∼ 18
hours and 30 minutes

– Game 3 (Figure 11) takes ∼ 98∗𝑅𝑜𝑢𝑛𝑑𝑠
60 hours. We ran 10

rounds, so each one of them takes ∼ 16 hours and 20
minutes

– The experiment to reproduce Figure 12 takes ∼ 10∗𝑅𝑜𝑢𝑛𝑑𝑠
60

hours. We ran 10 rounds, so it takes ∼ 1 hour and 40
minutes

– The experiment to reproduce Figure 15 takes ∼ 10∗𝑅𝑜𝑢𝑛𝑑𝑠
60

hours. We ran 10 rounds, so it takes ∼ 1 hour and 40
minutes

– The experiment to reproduce Figure 14 takes ∼ 𝑅𝑜𝑢𝑛𝑑𝑠 ∗ 4
minutes. We ran 10 rounds, so it takes ∼ 40 minutes

– Comparison between program representations (Figure 5)
takes ∼ 𝑅𝑜𝑢𝑛𝑑𝑠 ∗ 1.7 days. We ran 10 rounds, so it takes ∼
17 days

• Publicly available?: Yes
• Code licenses (if publicly available)?: GPL-3.0.
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.
7374649

A.3 Description
A.3.1 Delivered. https://doi.org/10.5281/zenodo.7374649

A.3.2 Hardware Dependencies. Any x86-64 machine
with at least 64 GB of RAM memory.

A.3.3 SoftwareDependencies. Docker, Docker-compose,
Python3, Jupyter Notebook, Wget, Tar, and Sed. The Docker
image contains all the other dependencies to reproduce it.

A.3.4 Data Sets.

• “OJClone": POJ-104 dataset used by Mou et al. [27].
• “BCF": The OJClone dataset obfuscated by OLLVM’s
Bogus Control Flow.

• “FLA": The OJClone dataset obfuscated by OLLVM’s
Control Flow Flattening.

• “SUB": The OJClone dataset obfuscated by OLLVM’s
Instructions Substitution.

• “OLLVM": The OJClone dataset obfuscated by all the
OLLVM’s passes.

• “MCMC": TheOJClone dataset obfuscated by theMonte
Carlo approach of Zhang et al. [46].

• “DRLSG": The OJClone dataset obfuscated by the Deep
Reinforcement Learning SequenceGeneration of Zhang
et al. [46].

• “RS": The OJClone dataset obfuscated by the Random-
Search strategy of Zhang et al. [46].

• “dataset1", “dataset2", “dataset3", “dataset4": They are
a set of programs from OJClone originally produced
with clang -O0 and then transformed via either op-
timizations or obfuscations. There are ten classes of
code transformers in each of them.

• “Mirai": 48 different versions of theMiraimalware [19],
plus 48 benign programs of similar sizes.

A.4 Installation
1. Download and unpack the zip file from https://doi.org/

10.5281/zenodo.7374649. You will get a folder called
yali-main.

2. Copy the .env.example file3 into a new file called
.env.

3. Run the script setup.sh, e.g., ($> ./setup.sh) to
prepare the environment.

A.5 Experiment Workflow
To execute the experiments, run the script run.sh as follows:
$ ./run.sh all

3This is a hidden file located in the project’s root directory.
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It is possible to execute the experiments separately. Below
we show how to generate data for specific figures:

• Figure 5: $> ./run.sh embeddings
• Figure 7 (second chart) and 12: $> ./run.sh resource
• Figure 7 (first chart): $> ./run.sh game0
• Figure 8: $> ./run.sh game1
• Figure 9: $> ./run.sh game2
• Figure 10: This figure is generated by a Jupyter Note-
book

• Figure 11: $> ./run.sh game3
• Figure 13: $> ./run.sh speedup
• Figure 14: $> ./run.sh discover
• Figure 15: $> ./run.sh malware
• Figure 16: The data in this figure cannot be reproduced
automatically, more information in section A.6.1.

A.6 Evaluation and Expected Results
The Statistics folder contains Jupyter Notebooks that plot the
data generated by the experiments. Each notebook describes
the chart(s) it contains and provides the steps to generate
this data. The artifact contains the following notebooks:

• EmbeddingResults: Presents comparison of program
embeddings in Game0 using 32 problems. Notebook
replicates Figure 5.

• GameResults: Presents information about the 4 games
proposed in our work and the Figure 15. Notebook
replicates Figures 7 (first chart), 8, 9, 11, Figure 15 and
12.

• ResourceResults: Presents information about resource
consumption (memory and time) of each model. Note-
book replicate Figure 7 (second chart).

• StrategiesResults: Notebook replicates Figures 10, 14
and 13, with analyses of each strategy.

A.6.1 Reproducing Figure 16. The only figure in the pa-
per that cannot be reproduced automatically is Figure 16, be-
cause it requires us submitting files to a website that classifies
them as either malicious or benign software. To reproduce
Figure 16, we recommend the following steps:

1. Go to www.virustotal.com
2. Click “Choose File" and select file to upload from https:

//github.com/lac-dcc/yali/tree/main/MalwareDataset/
mirai (malicious code) or https://github.com/lac-dcc/
yali/tree/main/MalwareDataset/spec_cpu_2006_range
(benign code).

3. Retrieve detection score from the upper left bullet. This
is the malware detection rate.

4. Retrieve detection labels in front of the names of each
anti-virus in the central window.

5. Count the ratio of anti-virus (AVs) assigning the Mi-
rai label to the malicious samples. This is the family
classification rate.

6. Repeat for every file.
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