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Abstract Self Modifying Code (SMC) are code snip-

pets that modify themselves at runtime. Malware

use SMC to hide payloads and achieve persistence.

Software-based SMC detection solutions impose perfor-

mance penalties for real-time monitoring and do not

benefit from runtime architectural information (cache

invalidation or pipeline flush, for instance). We revisit

SMC impact on hardware internals and discuss the im-

plementation of an SMC detector at distinct architec-

tural points. We consider three detection approaches:

i) existing hardware counters; ii) block invalidation by

the cache coherence protocol; iii) the use of Memory

Management Unit (MMU) information to control SMC

execution. We compare the identified instrumentation

points to highlight their strong and weak points. We

also compare them to previous SMC detectors’ imple-

mentations.

1 Introduction

Self Modifying Code (SMC) are pieces of code able

to change their own structure and/or behavior at run-

time [8]. Their initial usage refers to a period of stor-

age constraints, requiring huge programming effort re-

garding code generation. Nowadays, SMC is often seen

on payload protection cases, either benign (e.g., intel-

lectual property protection) or malicious (e.g., binary

packers for code obfuscation) [24]. SMC may also be

runtime-generated on interpreted languages, such as

Java and Python [17], mostly as benign cases.

SMC becomes a security concern when used on

packers, as it allows malware to bypass pattern match-
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ing checks. Security solutions started to monitor code

execution at distinct steps to address this issue. This

monitoring requires constant checks and is usually im-

plemented in software [24], resulting in overhead1 (high

frequency memory checks may impose performance

penalties as high as 400% [32]). On the one hand, so-

lutions performing frequent binary checks impose high-

performance penalties, leading users to turn them off.

On the other hand, solutions that perform less frequent

checks are susceptible to timing attacks, missing code

changes that happen between two checks. Therefore,

improving SMC detection triggering is a relevant task

to make security solutions more effective.

We may notice many architectural implications dur-

ing the execution of SMC code if we look at hard-

ware level, such as instruction and trace cache inval-

idation. These events suggest the processor can aid in

SMC identification and on reducing software monitor-

ing overhead. Therefore, we propose an ideal model to

evaluate this possibility: SAP, an SMC-Aware Proces-

sor able to notify upper instances about any SMC exe-

cution.

Previous architectural developments to handle SMC

at hardware level focused on execution speed up, aim-

ing to solve SMC-imposed execution bottlenecks. This

work, instead, focuses on identifying hardware facilities

which can be leveraged to detect SMC with no signifi-

cant performance penalty. More specifically, we propose

implementing SMC detectors by leveraging: i) existing

hardware performance counters; ii) instruction cache

invalidation detection by the cache coherence protocol;

and iii) MMU protection bits. Therefore, we do not pro-

pose hardware changes in SAP to speed up SMC execu-

1 We are hereafter referring to overhead to denote the run-
time monitoring overhead, as the overhead of running detec-
tion routines is unavoidable to any AV solution.
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tion, but mechanisms to efficiently detect SMC. We also

introduce ways to notify upper instances—Operating

System (OS) and Anti-Viruses (AVs)—about SMC ex-

ecution, triggering scan mechanisms on-demand.

We classified SMC according to their impact extent

over modified instructions and affected architectural en-

tities: i) SMC type-I affects near, cached instructions;

ii) SMC type-II affects near, pipelined instructions; and

iii) SMC type-III affects far, non-cached nor pipelined

instructions. Our results show that: i) the cache de-

tection mechanism is able to handle SMC-type I in a

general way, although it can be bypassed by specially-

crafted samples using flush instructions; ii) it is possible

to build performance-counter-based detectors with ex-

isting architectural components to handle SMC type-II;

and iii) the MMU-based mechanism, although simpler,

presents the best coverage and is able to detect all SMC

types with near-zero logic overhead.

Target Audience. According to our experience, many

security researchers do not understand the impact of

malicious code constructions, such as SMC, at low level.

At the same time, many computer architects do not

have a comprehensive view of system component’s im-

pact on software security, despite having a deep techni-

cal knowledge about such components. Given this sce-

nario, our work aims to bridge this understanding gap.

Thus, more than a solution proposal, this work presents

an exploratory analysis on how each software construc-

tion impacts each hardware component and vice-versa.

Therefore, this paper is aimed to reach both security

and computer architecture researchers in a combined

effort towards enhanced security solutions.

Contributions. Our contributions are the following:

– We revisit the use of SMC for malware packing and

current OS and architecture support for their exe-

cution.

– We introduce a taxonomy for SMC code and de-

tectors based on architectural detection points and

detection windows.

– We evaluate the detection effectiveness and the

performance impact of each aforementioned ap-

proaches.

Paper Organization. This paper is organized as fol-

lows: In Section 2, we motivate this work; in Section 3,

we provide a background on SMC and present related

work; in Section 4, we introduce SAP, the ideal pro-

cessor model and its mechanisms to support SMC de-

tection; in Section 5, we present SAP’s evaluation; in

Section 6, we discuss SMC impact as identified by SAP;

finally, we draw our conclusions in Section 7.

2 Motivation

We here present scenarios for which improving SMC

detection is essential. We first present how SMC can

be used by malware to evade analysis environments.

Further, we present the limits of existing software-based

defenses.

SMC for bypassing malware analysis. Malware

samples often try to hide their malicious behavior to

keep executing in infected systems. As time passes,

new techniques are used to enforce stronger malicious

payload protection policies, which includes using SMC.

Therefore, efficient detection of SMC is an important

security-related task. The methods used by the mal-

ware samples on the first bypass techniques were as

simple as detecting the analysis environment by lever-

aging an anti-analysis “trick” and then refusing to run

their malicious payloads, as illustrated in Code 1.

1 if(! anti_analysis ())

2 {

3 malicious ();

4 }

Code 1 Evasive malware. Bypass consists of branching right
after the execution of an anti-analysis trick.

Given the differences on the number of executed in-

structions in this model were noticeable, which makes

detection easier, attackers started to employ more simi-

lar constructions where SMC took a fundamental place.

The code sample presented in Code 2 illustrates how

the malicious function is called in both cases (trick suc-

ceeded or not), but its content is replaced by a malicious

payload only when an anti-analysis trick succeeds.

1 if(! anti_analysis ())

2 {

3 change_page_flags(malicious);

4 unsigned char *instruction =

5 malicious+INST_OFFSET;

6 *instruction = INST_DATA;

7 }

8 malicious ();

Code 2 Evasive malware. Malicious function is always
called, but has distinct payloads.

Although more sophisticated, this construction can

also be detected due to the presence of a deviating

branch–i.e. a branch which is a root cause of evasion, in

the security context. State-of-the-art evasion techniques

are characterized by not relying on branches for flow

deviation. Willems et al. [33] presented the delusion

attack concept, in which the same instructions behave

distinctly on real machines and on emulators. As an

example, consider the assembly instruction rep movs,

which copies the number of bytes pointed by ecx from

esi to edi, with its own address as target. As real
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machines perform fetch-then-execute atomically, no

side-effect is observed. It means that the instruction will

only be modified after finishing its execution. On em-

ulators, as memory page writes are software-trapped

for emulation purposes, the instruction must be re-

executed after the trap routine finishes executing, thus

being re-fetched after the write, resulting in a distinct

behavior. Since the address from the rep movs instruc-

tion was modified, the emulator will actually execute

the modified version of such instruction. The presented

technique can be used to evade analysis systems and

build attacks.

1 addr ptr1 = &executable_function;

2 addr ptr2 = &writable_data_buffer;

3 target = delusion(ptr2 , ptr1);

4 write_at_addr(payload , target);

5 malicious ();

Code 3 Branch-free evasion with SMC-delusion attack.

Code 3 illustrates our proposed SMC delusion at-

tack, which handles pointers for two memory regions:

an executable function (line 1), and a writable data

buffer (line 2). A delusion attack is launched having ei-

ther the data buffer or the function address (line 3) as

possible resulting values. The malicious payload is writ-

ten in the target by the subsequent write function (line

4). If running inside an emulator, ptr2 is considered,

thus writing in the writable data buffer and not chang-

ing the original, benign function. If running on a real

machine, the function offset (ptr1) will be considered,

thus writing the payload into the function and turning

it into a malicious one. In both cases, the function is

always called (line 5), thus not presenting noticeable

execution differences to allow evasion identification.

This attack demonstrates that anti-analysis threats

could not be detected anymore due to the presence of

deviating branches. Therefore, improving SMC execu-

tion detectors is essential to handle such kind of evasive

threat to modern computer systems.

OS support for SMC execution. Current OS rely

on eXecute Disable (XD)/No-eXecute (NX) MMU

page protections to enforce a Write⊕Execute [30] pol-

icy, which states executable pages cannot be writable.

If a write on such pages happens, a fault is generated.

To set the NX bit, OS functions which mod-

ify memory attributes (e.g. mmap, mprotect and/or

VirtualProtect) are trapped and instrumented to add

checking capabilities. The major drawback of this ap-

proach is that the NX bit must be set when the pro-

cess is launched and its memory page protections are

set. Thus, either all or none SMC code is allowed to

run, with no fine-grained control. As an example of

this limitation, consider a benign software packed with

UPX2, a popular open-source packer. Table 1 shows the

attributed initial memory flags and the accesses per-

formed during its execution.

Table 1 UPX Sections Memory Mapping. Sections are
initially mapped as writable and executable at the same time.

Name Content Permissions Accessed
None Header RWE R
UPX0 Original Code RWE RWE
UPX1 Unpacker RWE RWE
.rsrc Resources RWE RW

UPX requires its pages to be initially set as

both writable and executable, thus violating the

Write⊕Execute policy. Therefore, a restrictive environ-

ment would block this benign software execution. To

handle such benign cases, OS often adopt whitelisting

policies. A drawback of this approach is that the SMC

behavior must be known a priori, thus still limiting the

execution of newly-created, benign software pieces.

Ideally, the OS should be able to launch processes

without prior information and detect SMC at runtime,

thus further deciding a given code should be allowed to

run (benign) or not (malicious). The decision whether

a given SMC execution is due to malicious code or not

could be, for instance, outsourced to a third-party en-

tity, such as an AV mechanism. Therefore, benign soft-

ware whitelists would be runtime-generated instead of

relying on prior code knowledge, thus scaling the pro-

tection to cover early-launched applications.

3 Background & Related Work

We here present an overview of how SMC is used in

the security context as well as its impact on processor

architectures. We also discuss existing techniques and

implementations to handle SMC.

SMC and malware. SMC can be implemented by

distinct techniques [35], such as instruction replace-

ment, dynamic code mutation (encryption), piece clus-

tering and virtual machine protection. They can be

used for malicious purposes (e.g., obfuscation through

packing [5]) or legitimate software protection [34]. In

the malware context, SMC is mostly used as packers,

it means, software pieces which embed other software

inside themselves to hide malicious features from static

analysis. Packers like Telock build code in an over-

lapped way, requiring special disassemblers for correct

interpretation [5].

To address obfuscated malware, the payload must

be extracted (unpacked), which can be done in several

2 https://upx.github.io/

https://upx.github.io/
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ways [3], but many tools use the run and dump ap-

proach, i.e., they continuously inspect memory as ex-

ecution proceeds, increasing the performance penalty

due to the multiple required checks. Other solutions

rely on emulation or binary translation [12,20], which

are effective, but not intended to run in end-users ma-

chines. An effective way to detect SMC involves flagging

memory pages as read-only and then trapping the page

fault handler. Liu and Wang [21] implemented this ap-

proach at the software level and addressed the SIGSEGV

signal on affected applications. OmniUnpacker [24] also

monitor such writes at the OS level by calling an exter-

nal scanner when syscalls are originated from OS pages.

Compared to them, our goal is to provide hardware sup-

port for this kind of SMC detection approach, aiming

at efficient detection and low performance overheads.

SMC inside the computer architecture. Intel pro-

cessors have native support for runtime code modifica-

tion in their many variations (e.g., self modifying code

in the local core, cross modifying code in a distinct

core). Intel Core 2, for instance, makes use of an in-

clusion filter that acts as an instruction cache moni-

tor [11]. From the architecture’s perspective, the first

stage impacted by SMC execution is the instruction

fetch. Since instruction bytes are cached in the instruc-

tion cache once requested, those should be updated

when the memory code region is written. As a gen-

eral policy, processors tend to clear the whole instruc-

tion cache, a drawback pointed in [17,31,37]. The sec-

ond impacted stage is the instruction decoder. As the

newly fetched bytes could represent another instruc-

tion, cached instructions must be discarded. On Intel

processors, the decode buffer is often named trace cache

and has to be invalidated, as pointed in the manual:

“For the Pentium 4 and Intel Xeon processors, a write

or a snoop of an instruction in a code segment, where

the target instruction is already decoded and resident in

the trace cache, invalidates the entire trace cache.”.

The processor back-end (formed by the rename, dis-

patch, execution, and write-back stages) will also be

impacted. Since modern processors present big Reorder

Buffers (ROB) to support aggressive out-of-order exe-

cution within a superscalar pipeline, instructions can

be affected by a write after they have been already

entered the pipeline. In general, processors tend to

flush the entire pipeline, causing performance degra-

dation. Since the organization changes according to the

processor family, the flush conditions varies a lot, as

pointed by the processor manual [18]: “IA-32 proces-

sors exhibit model-specific behavior when executing self-

modified code, depending upon how far ahead of the cur-

rent execution pointer the code has been modified. As

processor micro-architectures become more complex and

start to speculatively execute code ahead of the retire-

ment point (as in P6 and more recent processor fami-

lies), the rules regarding which code should execute, pre-

or post-modification, become blurred.”.

While the presented invalidation procedures solve

the correctness problem, the already implemented SMC

detectors do not assist security at all. A straightforward

enhancement would be to add an alert routine to the

existing detectors—a solution discussed in this work.

Overall solutions for SMC handling rely on addi-

tional hardware; [13] presents a full x86 implementa-

tion with a morphing code support layer; [4] presents

the Selective Snoop Protocol (SSP), which minimizes

the number of cache invalidation by the snoop protocol

due to SMC, thus saving energy. Such approaches, how-

ever, imply on aggressive redesign changes. In addition,

most changes are performance-focused (e.g., cache): [17]

suggests reducing the number of stalling instructions

due to SMC to reduce cache invalidation rate and over-

head; Other approaches, such as selective cache line

change [31] and the line-address buffer concept [37] opt

to invalidate only the SMC-affected lines. None of them

consider security alerting. Although porting these ap-

proaches to detect SMC for security purposes seems

straightforward, we are not aware of any other work

proposing such move. Therefore, we present over this

article how SMC detection could be performed based

on distinct instrumentation points.

SMC and code generated at runtime. A precise

SMC definition is a bit hard since it can refer to many

scenarios. Some work opt to cover a broad scenario,

such as in [8], which defines SMC as “any program that

loads, generates, or mutates code at runtime”. In this

paper, we consider this definition to encompass all cases

in which code is mutated in runtime. This might in-

clude polymorphic and metamorphic code [6] if they

employ SMC constructions. Our goal, however, is not

to cluster metamorphic samples, but to detect when a

code mutates itself, thus possibly becoming malicious

in runtime. More specifically, in our view, SMC may be

defined in at least three scenarios, based on the proba-

bility of the code modification to cause hardware side-

effects (e.g., cache and/or pipeline invalidation). We

consider how far the modified code is from the mod-

ifier instruction and whether the instruction was pre-

viously executed or not as proxies for the probability

estimation.

SMC Type-I (Cached Instructions): when an in-

struction is modifying an instruction of its neighbor-

hood (e.g., in the same function), it is very probable the

original instructions had been previously cached, either

by being previously executed or by block associativ-
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ity/prefetching, resulting in cache invalidation, which

can be detected by cache instrumentation.

SMC Type-II (Pipelined Instructions): the last

version of the modified instruction (regardless of its

type) might be present in the pipeline even when

evicted from cache, resulting in forwarding issues. This

can be detected by pipeline monitoring hardware coun-

ters.

SMC Type-III (Distant Instructions): if an in-

struction modifies a far code, such as a function placed

on a distinct memory page, the previous data is not

cached nor pipelined, not triggering any execution

check. The only affected functional unity is the MMU.

In addition to malware, which often employ SMC

for all three discussed scenarios, modern software also

performs SMC for legitimate uses, such as Just-In-Time

(JIT) compilation and interpreters [2,17]. Contrary to

malware, they usually generate code in the third case,

far ahead of their code generators, and the generated

codes do not modify themselves. This way, many re-

searchers do not call them SMC, but runtime generated

code. This is a controversy since the 90’s (see the LISP

case [26]).

4 SAP: an SMC-Aware Processor

SMC-Aware Processor (SAP) is our ideal model of a

processor to investigate and evaluate the impact of im-

plementing SMC detection mechanisms in distinct CPU

components. The main idea of SAP is to raise warn-

ings and call upper instances (OS or AV) when SMC

execution is identified, thus reducing the performance

penalty of continuously monitoring binaries to iden-

tify code changes. SAP is able to raise interrupts when

SMC execution is detected, thus causing a traditional,

software-based AV to be called on-demand. Using hard-

ware flags to trigger an AV is not new (Microsoft sub-

mits patent claims on that since 2007 [29]), but SAP

is not limited to flag pages as suspicious, but it also

provides a precise mechanism to trigger inspection on

effectively modified pages.

SAP introduces independent modifications in three

distinct components: the CPU cache coherence proto-

col is modified to alert when cache code invalidation is

performed; flushes in the CPU pipeline are monitored

through hardware performance counters; and MMU is

instrumented to enforce write protections to executable

pages.

4.1 Threat Model & Assumptions

In SAP, we design a CPU able to detect both in-place

and runtime-generated SMC cases. We focus SMC oc-

currences in user-land due to their prevalence, although

no technical restriction is imposed to handle kernel

cases. SAP monitors the system in a system-wide way,

thus not requiring users to specify which processes will

be monitored, However, SAP allows individual process

monitoring to be turned off on-demand to allow benign

SMC processes to run without any impact (whitelist-

ing). Therefore, we assume no prior-execution block-

ing of writable pages by the OS, thus SMC processes

can be normally launched and benign SMC cases will

be runtime-whitelisted. Similarly, we assume no appli-

cation signing requirement enforcement, thus allowing

users to freely download apps from the Internet, as most

end-users do in current desktop OS versions.

Regarding packers, SAP covers only SMC cases due

to instruction modification and not due to instruction

encoding in virtual machines, which does not struc-

turally impact processor execution, our focus in this

work. Finally, our goal is not to entirely replace existing

AVs, but to assist them with new, efficient inspection

triggering mechanisms.

4.2 SMC-Aware Cache.

When a Type-I SMC happens, the instruction cache is

directly affected. Since it is not writable, it should be

updated by an operation that performs partial or full in-

validation and re-fetch. Therefore, a straightforward ap-

proach to detect SMC is to raise an exception during in-

struction cache invalidation. This mechanism does not

impose a modification on the coherence protocol, but a

side-effect during instruction cache invalidation, which

allows the cache to directly detect code changes. This

mechanism is illustrated through the SMC in Code 4,

which overwrites the increment instruction (inc eax)

with NOP instructions in the odd executions, starting

from the second loop iteration. From this point to the

end, the code does not accumulate any value anymore.

1 for(i=0;i <3;i++){

2 if(i%2==1){

3 void *func_addr = (char*)foo +

FUNC_ADJUST;

4 instr = (unsigned char*) func_addr +

INST_OFFSET;

5 *instr = nop; *( inst +1) = nop;

6 }else{ acc++;

Code 4 SMC code. Accumulator variable is overwritten.

We executed this example on a pre-decoded cache

modelled with Intel PIN, a dynamic binary inspection
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framework that allows system components to be mod-

elled without requiring binary recompilation and/or

patching [22]. The cache was modelled (as shown in

Code 5) to detect when the decoded instruction for the

same index differs.

1 UINT64 idx = (( UINT64)PC >> LINE_INDEX)

&& (LINES -1);

2 for(int j=0;j<LINES;j++){

3 if(cache[idx][j].valid && cache[idx][j]

.tag==PC){

4 if(current ->disassembly != cache[idx

][j].decoded){

5 // SMC Code

Code 5 SMC-aware cache. Checking decoded instruction for
the same index.

When running the sample code in the aforemen-

tioned prototype, the following result is observed

(Code 6).

1 13 F7111DE inc eax; 13 F7111DE nop; 13

F7111DF nop

2 <<SMC Detected >>

Code 6 SMC-aware cache executing the SMC sample.

As expected, the first iteration caches and executes

the increment instruction (2-byte-long at 0x11DE), and

the second iteration changes the instruction with two

NOP instructions at 0x11DE and 0x11DF, respectively,

thus triggering SMC detection. The proceeding itera-

tions execute the NOP sled, but as it now corresponds

to cached, decoded instructions, SAP does not trigger

SMC detection.

Detection evasion with forced cache flushes: A

drawback of this mechanism is that it can be defeated

by SMC performing a cache flush right before code

modification, as the cache would have no prior data to

compare. Modern processors present many instructions

able to flush cache lines, such as clflush, invd, and

wbinvd. They were originally created to keep synchro-

nization and consistency among storage systems, but

can also be used to leverage such kind of attack. The

use of cache flush instructions is supported by compil-

ers through the use of inline asm or intrinsics [25]. To

exemplify this type of attack, consider the code shown

in Code 7, which flushes the cached line associated to

the instruction to be modified right before modifying

it.

1 instr = (ptr*) func_addr + OFFSET;

2 _mm_clflush(instr);

3 *instr = nop;

Code 7 Forced cache flush before instruction change.

To support the use of such instructions, we have

complemented our prototype to reflect the proper be-

havior, as shown in Code 8.

1 string dis = INS_Disassemble(ins);

2 if(dis.find("clflush"))

3 clear_cache(addr);

Code 8 Cache simulator. Forced cache flush support.

When running in such environment, our flush-based,

modified SMC example was able to stealthily modify

the instruction cache content. Therefore, detecting this

threat requires the development of an alternative so-

lution: A heuristic approach could flag forced cache

flushes as suspicious and to raise an interrupt to trigger

a scan procedure. With that, our solution was able to

detect the execution of the flush instruction (003515A7

clflush zmmword ptr [eax]). We consider the cache

flush heuristic as reasonable since most legitimate ap-

plications do not perform cache flushes. To confirm

that, we disassembled 2870 PEs and DLL binaries from

System32 folder of a clean Windows installation, thus

considering them as benign. Only 6 (0.2%) of them pre-

sented at least one clflush instruction and 160 (5.5%)

presented at least one wbinvd instruction.

In addition of being a requirement for stealth

SMC, cache flush is also used on a variety of side-

channel cache attacks, such as privileged information

leakage [16] and cryptography attacks [19,36]. There-

fore, this complementary, heuristic approach, as imple-

mented in SAP, may aid also on non-SMC threat de-

tection.

Cache Monitor Implementation: The implementa-

tion decision which presents the best cost-benefit is to

instrument the L1 cache, as it presents high-rates of

hits. However, we could easily extend this detection

mechanism through the whole cache hierarchy. To de-

tect SMC on any cache level, we consider that a simple

addition of one control bit per cache line would be nec-

essary. This extra control bit, would be responsible to

identify cache lines which holds executable code (exe-

cutable cache line). In this sense, during any modifi-

cation of an executable cache line, the cache hierarchy

should generate an exception on the requester proces-

sor. Figure 1 illustrates the proposed modification.

4.3 SMC-aware pipeline.

The presented cache modifications enable processors to

detect SMC type I. We here extend our model to also

cover SMC type II. As SMC type II affects the proces-

sor pipeline, we looked for existing hardware features

associated with execution metrics which could provide

us with execution metadata to be leveraged for SMC

detection.

Intel’s processors natively support SMC execution

through mechanisms that handle SMC-imposed corner-



The Self Modifying Code-Aware Processor 7

Fig. 1 SMC-Aware Cache. An exception is generated
when an invalidation is performed on valid executable cache
line.

conditions. Despite such hardware support, few inter-

faces to them are exposed to the surface (e.g., program-

ming interfaces). Therefore, we are required to adapt

existing features for our purposes. More specifically, we

adapted existing hardware counters to work as pipeline

monitors for SMC execution.

Intel’s processors present a mechanism called Pre-

cise Event Based Sampling (PEBS) [18], which allows

a hardware counter to store its data in OS pages

and to raise an interrupt when it reaches a user-

defined threshold. The PEBS is able to monitor the

MACHINE CLEARS.SMC event, which “counts the number

of times that the processor detects that a program is

writing to a code section and has to perform a machine

clear because of it.”.

As the PEBS works as an event counter and we are

interested on detecting any SMC execution, we set the

interrupt threshold of PEBS to one. Therefore, every

time an SMC event is identified, the counter is incre-

mented, causing an overflow and raising an interrupt.

Notice that this approach is deterministic and does not

require polling the counter value. Also notice that the

same effect can be achieved in distinct scenarios and

platforms by setting the hardware counters to their

maximum values.

When an interrupt happens, the interrupt routine is

able to check the last scheduled process in the OS, thus

identifying which one generated such interrupt. This

information is provided to an Anti-Virus (AV) solution

for additional checks. From the AV point of view, an ef-

ficient data collection procedure must be implemented,

since periodic interrupt checks (polling) would degrade

the solution’s performance to the software-based, high-

overhead scenario. To provide an asynchronous notifi-

cation, we have implemented an inverted I/O routine,

as described by Botacin et. al [7].

To attest the feasibility of our proposal, we devel-

oped SMC samples which modify a distinct number of

instructions in distinct binary regions. Figure 2 shows

the detection of SMC code as a function of the number

of affected instructions and the distance between the

modified and the modifying instructions. All samples

were executed in a Haswell CPU, thus the reproduc-

tion of our results is guaranteed only for this micro-

architecture.
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Fig. 2 Effectiveness of event counter as a SMC detector.

Our approach succeeded on detecting SMC which

caused the pipeline to flush (type II), such as the ex-

ample whose self-modifying instruction modifies an in-

struction right before itself. We also notice, as expected,

that constructions which do not cause pipeline flushes

are not detected. For instance, writing an instruction

that will be executed in the future and was not exe-

cuted before does not affect pipeline at all. Other con-

structions do not cause pipeline flushes as their data

dependencies are resolved through data forwarding.

4.4 SMC-Aware MMU.

Most modern processors implement the MMU between

the processor and any cache hierarchy. Hence, before ac-

complishing any cache access, the MMU will first trans-
late the virtual address to physical. This way, we can

modify the MMU instead of doing cache redesign, since

it handles both SMC Type-III and Type-I, and is re-

sponsible for memory data that will be cached at some

moment.

A first policy for detecting SMC at MMU level is

to raise an alert at each SMC code write. It can be

accomplished by modifying the Translation Look-aside

Buffer (TLB) to launch an SMC exception every time

a write operation is translated to a page with execution

permission.

Every TLB entry is formed by four fields: Virtual

Page Number, Physical Page Number, Valid and Per-

mission bits (Read/Write/eXecution). We propose to

add our monitor the ability to check the Permission

bits of used pages. In case of a permission violation (a

write on an executable page), an alert is delivered from

the mechanism to the AV solution.

Notice that this policy does not require the execu-

tion of the modified code, as it alerts the system right
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at the modification time. Also notice that it does not

generate a segment fault exception, as page write per-

mission is not removed.

A practical challenge is to implement this mecha-

nism on processors with Simultaneous Multi-Threading

(SMT) support, where TLB needs to know what pro-

cess/thread caused the SMC. To handle such cases, we

rely on the Address Space Identifier (ASID) field in each

TLB line (present in Intel and AMD architectures re-

leased after 2008 [28,1]).

The proposed modification is illustrated in Figure 3.

For each matching address (tag-checked), we check

whether current operation is a write (externally identi-

fied) and target address is executable. Notice the signal

is activated only for monitored processes.

Virtual Page Number (VPN) Page Offset

Tag Index

Tag PPNValid R W XASID

Translation Lookaside Buffer

=?

=?

yes

yes

Physical Page Number (PPN) Page Offset

SMC Exception

Is monitored CR3?

SMC Exception

1 st. way set associative N th. way set associative

Is write?

Tag PPNValid R W XASID

Fig. 3 MMU-based SMC detection mechanism.

In current systems, such policy can only be imple-

mented with software support, by relying on the O.S. to

mark code pages as not writable and thus further han-

dling the respective page faults. By keeping a database

of pages whose permissions were removed, the page

fault handler is able to disambiguate true faults from

those caused by SMC writes.

Whereas following individual code writes is a precise

inspection trigger, it imposes a significant overhead. An

alternative policy is to check entire modified pages. It

can be implemented by marking code pages as modi-

fied when they are first written and generating an alert

when they are required to be executed.

This policy can be implemented in hardware by

adding a modified flag to the TLB context, as shown in

Figure 4. When an executable page is writen, the mod-

ified flag is set, Further, when the page is required to

be executed, an exception is raised if the modified bit

is set.

We highlight that the introduction of a modified

bit makes the MMU looks like directory-based cache

coherence protocols [10], which have a modified data

state. SAP extends such approach such that MMU now

expects code to also be modifiable.

In current systems, this policy can also only be im-

plemented using software support. The OS can flag exe-

Fig. 4 MMU-based SMC detection mechanism.

cutable pages as not present, thus triggering page-faults

at each execution attempt. By keeping state of the

pages whose execution attribute was removed, the OS

can disambiguate ordinary page-faults from the ones

caused by SMC execution attempts.

4.5 SAP’s Notification Handling.

An important project decision when developing a secu-

rity monitoring mechanism is how to handle the notifi-

cations triggered by the solution. To evaluate the best

implementation choice, we implemented two distinct

notification mechanisms in SAP: (i) exception handling;

and (ii) page fault handling.

The advantage of handling SMC detection through

exceptions is that the routines are only executed when

triggered by SAP, thus not imposing any verification

overhead to the system due to continuous execution.

As a drawback, a new handler must be added to the

system. To implement such handler, we modelled SAP

exception handling on Intel PIN.

The advantage of handling SMC detection by

adding verification code to the page fault handling rou-

tines is that we can rely on the already existing CPU

and OS support. As a drawback, the execution of such

verification routines every time a page fault is triggered

will impose overhead to the system execution even when

SMC detection is not triggered. This overhead is not

negligible as it involves additional memory accesses and

branch decisions. To evaluate this implementation, we

instrumented the page fault handling routines from the

Linux Kernel, as shown in Code 9.

1 static noinline void __do_page_fault(...)

{

2 // Original Code

3 if(kprobes ())...

4 // Instrumentation Code

5 if(was_executable_page_written ()) {

6 if(! is_allowed_process(get_pid ()) {

7 // SMC Detected

Code 9 SMC detection routines in the Linux kernel.
The added verification instructions are executed every page
fault.
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The added verification routines (lines 5 and 6) are

responsible, respectively, for checking if this page fault

is due to SMC and, if so, if a notification should be

raised. The first check will be executed for all page

faults, even those caused by non-SMC execution, thus

imposing overhead. Depending on the use case, this

overhead may be acceptable or not. Adding overhead

for inserting kernel probes (line 3), for instance, was

considered as a reasonable project decision by the Linux

community. Most overhead impact is imposed by the

need of taking a branch for checking the fault reason

(line 5), thus requiring branch prediction and specu-

lative execution and being subject to their drawbacks.

Interestingly, an effective technique that the kernel can

apply to eliminate the branch need is to leverage SMC

to turn the branch into NOPs when monitoring is dis-

abled, as done in kernel tracing mechanisms [15]. How-

ever, implementing such strategy for page fault han-

dling is risky as the subsystem will be responsible to

modify its own code pages.

In addition to the branch which checks SMC detec-

tion, the whitelist check (line 6) also imposes a signif-

icant overhead when a benign, allowed application is

executing SMC. As this check cannot be removed, the

best alternative strategy for increasing performance is

to move this check to hardware. By adding a moni-

tored bit to the hardware, one can check whether a

page fault or exception should be raised, thus avoiding

the entire penalty of performing unnecessary context-

switch. The use of an additional monitoring flag re-

quires adding a single bit to the hardware, which can

be implemented as an ordinary register. The monitor-

ing bit is initially set and further saved and restored

at context switches by the process scheduler, which re-

quires adding the monitored flag to the OS structure.

The addition of the monitored flag to the structure im-

poses negligible overhead to context switch but saves

significant cycles while avoiding benign SMC cases from

raising warnings. To evaluate this overhead, we imple-

mented two page fault-based SAP’s versions: i) using

pure software-checks within the PF handler; and ii) us-

ing PIN-modelled hardware-assisted whitelists.

5 Evaluation

We here present an evaluation of hardware-support for

SMC execution regarding detection efficiency and per-

formance overhead for distinct applications.

Detection. Table 2 presents an evaluation of all pre-

sented detectors (columns 3–6): the proposed alert for

cache invalidation, the forced cache flush heuristic, ma-

chine clear hardware counter, and the proposed MMU

change, respectively. The last column specifies whether

processes were whitelisted during experiments or not.

As non-SMC, benign applications, we considered all

the 29 binaries from the SPEC-CPU 2006 benchmark

in addition to Python-powered scripts, to exercise the

whitelisting solution. As SMC, we considered the ex-

amples from Code 4 and 7 and a set of 20 distinct sam-

ples packed with UPX and Themida (packing solutions

known to employ SMC in their constructions).

Table 2 SMC Detection. Solutions comparison.

App./ SMC Cache Cache Pipeline MMU Whitelisted
Packer Type Change Flush Flush
SPEC - 7 7 7 7 7

SMC 1 3 7 7 3 7

SMC Flush 1 7 3 7 3 7

UPX 3 7 7 7 3 7

Themida 2 7 3 3 3 7

Python 3 7 7 7 3 3

As expected, SPEC binaries were not detected by

any mechanism, since they do not perform code modi-

fications. Our first SMC example, in turn, was detected

by the modified cache invalidation protocol. However,

only this simple example was detected by such change,

since the cache flushes performed by the remaining

codes were effective ways to defeat code change moni-

toring.

In this scenario, the cache flush monitoring policy

was able to detect six forced cache flushes during the

execution of the Themida’s loader. We confirmed this

result by inspecting the instructions associated with the

SMC-pointed code regions. We found the flush instruc-

tions presented in Code 10.

1 17aa388: 0f ae 7b 74 clflush 0x74(%ebx)

2 198 b964: 0f ae 7e bc clflush -0x44(%esi)

3 1cbb375: 0f ae 7a ea clflush -0x16(%edx)

4 1d8ff8e: 0f ae 7e f9 clflush -0x7(%esi)

5 20368e6: 0f ae 7f 18 clflush 0x18(%edi)

6 2349866: 0f ae 3b clflush (%ebx)

Code 10 SMC Code. Forced Cache flush in Themida’s
loader.

Another raised detection flag was for the pipeline

clear counter. Despite being activated during Themida

execution, this detector did not detect UPX execution,

since the code is modified on a distinct system page.

The MMU change is able to detect all cases due to its

system-wide memory view. As a drawback, the Python

interpreter was also flagged, requiring its process to be

whitelisted.

Performance Overhead. Despite effective for SMC

detection, a detection mechanism must not degrade per-

formance while running benign applications, which is a

drawback for many solutions. Ether [14], for instance,

is a hardware-assisted VM solution that performs code

unpacking, including SMC support. Its step-by-step op-
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eration imposes overhead of the same magnitude as the

code being executed, not being suitable for real-time

cases. Even solutions targeting end-users are affected

by considerable overhead. OmniUnpacker, for instance,

reports penalties of 11% and 6% on SMC and non-

SMC programs, respectively. JAVA’s JIT compiler In-

strumentation [23] reports a 2× slowdown with a sig-

nificant impact on benign programs.

To evaluate how significant is the imposed moni-

toring overhead, we measured the impact of each pro-

posed mechanism while executing the same aforemen-

tioned SPEC applications and SMC binaries. Execution

cycles overhead was measured by running the samples

in a non-instrumented environment and further com-

paring it with the measured cycles in the instrument

environment.

To evaluate the proposed cache modification, we ex-

ecuted all binaries in the PIN-modelled, SAP’s proto-

type. As the SPEC binaries do not perform SMC exe-

cution, they did not trigger any code invalidation, thus

not imposing any overhead.

To evaluate the proposed pipeline monitor, we exe-

cuted all binaries on a physical machine (Haswell CPU)

with enabled hardware-counters and SAP’s driver

loaded to handle its interrupts. As for the cache, no

SPEC binary triggered a pipeline flush due to SMC,

thus not imposing overhead.

To evaluate the proposed MMU modification, we

have considered the instrumented Linux PF handler

(with software whitelisting) and the PIN prototype

(with hardware whitelisting and exception handling).

For the PF-based prototype, we identified the base

cost of handling a PF is, on average, 1000 cycles. Ad-

ditional 100 cycles are required to perform the SMC

detection check; another 20 cycles are required for

whitelist checking in software. Table 3 shows the ex-

perimental results in terms of the relative overhead for

all SPEC binaries.

Table 3 Estimated overhead of Software-based SMC detec-
tors during page fault trapping on SPEC applications

Benchmark Penalty Benchmark Penalty Benchmark Penalty
bzip2 3.47% mcf 3.76% wrf 3.91%
namd 1.54% bwaves 3.73% perlbench 6.49%

h265ref 4.61% calculix 3.57% dealli 3.12%
astar 2.12% sjeng 2.74% hmmer 2.62%

gobmk 3.10% cactusADM 3.70% libquantum 3.24%
gcc 6.25% gromacs 4.01% sphinx3 3.76%
lbm 4.27% zeusmp 3.48% povray 4.64%

tonto 4.53% GemsFDTD 3.48% xalancbmk 3.85%
gamess 4.05% leslie3d 3.46% specrand 3.36%

We notice that performance penalties up to 6% may

be imposed even to applications that do not perform

any SMC-related changes, given the additional process-

ing (whitelisting, process retrieval and flags checking)

within the page fault handler. The imposed perfor-

mance penalty when handling benign applications de-

pends on how many PFs the application triggers. The

more PFs, the more the added instrumentation code

influences the final cycles overhead.

When leveraging the PIN prototype, no overhead

was observed, as whitelist is performed in hardware and

no instrumentation code is added to the PF handler.

Therefore, we conclude that exception-based handling

is more suitable for implementing SMC detectors than

PF-based handling, as implemented by actual solutions,

such as OmniUnpack.

6 Discussion

SAP allows moving SMC detection from software to

hardware, thus reducing current solutions’ imposed

monitoring overhead. SAP allows calling an AV on-

demand to check whether a given execution is malicious

or not. To whitelist benign processes executions, SAP

leverages a hardware-based whitelist.

Contributions. SAP advances current SMC detection

by not relying on a whitelist of benign process known

a priori. By outsourcing this decision to a third-party

AV, SAP allows benign SMC applications to run while

still detecting malicious ones.

SAP also presents a precise, hardware-based mech-

anism for detecting SMC code changes, not requiring

AV solutions to poll system memory, thus reducing the

imposed performance penalty.

The detection mechanism operates on a per-process

basis, thus allowing processes to be blocked or allowed

to run individually, a significant advance over tradi-

tional whitelisting-based solutions which flags entire ap-

plication classes. As an example, SAP can whitelist in-

dividual python scripts/processes whereas traditional

whitelisting mechanisms would flag all python inter-

preter instances as benign.

SAP also reduces the imposed monitoring over-

head by moving the whitelist from software to hard-

ware. Whereas software-based solutions have to first be

interrupted—for instance, by a page fault—to further

whitelist a given execution, SAP does not generate in-

terrupts for whitelisted processes, thus not interrupting

their executions at any time. Also, as SAP whitelist

is runtime-generated, processes can be added and re-

moved from the monitoring list at any time, whereas

current O.S whitelists are static.

Legacy support. Whereas newly developed applica-

tions could be implemented in an SMC-aware way and

provide OS with more fine-grained indicators about

which pages should be marked as executable and

writable, SAP’s main advantage is to support COTS
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binary execution. Therefore, SAP offers legacy systems

support to monitor SMC execution without requiring

binary recompilation.

W⊕E Policy. The security policy implemented by

SAP’s MMU can be considered as a runtime, hardware-

enforced, conditional version of the usual (W⊕E) pol-

icy. By proposing such policy implementation, we are

not arguing that traditional software-based W⊕E—e.g.

stack protection—should be eliminated, but extended.

It is worth to notice that the traditional, static W⊕E

policy is not as effective against malware as it is against

external code injection attacks, because, on the con-

trary to external code, running malware samples may

control their own flags by calling OS memory protection

APIs, disabling the protection mechanisms and thus by-

passing any software-based defense solution.

AV cooperation. We must make clear that our goal is

not to entirely replace existing AV solutions, but to as-

sist them with new, efficient inspection triggering mech-

anisms. Therefore, our solution is fully compatible with

existing AV solutions as well as present the same draw-

backs. As an AV complement, we focused SAP on SMC

detection because obfuscated-like code may prevent AV

solutions of doing their best: matching malicious pat-

terns. Other classes of attacks, however, will still require

specific AV knowledge to be detected.

Interpreters. A particular class of attacks which

will still require AV knowledge is the script-

based/interpreter-based ones, as the case of Python

and Java. On the one hand, as all interpreted code

will generate binary code at runtime, our solution will

not be able to characterize a given code as particu-

larly interesting for scan without external help. On the

other hand, AV can instrument and monitor bytecode

pieces in a less intrusive way than ordinary binaries [9,

27], our focus on this work. A SAP-AV joint opera-

tion may allow for individual processes to be moni-

tored by SAP and runtime whitelisted by the AV as

they are characterized as benign. Moreover, already

AV-scanned scripts could also be constantly monitored

by SAP while looking for new SMC behavior without

requiring AV to instrument the script bytecode.

Whitelisting. Besides the case of interpreters, such as

Python, ordinary binaries can also be whitelisted on-

demand. However, it is important to understand the im-

plications of such decision. Whereas binary whitelisting

ensures the proper execution of a benign, SMC appli-

cation, it may give opportunities for defense bypasses,

as a trust relationship is established. The most notice-

able evasion opportunity is related to software updates.

A trojanized binary may present a legitimate behavior

until be whitelisted and then turn itself into a distinct,

malicious payload. Such cases must be handled by a

third party mechanism, either by checking the binary is

still not malicious, or by removing it from the whitelist

after any update.

7 Conclusions

We revisited the SMC problem and its impact on

hardware architectures, such as cache invalidation and

pipeline flushes, and introduced a taxonomy for SMC

code and its detection mechanisms based on their

effects over distinct architectural points and detection

window. We based on that to present processor changes

(SAP) at cache, pipeline and MMU levels to enable

it to alert upper instances (OS and AVs) about SMC

execution and triggering on-demand checks, reducing

traditional AV’s overhead. SAP presented a perfect

detection ratio (100%) with a considerable reduction

on overhead penalty (0% for whitelisted and/or

non-SMC code). As future work, we aim to identify

non-SMC-specific counters able to assist other SMC

types detection.

Reproducibility. All developed prototypes were

released as open source code and are available

at: https://github.com/marcusbotacin/Self-

Modifying-Code
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