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ABSTRACT
Malware analysis tasks are as fundamental for modern cyberse-
curity as they are challenging to perform. More than depending
on any tool capability, malware analysis tasks depend on human
analysts’ abilities, experiences, and practices when using the tools.
Academic research has traditionally been focused on producing
solutions to overcome malware analysis technical challenges, but
are these solutions adopted in practice by malware analysts? Are
these solutions useful? If not, how can the academic community
improve its practices to foster adoption and cause a greater impact?
To answer these questions, we surveyed 21 professional malware
analysts working in different companies, from CSIRTs to AV compa-
nies, to hear their opinions about existing tools, practices, and the
challenges they face in their daily tasks. In 31 questions, we cover
a broad range of aspects, from the number of observed malware
variants to the use of public sandboxes and the tools the analysts
would like to exist to make their lives easier. We aim to bridge the
gap between academic developments and malware practices. To do
so, on the one hand, we suggest to the analysts the solutions pro-
posed in the literature that could be integrated into their practices.
On the other hand, we also point out to the academic community
possible future directions to bridge existing development gaps that
significantly affect malware analysis practices.

Note: This is the author’s public version of the paper.
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1 INTRODUCTION
Malware is a major security concern nowadays and the academic
literature is full of works presenting strategies to better perform
malware-related tasks, from threat hunting [39] to triaging [33],
and from machine learning training [21] to detection rule genera-
tion [57]. Despite the significant contributions academia made to
the field, not all proposals made by academia are adopted in prac-
tice. In fact, many complain about academically-proposed ideas not
being practical [12]. As a research community, we would like to
cause the greatest positive impact possible, which in the malware
analysis case means that people will be more protected if we can
facilitate malware analysts’ lives. Thus, we want to understand
what malware analysts need in terms of scientific developments.

In this work, we present an analysis of the malware analysis
practices and the developments proposed in the literature. Our
goal is to help academic researchers guide their efforts toward
more practical solutions and to help professionals find the best
proposals that fit their real-world needs. To do so, we first rely
on the available literature to systematize the practice of malware
analysis, pointing out the challenges analysts face in their daily
tasks. We identified key points related to the challenges that are
not covered in the current literature works, such as prevalence
rates for analysts facing certain conditions (e.g., malware variants),
and how often they adopted tools proposed in the literature (e.g.,
graph-based binary comparison). Further, we developed a set of 31
questions to collect data about these previously not-characterized
aspects. We systematized these questions in a survey (Appendix C)
that was applied to 21 professional malware analysts actuating in
different security fields–from CSIRTs to AV companies. Based on
the analysts’ answers, we prepared a second round (follow-up) of
questions (Appendix D) to clarify any remaining imprecision. Upon
it, we present a critical discussion on how to move the field forward.

Among our discoveries about the challenges for multiple mal-
ware analysis practices, we highlight that: (1) a significant part of
malware analysis tasks are performed manually, such that develop-
ing automation mechanisms is a promising avenue to contribute to
the field; (2) existing automation tools such as automatic tracing
via public sandboxes are not enough because they are not config-
urable and do not provide fine-grained information about analysis
outcomes, such that developing methods to explain malicious paths
is key to streamlining automation procedures; (3) decompilers are
very popular tools among analysts, but significant developments are
still possible in this domain; and (4) Many State-Of-The-Art (SOTA)
solutions described in the academic literature are still not wide-
spread in practice, such that they need to be transitioned to practice
to help analysts. We expect that pointing out and quantifying these
limitations might foster future malware research (App. G).
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In summary, this paper’s contributions are as follows:
• We characterize the typical malware analysis workflow re-
garding multiple challenges.

• We present a survey on how 21 professional malware ana-
lysts tackle these challenges in practical scenarios.

• We point out existing development gaps and future develop-
ment opportunities to bridge them.

This paper is organized as follows: In Section 2, we present the
challenges in a typical malware analysis workflow; In Section 3,
we present our methodology to survey how professional analysts
tacklçe these challenges; In Section 4, we present a profile of the sur-
veyed professionaçs; In Section 5, we discuss the analyses practices
reported by the surveyed professionals; In Section 6, we discuss the
surveyed professionals’ opinions about existing analysis tools; In
Section 7, we point out future directions on the field; In Section 8,
we present related work to better position our contributions; In
Section 9, we draw our conclusions.

2 WHAT DOES A MALWARE ANALYST DO?
We refined an existing Systematic Literature Review (SLR) on mal-
ware analysis [12] (see details in Appendix A) to systematize the
tasks performed by analysts (Appendix B) and their challenges.
We here present the existing Knowledge Gaps (KGs) to be bridged
whenever an aspect is not properly addressed in the literature.
The Analyst Role. The Malware Analyst is the professional re-
sponsible for collecting, triaging, understanding, and reporting new
threats. To provide insights about the threats, analysts employ mul-
tiple security analysis strategies, mainly reverse engineering [65].
Whereas reverse engineering is a critical step of themalware analyst
task, professional malware analysts often perform other company
tasks, such as training and recruiting new professionals. The time
analysts have to analyze a sample is a key challenge to understand-
ing threats, such that giving analysts tools that reduce their analysis
load is key if analysts are in time-struggling conditions. KG1: It
is currently unclear which fraction of the malware analyst job is
dedicated to reverse engineering tasks.
The Analysis Group.Malware analysts might work in teams or
individually [56]. When working in teams, analysis data must be
shared between the analysts, such that developing collaborative
solutions might increase analysts’ productivity. KG2: It is unclear
how often analysts work in teams and individually.
The Analysis Request.Whereas some analysts might start their
own research endeavors, in most cases analysts are some company’s
employees who start analysis procedures based on the company’s
requests. Thus, the samples they have to analyze usually come from
different sources, depending on the type of company. The context
of infection might shape the attacker’s strategies [11] and having
information about that might facilitate analysis and proper threat
identification. KG3: It is unclear how much knowledge analysts
have about the context of the samples they analyze.
The knowledge to run analyses. Malware analysis requires spe-
cialized knowledge. For instance, analysts must have a solid under-
standing of binary internals. Ideally, even specialized knowledge
like this should be widely available to enable the formation of new
analysts [44]. The more analysts enter the field, the more analysis
procedures tend to scale [40] and incident response tends to be

faster. A main academic goal is to develop strategies to provide an-
alysts access to this knowledge. KG4: It is unclear if the knowledge
required to perform malware analysis is accessible to students.
The feeling about maliciousness. To understand an attack you
have to think like an attacker. This famous saying summarizes well
most of the analysis challenges faced by analysts. In addition to
technical knowledge, malware analysts must develop intuitions
about how malware behaves [10, 46]. Intuition can be developed
over time, but seniority is a scarce resource for companies, such that
developing tools to transition knowledge from seniors to juniors is
a key research contribution. KG5: It is unclear how experience and
expertise are distributed in malware analysis teams.
Keeping up withmalware evolution.Malware evolves fast since
attackers often develop new ingenious ways to bypass detection
mechanisms. This fast evolution requires malware analysts to keep
studying to stay updated with new attackers’ practices [2]. Part of
the skill updates of malware analysts comes from the practice and
information sharing with other analysts and teams [49]. Part of the
new knowledge might come from academia, which also produces
vast material about malware analysis. Ideally, academics would
like to apply the developed scientific knowledge to the practice of
malware analysis. KG6: It is unclear how malware analysts keep
updated and if academic knowledge reaches them.
Selecting representative samples to analyze. Whereas some
malware samples easily reveal their tactics, other malware samples
only reveal patterns when combined. Aspects such as the reuse
of code and the evolution of techniques can only be characterized
by analyzing a set of samples from a given family. Thus, in some
analysis cases, the malware analyst might collect additional samples
to analyze in addition to the one initially requested to expand the
conclusions enabled by the analysis procedures. Understanding
the sample’s reuse is important to develop better solutions for the
sample’s correlation [17]. KG7: It is unclear how often and when
analysts enrich their analyses with additional malware samples.
Saving samples for the future. As some analyses require ad-
ditional samples, it is expected analysts store some samples they
deemed interesting from previously to be eventually used in future
ones. This procedure should happen in a structured manner, with
the AV company storing the samples according to well-defined cri-
teria. In practice, however, it might also happen that the AV analyst
might store the samples him/herself, according to some personal cri-
teria. Academic research could contribute to establishing guidelines
and storage practices for the samples. KG8: It is unclear how often
analyzed samples are stored by analysts and/or AV companies.
Selecting where to analyze. Different malware samples require
different strategies to be analyzed, thus different tools. Even in-
side the same category of tools, there might be multiple possible
solutions. For instance, whereas sandboxes are popular solutions,
the characteristics of public [74] and private (e.g., AV-owned) sand-
boxes might make the difference for some types of samples. Also,
different employers have different policies. Some allow the collected
samples to be uploaded to public sandboxes, where they will be
shared with a large community of researchers [25]. In turn, some
companies cannot reveal information about infected customers, so
they require the use of a private sandbox, with no data sharing.
Understanding analysts’ choices, requirements, and constraints is
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key for academia to develop better analysis platforms. KG9: It is
unclear how often analysts opt for public and/or private sandboxes.
The variants that keep going.Malware samples do not always
appear alone, they might also appear as variants [61], that impose
extra analysis work. Ideally, variants should be filtered by good
triage systems, but it does not always happen in practice, such
that analysts might sometimes recognize constructions previously
seen in other analyzed samples. If the re-analysis of variants is
a significant problem, academic research should focus more on
developing better triage strategies. KG10: It is unclear how often
analysts inspect malware variants that could have been triaged.
The need formanual tasks.Althoughmany tools are available for
malware analysis, it is common that analysts need to make manual
adjustments to tools and binaries to make malware samples run.
Ideally, manual adjustments should be minimal, because manual
work means scalability limits. In practice, however, analysts might
experience different scenarios, with a large manual effort if tools
are not appropriate [29]. It is a relevant academic research goal
to overcome the limits of existing approaches to allow analysis to
scale if it is identified as a bottleneck. KG11: It is currently unclear
to which extent malware analysis requires manual work.
Themalware analysis that becomesmultiple.Modern malware
is not unitary but is usually composed of multiple layers [13]. Each
layer might be implemented using a different technology, which re-
quires a different strategy [67] and thus tool to be inspected. Ideally,
all malware stages should be analyzed in a smoothly integrated
environment. However, integrating multiple technologies is hard,
such that malware analysts might need to treat each malware stage
as a totally new analysis step. Developing integration strategies to
present a uniform view of code for multiple technologies is a signif-
icant academic research topic that must be boosted to help malware
analysts if they struggle to analyze multi-stage malware. KG12: It
is unclear how malware analysts handle multi-stage malware.
The hard tasks. Not all malware analysis tasks are equal. Mal-
ware creators use constructions to purposely complicate reverse
engineering, thus tasks such as unpacking, deobfuscation, and find-
ing execution triggers require knowledge and time from the an-
alysts [59]. Once again, it limits scalability, as junior researchers
might not have the expertise to do so and seniors are in limited
numbers and time availability. If this becomes a bottleneck for the
analysis process, academic research should focus more on devel-
oping solutions to automate unpacking [28], deobfuscation [62],
and to make these tasks feasible for junior analysts. KG13: It is
currently unclear how much malware analysts struggle with a lack
of skills or lack of time to perform complex analysis tasks.
When to stop analyzing. Knowing when to stop analyzing a
sample is as critical as knowing how to start analyzing it. There is
an ideal amount of analysis. Analysts should not under-analyze the
sample under the risk of missing hidden behaviors. They should also
not over-inspect the sample, as it limits scalability with a task that
does not produce new results [31]. To avoid under-analysis, analysts
might re-run analysis proceduresmultiple times. Academic research
might produce solutions to help identify the amount of information
present in different traces to contribute to the identification of the
ideal amount of analysis. KG14: It is unclear how many analysis
runs are performed and what is their stop criteria.

Extending analyses to other environments. A natural deriva-
tion of the amount of analysis discussion is the amount of traces
to consider. Sandboxes have their results widely tied to the envi-
ronment, such that the execution in different sandboxes leads to a
different amount of data [30]. Academic research might help iden-
tify how much information one can extract from a binary via new,
proper metrics. KG15: It is unclear how often analysts use different
sandboxes to analyze the sample.
Identifying when malware does not run. A key reason for an-
alysts changing sandboxes is when a malware sample does not
run (or evade) a given sandbox [8]. To overcome evasion routines,
analysts have to change the sandboxes’ default configurations. Aca-
demic research should provide solutions to automatically identify
the root cause of evasions.KG16: It is unclear what analysts change
in the sandboxes and how they choose which sandbox to use.

When having multiple traces, the analysts face the challenge of
identifying which of the traces are correct and which information
to consider from each trace [6]. Academic research should provide
solutions to automatically compare them.KG17: It is unclear which
strategy analysts use to compare traces from multiple sandboxes.
Waiting for analysis results. Some analysis procedures take sig-
nificant time [31]. For instance, sandbox execution requires analysts
to run samples for a fewminutes, a time that is hard to reduce as the
samples need to actually run. Tracing might become even slower
when emulation layers are considered [22]. Academic research can
focus on developing solutions for fast emulation and instrumenta-
tion to limit waiting time to the minimum value possible: the actual
running time. KG18: It is currently unclear how much analysts are
bothered by slow execution environments.
What to do with analysis results. A malware analysis does not
stop when an analyst reaches a given program state in the debugger.
Somemight even say that is where the analysis begins. Analyses are
valued by the outcomes they produce. The most common analysis
outcomes are reports [69] and signatures [57]. Academic research
could contribute to these steps by developing automatic summa-
rization and signature writing tools, depending on analysts’ needs.
KG19: It is unclear how often analysts write reports or signatures.
The effort to write defenses. When writing signatures, analysts
need to find a balance between matching capabilities and perfor-
mance. In the first case, one wants to detect the biggest amount of
malware possible. In the latter, one does not want to delay scans
for a long. Writing performance-efficient signatures is hard (e.g.,
regex might end up in loops), such that academic research could
provide solutions for effective signature writing [16]. KG20: It is
currently unclear how much effort analysts put into controlling the
performance of the generated signatures.
Selecting the best tool for each task. Different malware sam-
ples require different tools to be analyzed. Each tool implements a
different analysis strategy/technique, thus they present different
pros and cons [43]. Analysts end up developing a feeling on how
and when to use each tool, but there is no guarantee that these
are the best use cases possible. Academic research should provide
formal guidance on tool evaluation and selection to better help an-
alysts. KG21: It is currently unclear how much and when malware
analysts use the different tools and techniques.
Setting up the analysis tools.More than selecting a tool to use,
analysts often have to select complements to them. For instance, in
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addition to mastering a good debugger solution, analysts also have
multiple plugins in their toolchains to complement the debugging
experience. These plugins and extensions often add heuristics and
analysis capabilities that are not native to the solutions. Some of the
extensions present significant scientific challenges that would be
worth investigating by academic research, such as creating different
representations for the same data (e.g., assembly debugging vs.
decompilation [14]). KG22: It is unclear how analysts rate the solu-
tions they use and which ones they would like to have.
Preparing for the future. The goal of malware analysis is to
prepare us for a more secure future. Thus, malware analysts are
also preparing themselves for the future, as they learn with samples
and also with training. Academic research should be a key partner in
preparing analysts for the future, providing solutions for problems
yet to come, and developing next-gen solutions. This should be
ideally coupled with the malware analysts’ needs and expectations.
KG23: It is unclear what analysts expect for the future.

3 METHODOLOGY
We surveyed professional malware analysts to bridge the KGs pre-
sented in Section 2. We here present our survey methodology.
Recruitment.We reached out to malware analyst teams‘ leaders
and asked them to share our survey invitation with their teammem-
bers. We clearly expressed that filling out the survey was voluntary,
optional, and not a job-related activity. We also reached out to indi-
vidual malware analysts who cooperated with our research team in
the past. Most invitations were performed by email. Some analysts
reached out to us via social networks, through which we sent them
the invitation. The recruitment consisted of a brief description of
the project followed by a link to access the survey platform online.
The survey has been open for responses from Jan-Mar/23.
Selection criteria. We included in our survey only professional
malware analysts, thus maximizing representativity and reducing
noise. The analysts are identified as professionals by their managers
or our research team. Since we did not post any public link on any
Internet webpage (as previous work did [70]), we ensured that our
survey was distributed only inside the malware analysis community.
Despite not publicly posting our survey, we received the same
number of valid responses (21) as the largest previous work [73].
We show a replication study with additional participants in App. H.
The Survey. Our survey consisted of 31 questions (Appendix C)
divided among multiple research areas. Whereas some questions
were worth additional clarification, we tried to minimize the num-
ber of questions to maximize the likelihood of receiving complete
survey responses. The survey is composed of alternative questions
and open-response questions. We always placed open questions
after alternative questions to try to minimize the introduction of
biases. The survey was completely anonymous, but the partici-
pants had the opportunity to voluntarily deanonymize themselves.
We identified cases of (i) participants who remained anonymous;
(ii) participants who directly disclosed their identity; and (iii) par-
ticipants who were indirectly and partially anonymized by their
managers (sending us a confirmation message that their whole
team has filled out the survey). The survey was approved by our
university’s IRB (2022-1327).

Follow-Up. Based on the compiled survey answers, we prepared
a second survey (Appendix D) with questions aiming to obtain a
better understanding of blurry points and to ask the respondents to
better elaborate their open answers. This follow-up survey was sent
only to the participants who voluntarily deanonymized themselves
and thus agreed to receive additional questions.
Survey Limitations: This research presents the same limitations as
any research with human subjects; Although we tried to minimize
any suggestions effect, analysts might be biased towards responses
depending on the writing of the question and different analysts
might have different anchors for scaling their responses.

4 PARTICIPANTS
We here characterize the professional malware analysts who re-
sponded to our survey to position our work as relevant for profes-
sionals in the field and present the first evaluation of the field based
on the characteristics of representative stakeholders for the field.

4.1 Professional Background
Where do the respondents work? Characterizing the respon-
der’s occupation is important to evaluate if our survey reached
the target audience and thus ensure representativity. Although the
filling of our survey was anonymous, we were able to identify the
occupation of all survey responders (Table 1), as (i) some of them
disclosed their identities; (ii) some of them indirectly disclosed their
occupation when answering the open questions; or (iii) their man-
agers confirmed that their teams answered the survey. We highlight
that for these cases identifying one’s occupation or organization
does not imply that we identified the individual professional inside
the organization that answered the survey.

Table 1: Analysts’ occupation.
# Role Company Obs.
1 CISO Non-Security
1 Threat Hunter Intelligence Agency
1 Leader Government CSIRT
1 Member Bank CSIRT
4 Consultant Independent Ex AV analysts
5 Analyst Sec. Consultancy 2 companies
8 Analyst AV company 4 AV companies

Table 1 shows that the survey achieved representants of multiple
sectors (public and private). Naturally, the survey has a bias towards
respondents working in AV companies, which is likely the main
occupation role for malware analysts. The survey reached both pro-
fessionals who currently work for AV industries as well as former
AV analysts (now consultants). The survey also reached leaders of
organizations, which also provided the survey the opportunity to
hear professionals who work with multiple malware sources due
to their positions. We conclude that the survey population is not
representative of any particular scenario, but diverse enough to
provide multiple views of the malware analysis scenario and thus
characterize the general needs of malware analysts.
How much malware analysis do analysts perform? Character-
izing the analysis tasks performed by the analysts is key both to
evaluating representativeness as well as to understanding the role
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of the malware analysis job. Table 2 classifies analysts’ responses to
the job characterization question as: Full-time malware analysts;
Most tasks are malware analysis; a Reasonable number of tasks
are malware analyses; Eventual performance of malware analy-
sis; or they Never perform malware analysis. We notice that no
respondent never performs malware analysis, which shows that
our survey actually reached professionals in the malware analysis
field. However, we notice that the majority of analysts (86%) do not
perform only malware analysis, although it might be their job title.

Table 2: Analysts’ Malware Analysis Tasks Frequency.
Category Full Most Reasonable Eventual Never
Answers 3 (14%) 5 (24%) 6 (29%) 7 (33%) 0 (0%)

We discovered that occupation is a moderate determinant fac-
tor for the amount of malware analysis tasks an analyst performs.
The overall Pearson correlation between occupation and amount
of tasks is 0.54. This shows that whereas occupation is important,
the scenario also plays a key role. Whereas one could hypothesize
that AV analysts would be busier with malware analysis, the corre-
lation between only doing malware analysis and working for an
AV company is only 0.24 (weak), as many consultants stated that
they work full-time with malware analysis as well. If we consider
both full-time and most-time classes, the Pearson correlation is 0.69
(high), because all AV analysts fit this category.
How are the malware analysis teams organized? Understand-
ing the scenario in which malware analysts actuate is key to design-
ing proper solutions. Table 3 categorizes analysts’ actuation as: the
analyst is part of a Team and they analyze the samples Together
(TT); the analyst is part of a Team, but works Individually on
samples (TI); and the analyst is an Independent Individual (II).

Table 3: Analysts’ Type of Tasks vs. Analysis Teams.
Category TT TI II
Answers 1 (5%) 16 (76%) 4 (19%)

We notice that most professionals (81%) are part of a team, which
provides insights that collaboration tools are required to allow the
professionals to share information. However, most of them (76%)
perform individual tasks, such that real-time collaboration is not
necessarily the goal of the tools to be developed. We observe no sig-
nificant different distribution of responses among job occupations.
How much context about sample capture do analysts have?
The amount of information an analyst has about the sample to be
analyzed changes the way the analyst starts approaching the prob-
lem. Also, the analyst might be more familiar with the techniques
used by malware known to come contexts than with malware for
other contexts. Table 4 categorizes responses by collection type:
Regional threats; Local threats; or the source is Unknown.

Table 4: Knowledge on Samples’ Collection Context.
Category Regional Local Unknown
Answers 11 (52%) 3 (14%) 7 (33%)

We notice the majority (52%) of participants report analyzing
samples belonging to a specific region, which is somehow against

our initial hypothesis that most analysts would analyze general
malware. This finding reinforces the importance of developing
regionalized studies about malware trends [11].

The second most popular (33%) analysis type involves the sam-
ples collected from diverse sources [68], thus with no infection
context. This is the usual case for those working as an outsourced
security team for other companies. The less popular scenario (14%)
is the analysis of local samples (e.g., collected in the internal net-
work). The small number of professionals in this category is ex-
plained by the fact that not all companies can afford a local security
team, thus they end up outsourcing their analysis events, boosting
the previously mentioned category.

The correlation between professionals working in CSIRTs and
the analysis of local threats is 1.0, as one could hypothesize since
it is the nature of the job. The correlation for AV company pro-
fessional s is 0.61 with regional threats and 0.52 with collected
samples. The correlation for consultancy professionals is 0.81 and
0.37 respectively.

Despite the significant statistical number pointing out the impor-
tance of regional datasets, one analyst reported that context does
not matter for the reverse engineering process. In the follow-up,
the analyst clarified that: “The importance of the context depends on
the goal. Context matters for incident response and threat intelligence,
not for rule generation. I just detect it.”

4.2 Professional Skills
How did the analysts learn malware analysis?Malware ana-
lysts learn to analyze malware via different methods and under-
standing these methods is important to foster good training and
education. Whereas previous works [70, 73] looked at participants’
degrees, they did not assess specifically how and at each educa-
tion level they learned the malware analysis skills. Whereas many
professionals might have formal training in computer science, the
aspects specific to malware analysis procedures might have been
learned in different ways. Table 5 summarizes how this survey’s
participants learned malware analysis techniques. We made explicit
in the survey question that the point was about learning malware
analysis and not what were their highest degrees. The responses
are categorized as: Post-Grad in the field (PG); a Major in the field;
Industry Certification; Work Experience: or Self-Taught.

Table 5: Analysts’ Strategies for Learning Malware Analysis.
Category PG Major Cert. Work Self
Answers 2 (10%) 0 (0%) 0 (0%) 10 (48%) 9 (42%)

We notice that the majority of the analysts learned malware
analysts by themselves (The ones that reported self-taught and
working experience account for 90% of all cases). Only 10% of the
analysts had formal, academic training in malware analysis. This
result is in line with the scarce number of malware analysis courses
available in most university’s course catalogs [63] and it shows
that the academia is not exploring its full education potential in
the field. The lack of better educational strategies was voluntarily
pointed out by the analysts as an aspect to be addressed to move
the field forward (Section 7). The path to move forward is tied
to increasing the security background of CS professionals. The
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difference between having CS background and having a malware
background was well summarized by one of the analysts: “You need
to think about maliciousness. Nobody teaches you it“.
How much experience do the analysts have? We previously
seem that many malware analysts learned their professional while
working, which reinforces the role of experience in the practice of
malware analysis. Figure 1 shows the distribution of the years of
experience the malware analysts reported in the survey.
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Figure 1: Analysts’ Years of Experience.

The respondent population is diverse in experience (ranging
from 3 to 15 years), thus presenting multiple views of the malware
analysis landscape. There is a trend toward more experienced re-
searchers (The average analyst experience is 8.7 years). This exper-
tise is distributed in all fields, with AV analysts being as experienced
as professionals working in other companies, which shows that
the role occupied by a professional is a more determinant factor
than the nature of the industry. The correlation between years of
experience and working in AV companies is low (0.28) because an
industry in need of qualified professionals recruits the available
ones regardless of their current experience.
How do malware analysts stay updated? Malware analysts use
multiple information sources to stay updated. Table 6 shows how
the surveyed participants stay updated with malware evolution.
The table presents the rate of participants that mentioned each
information source and how much the participants rate that each
information source contributes to their update.

Table 6: Analysts’ Knowledge Updating Strategies.
Category Academic Papers White Papers Videos Events Training
Answers 15 (71%) 21 (100%) 13 (61%) 18 (85%) 12 (57%)
Rate 14% 46% 11% 21% 12%

We notice that papers are the most important source of infor-
mation to most analysts (60% of their updates are performed by
reading academic or whitepapers). All analysts reported reading
whitepapers to some extent. A significant but smaller fraction of the
analysts read academic papers, thus showing that the distribution
of academic knowledge still has space to grow among analysts, as
they are already used to reading papers, but not academic ones.

5 ANALYSES
5.1 Analyses Practices
Do the analysts collect more samples to analyze? Enriching
analyses with more samples might be key to the analysis outcomes.
Whereas previous work [73] pointed out that analysts collect mul-
tiple samples, it did not measure the prevalence and motivation for

this practice. We asked the analysts if and when they enrich analy-
ses with more samples. Table 7 shows their response broken down
by the motivating reasons: Writing Signatures; Writing Reports;
Understanding techniques; or No collection.

Table 7: Additional Samples Collection by Analysts.
Category Sig. Report Understand No
Answers 8 (38%) 2 (10%) 7 (33%) 4 (19%)

We observe that most analysts (81%) collect additional samples
for their analysis procedures. This shows that developing tools to
capture similar samples and correlate them is an important step
ahead for this industry. Analysts mainly collect samples to write sig-
natures and to understand malware samples‘ techniques. Whereas
the reported proportions are similar, the nature of the problems is
very different. Whereas signature generation is a generalization
effort, the understanding of technique is about the development of
new knowledge. This shows that developments in the field should
be in complementary directions [12].
How are analyzed malware samples stored? We asked the
analysts if and when they store the analyzed samples. Table 8 shows
responses broken down by the reasons for storing the samples: They
are Often stored by the Company (OC); They are Often stored by
the Analyst (OA); They are Sometimes stored by the analyst, but
only as a Curiosity (SC); and They are Never stored (N).

Table 8: Samples storage
Category OC OA SC N
Answers 9 (42%) 5 (24%) 5 (24%) 2 (10%)

We notice that in the majority of the cases (66%), the samples
are stored by either companies or analysts for reasons that are not
simple curiosity. The analysts report the most common use case is
to use the samples to enrich further analyses, which complements
the previous response. It shows that developing tools to correlate
and search samples [24, 58] is key for malware analysis.
Who hosts analyses procedures? Whereas some analysis strate-
gies might be well-known, the environment they are performed
might change the challenges they present to the analysts. To bet-
ter understand that, we characterize the hosting of the analysis
solutions. Table 9 categorizes the hosting entities as: Analyst’s Own
machine; Public infrastructure; or Company’s internal hosting.

We notice that themajority (85%) of the analysts runmost of their
analysis procedures on their own machines. This finding should
shape the way research is performed because tools should not be
developed to run in big cloud servers, but they must be able to run
on more constrained devices. In this sense, a good design rationale
is presented by solutions such as the laptop-based Yara signature
generation procedure [57], that states that “the tool must be light-
weight enough that it can run on low resource machines (e.g., a laptop
with 4 GB of RAM or less) to support the maximal number of analysts,
who do not always have significant compute resources available.”

Table 9: Analysis hosting.
Category Own Public Company
Answers 18 (85%) 1 (5%) 2 (10%)
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An important reason mentioned by analysts to not rely on public
infrastructure (e.g., public sandboxes) is that some AV companies
do not allow the sharing of the samples with the community, the
default option in these services [71]. AV companies tend to offer
their own sandbox solution to analysts. All (100%) of the analysts
who reported using a company-provided sandbox work for AV
companies. On the other hand, public CSIRTs tend to not have
restrictions for sharing samples [26]. The only individual reporting
to perform most tasks on public service works for a CSIRT.
What are the malware analysts’ relation to public sandboxes?
The previous finding about the use of self-host analysis procedures
led us to investigate the malware analysts’ relation to public in-
frastructure. We asked specifically about their relation to public
sandboxes, as it is likely the most popular type of public malware
analysis tool. Table 10 shows responses broken down by analysts’
opinions about these services: if they like them or not; and if their
use is allowed or not by their employees. We notice a divide be-
tween those who like (52%) and do not like/use (48%) these services.
Whereas the case of analysts disallowed to use these services has
already been discussed in the previous question, there was still a
remaining question: Why are most analyses self-hosted even for
the analysts that report to like public sandboxes?

Table 10: Use of public sandboxes.
Category Like Dislike Disallow
Answers 11 (52%) 6 (28%) 4 (20%)

The answer to this question is a frequent complaint of analysts
about these services: the lack of configuration [42]. Most of these
public services do not allow configuring the analysis environment at
a fine-grained level, a task that is left for their self-hosted tools. We
also notice that the type of analysis task performed by the analyst
also shapes their opinion about the sandboxes. In the opinion of
an analyst: “They work for detection but not for response”, Detection
tasks might require less environmental configuration. The simple
fact of observing an IOC might be enough for detection, whereas it
might not suffice for understanding the sample. As another analyst
said: “Automated sandbox is just for the high-level, not to get the
details. It saves time to show what I should look for”. In this sense,
a frequent complaint is that sandboxes do not allow the analysts
to understand how the malware did a given action. Explaining
malicious paths [45, 47] is a key open academic research problem
to be addressed in the malware analysis domain.
How often do malware analysts recognize malware variants?
We asked the analysts how often they notice that the samples they
receive to analyze are variants of some malware samples they previ-
ously analyzed. Table 11 shows analysts’ responses broken down by
frequency. We notice that most analysts (52%) often receive variants
to analyze and only a single analyst reports rarely receive malware
variants to analyze. This result shows that the triage mechanisms
can still be improved. The identification of similar constructions is
still a significant research challenge [32].

Table 11: Malware Variants Re-Analysis Rate.
Categories Very Often Sometimes Rare
Answers 11 (52%) 9 (43%) 1 (5%)

How much of the analyst’s work is manual? We asked ana-
lysts to rate how much of their work involves manual analysis.
Table 12 shows the survey’s results broken down by the amount
of work: Fully-automated analysis; Half-automated analysis; and
Mostly-Manual analysis. We notice that none of the malware an-
alysts reported the use of fully automated solutions to malware
analysis, which suggests that the investigation of strategies to fully
automate malware analysis tasks is a significant goal for academic
research. The limited use of automation reported by analysts cor-
roborates the impressions of the industry on the sector [51].

Table 12: Analysis Automation Rates.
Category Fully Half Manual
Answers 0 (0%) 11 (52%) 10 (48%)

We observe a practical divide (52%-48%) between researchers
who use some automation and those who mostly do manual work.
In both cases, however, manual analysis is required to some ex-
tent, which allows us to conclude that all samples (100%) require
manual intervention. Ideally, analysis solutions should be more
automated to alleviate the analyst’s load and scale the procedures.
Also, automation tends to reduce errors, as it makes procedures
more deterministic. A main explanation for the lack of full automa-
tion is the lack of configuration support in many sandboxes, which
forces analysts to configure their own environments.

Whereas the industry is in favor of automation and many ana-
lysts recognize that their job involves huge manual efforts, not all
analysts are in favor of automation. One analyst reported that ”I
like automation, but I don’t trust it. I recheck everything”. This claim
is not a suspicion about the companies providing sandbox, but
a sandbox engineering perspective clarified in the follow-up sur-
vey: ”Automated everything is problematic. Sandboxes do not reach
100% coverage because of the arms race. The maintenance work is
high to keep up with new TTPs. It is not sustainable many times.”.
The challenge to keep up with automation is also reflected in the
limits pointed to many tools: “Most automation tools are useless
because they do not cover variants–ex: plugins for single families”.
The development of strategies to easily expand automation tools is
a significant research challenge to be addressed by academia.
How do malware analysts handle multi-stage malware? The
lack of automation identified in the previous response might pose
significant extra work especially in cases where the malware sam-
ples have multiple attack layers. We asked the analysts how they
handled these cases. Table 13 shows the responses broken down ac-
cording to the number of used tools and their integration: Multiple
tools Automatically integrated (MA); Multiple tools, treating
stages Individually (MI); Multiple tools, Manually pasting data
from one to another (MM); with a Fully-Automated (FA) tool; or
if they only analyze Single-Stage (SS) malware.

Table 13: MultiStage Handling.
Categories MA MI MM FA SS
Answers 1 (5%) 14 (66%) 4 (19%) 2 (10%) 0 (0%)

The lack of automation is reflected in the handling of multi-
stage malware. Most tools (90%) do not handle the whole analysis
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of multi-stage malware, even though all analysts report analyz-
ing multi-stage threats. only 2 are fully automated. In most cases
(90%), sample analysis requires manual intervention to some extent.
This indicates that the development of stage-aware mechanisms by
academic research is a valuable contribution to the field. Among
the different strategies, the majority of the analysts (66%) handle
analysis individually, treating each stage as a new analysis every
time, whereas another portion (19%) analyzes stages individually
but within the scope of the same analysis. Whereas treating stages
individually is more laborious, it has the advantage of allowing
future data correlation, such as spotting the same analyzed stage as
the payload of future malware samples. It reinforces the need for
developing tools [9] to correlate data from multiple analyses [20].
Are analysts’ skills enough to handle complex malware? The
lack of automation tools adds to the analyst the burden of conduct-
ing complicated tasks, such as unpacking, deobfuscating [59], and
finding evasion triggers, all of which require expert knowledge.
Whereas previous work [73] already pointed out the need for ana-
lysts to overcome malware evasion strategies, it did not measure
how much analysts struggle to do it. We asked analysts to rank
how much they struggle to perform these tasks when considering
their current malware analysis skills. Figure 2 shows the fraction
of the samples the analysts struggle to perform each task against.
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Figure 2: Analysts’ Most-Struggling Tasks (Skill-Wise).

We notice that there is wide variation among the responses
(ranging from 0 to 97%). On average, the analysts struggle in 32%
of the unpacking cases, 45% of the triggering cases, and 23% of
the deobfuscation cases. Whereas the numbers for the individual
tasks are moderate, we need to remember that the same sample
might require analysts to perform all these tasks. In this sense, 13/21
(61%) of the analysts struggle with at least one of these tasks for
more than 50% of samples. This finding shows that a significant
direction for academic research is to investigate how to facilitate
(e.g., automate [37]) the performance of these complex tasks.

We found no significant correlation between struggling at any
task and occupation, which indicates that analysts in AV companies
struggle as much as analysts in consultancy companies. The cor-
relation between unpacking and expertise years is only moderate
(0.37), thus showing an intrinsic difficulty in the problem [1, 67]
that is not only related to having previous contact with the packer
or not. We did not find relevant correlations for other factors.
Is analysts’ available time enough to handle complex mal-
ware? Limited automation affects analysts in multiple aspects. They
not only struggle to have the skills required to analyze malware but
also to have enough time to perform the required tasks, even when
know what to do. Many malware constructions require analysts to

perform repetitive tasks to be overcome, which reduces the analysis
throughput. We asked analysts how much they struggle to perform
the same 3 tasks but now focusing on their available time. Figure 3
shows the response distribution as the fraction of the samples the
analysts struggle to perform each one of these tasks. Once again,
wide variation is observed, with responses ranging from 0 to 80%.
90%, and 70%, respectively.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Participant ID (#)

0

10

20

30

40

50

60

70

80

90

100

Sa
m

pl
es

 (%
)

Struggling Tasks (Time)

Packers Triggers Obfuscation

Figure 3: Analysts’ Most-Struggling Tasks (Time-Wise)

Timing is revealed to be an important bottleneck for malware
analysts. The number of analysts that struggle to have time to
perform one of the tasks for more than 50% of all samples is 17
(80%) in comparison to the 13 (61%) that struggle due to the required
skills. The average number of samples analysts struggle to have
time to analyze is 26%, 56%, and 26%, respectively, in comparison to
32%, 45%, and 23% from skills. Packers requiring more skills than
time to analyze is explained by the fact that although understanding
the packer requires specialized skills, the unpacking process itself
can be automatized via scripts written by the analysts. In turn,
automating triggers required both deep inspection of the code as
well as the significant dedication of time, as every sample tends
to use different triggers [18]. Thus, we conclude that automating
malware analysis tasks is key not only because it lowers the entry
barrier to the field, as in the case of packers, but also because it
gives scale to the process. The development of efficient solutions for
automatically identifying malware triggers is still an open problem
in the academic literature. The recent development in symbolic
execution although promising [7, 53] is still impractical [15] to
present time gains to the analysts. We did not find any correlation
between time-struggling and years of expertise, thus showing that
time is a constraint for all analysts.

5.2 Analysis Accuracy
Howmany times domalware analysts typically run samples?
The limited automation also raises concerns about the correctness
of the analysis results. Malware analysis is an error-prone task, such
that it is easy to overlook some aspects. In this scenario, it is key
to understand how analysts ensure the accuracy of their analysis
results. One way to ensure correctness is to re-run analysts to verify
if the results are reproducible. We asked the analysts how many
runs they performed when analyzing malware samples. Table 14
shows responses broken down by frequency: Always One (A1);
Typically one, but Sometimes More than one (SM); Typically a
Couple runs (TC); and Always a Couple runs (AC).

We notice that only 24% of the analysts always run analyses
multiple times, as a standard practice. Another 38% of the analysts
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Table 14: Number of Typical Analysis Runs.
Category A1 SM TC AC
Answers 0 (0%) 8 (38%) 8 (38%) 5 (24%)

report that they typically run more, but not always. This result
shows that many analysts are aware of the possibility of multi-
path malware, but do not have an established investigation method,
basing the investigation of additional samples on their “feeling”
about the need for additional inspection. Malware analysts would
benefit from the development of solutions that point out the need
for additional investigation and metrics to evaluate if the malware
was properly explored (e.g., coverage [35]).
Do malware analysts test different sandboxes? We asked ana-
lysts if they run the samples in the same or multiple sandboxes to
confirm the analysis results. Table 15 shows results broken down
by usage frequency: Always One sandbox (A1); Typically one, but
Sometimes More than one sandbox (SM); Typically a Couple of
sandboxes (TC); and Always a Couple of sandboxes (AC).

Table 15: The Use of Different Sandboxes by Analysts.
Category A1 SM TC AC
Answers 1 (5%) 8 (38%) 9 (42%) 3 (15%)

Most analysts (95%) are aware that malware behavior might dif-
fer from one sandbox to another and that analyzing in multiple
sandboxes might be an interesting strategy to spot diverting be-
havior. However, only a few of them (14%) have multiple sandbox
executions as an established methodological practice. In compar-
ison to the previous case, fewer analysts run multiple sandboxes
in comparison to the number of analysts who run samples mul-
tiple times in the same analysis session. An important academic
contribution would be to formalize guidelines and criteria for the
validation of malware results via structured methodologies [48].
What do malware analysts change in the analysis environ-
ment? Previous results pointed out that analysts: (i) want more
fine-grained configuration in their sandboxes, and (ii) do not have
uniform criteria to decide to pursue deeper samples investigation.
We then question what analysts want to change in the sandbox
environment and if there is a uniform criterion for that. We asked
the analyst about the most typical changes sandboxes enable to
understand if and how they are used. Table 16 shows the results
broken down by motivation: Changing Operating System (OS);
Architecture; Both; or None.

Table 16: Environment Configuration by the Analysts.
Category Both Arch OS None
Answers 5 (24%) 2 (10%) 0 (0%) 14 (66%)

Most analysts (66%) do not vary any of these most popular sand-
box parameters. Instead, they prefer to change the sandbox solution
as a whole to verify if different results appear due to the use of dif-
ferent collection mechanisms. Among the analysts that change the
sandbox settings, most (24% of total) change both OS and architec-
ture. A few of them change only the architecture. They report being
particularly concerned about x32 vs. x64 malware. The emerging

threat of multi-platform malware [34] was voluntarily expressed
by one of the analysts as a concern for the future (see Section 7).
What multipath exploration strategies do malware analysts
use? Previous results pointed out that analysts are aware that
malware samplesmight havemultiple execution paths. Even though
there is no uniform way of checking for that among analysts, they
end up doing this verification in some cases. Thus, we would like to
understand which tools and technical strategies analysts use when
they do so. Table 17 shows results for both the rate of analysts that
responded to have performed multipath exploration at least once
and the frequency in which the tools were used in these cases.

Table 17: Most-Used Path Exploration Strategies.
Category Fuzzing Symbolic Concolic Forced Manual
Answers 9 (42%) 7 (33%) 5 (23%) 14 (66%) 19 (90%)
Rate 35% 41% 29% 49% 73%

As one could hypothesize due to the limited level of automation,
most analysts (90%) relied upon manual sample inspection to dis-
cover new paths. No technique was used by the analysts in more
than 50% of the samples. This result shows that many of the tech-
niques reported in the literature for multipath exploration still need
to be transitioned to practice and popularized among analysts to
cause a real impact in the malware analysis field. Transitioning re-
search to practice is very important because althoughmany of these
techniques are well-described in the academic literature [7, 35, 55],
no commercial sandbox solution implements them.
How do malware analysts compare multiple traces? When
malware analysts find multiple paths in a sample or run the same
sample in multiple sandboxes they need to compare the results
to give a final verdict. We asked them how they perform such a
comparison. Table 18 categorizes strategies as: considering All
Versions; based on IOCs; or comparing their Graphs.

Table 18: Most-Used Trace Comparison Strategies.
Category All Traces IoCs Graphs
Answers 6 (28%) 13 (62%) 2 (10%)

Most analysts (62%) report base their comparison on the IOCs [3],
i.e., if the IOCs are different in the multiple sandboxes or tools, then
the sample has hidden paths. Comparing only the IOCs facilitates
the analyst’s work because it allows comparison to be performed
at a high level. The comparison of malware traces at a low level
(e.g., instruction level) is still an open research problem. Another
significant part of the analysts (28%) does not verify differences in
the traces. Instead, they just consider all of them together. When
signatures are written, they write signatures to cover all the traces
at the same time, without differentiating specific root causes of
divergence. Only 10% of the analysts reported using some graph
algorithm. Graph-based program comparison is an aspect widely
studied in academic research [41, 54, 60] and that has the potential
to help the practice of malware analysis if properly transitioned.

5.3 Analysis Procedures Performance
How fast are the tools used by the analysts? Previously, the
analysts revealed complaints about the configuration of popular
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solutions like sandboxes, what do they think about the performance
of these solutions? Also, since the majority of the analysts run
tools on their own machines, are the performance of these tools
compatible with the analysis requirements? We asked analysts to
evaluate the performance of the tools they use. Table 19 shows the
responses broken down by analysts’ opinions: Tools are Slow, and
could be Faster (SF); Tools are Slow, but this is Intrinsic to the
malware analysis problem (SI); or the tools are Fast Enough (FE).

Table 19: Analysts’ Perception About Tools Performance.
Category SF SI FE
Answers 10 (47%) 3 (15%) 8 (38%)

We notice that the analysts are divided, which leads to two dif-
ferent but complementary conclusions: On the one hand, most
analysts (62%) believe that the tools are slow, which suggests that
increasing the performance of analysis tools would be very appre-
ciated by the field, thus being an important research direction. On
the other hand, if we consider that 15% of the analysts believe that
the slowness is inherent to the tool and that 38% believe that the
tools are already fast enough, we have that 53% of the analysts
do not envision significant changes toward performance improve-
ment. In sum, performance seems to be a desirable but secondary
characteristic of the analysis tools for most analysts.
How useful would it be for malware analysts to have faster
sandboxes? The practical divide found in the previous answer re-
quires a deeper investigation to understand what are the analyst’s
impressions of performance. To gain more insights about perfor-
mance characterization, we asked analysts how useful it would
be to them to have faster sandboxes. We investigated sandboxes
because it is likely the most popular malware analysis solution and
there is rich academic literature on the topic. Table 20 shows the
responses according to the usefulness levels: Very Useful; Useful
only in Specific cases; or it makes No Difference.

Table 20: The Usefulness of Faster Sandboxes.
Category Very Specific No Diff
Answers 10 (48%) 11 (52%) 0 (0%)

All analysts agree that faster sandboxes would be beneficial,
but they disagree to the extent. The practical divide (48%-52%)
remains between those who believe it is very useful and useful only
in specific cases. The correlation between those who previously
answered that tools are slow and the ones who now reported that
faster sandboxes would be very helpful is high (0.76).

5.4 Analysis outcome performance
What are the typical analysis outcomes?We asked the analysts
about the types of outcomes of their analysis procedures. Table 21
summarizes the results. We notice that producing reports is a key
malware analysis task, being performed by 90% of the analysts.

Table 21: Most-Frequent Analysis Outcomes.
Category Both Reports Signatures
Answers 10 (48%) 9 (42%) 2 (10%)

Another 58% of all analysts also produce signatures, which was
revealed to be an important procedure. The importance of signa-
tures for malware analysts highlights the fact that this task is not
often covered in the academic literature. Whereas multiple propos-
als tackle malware analysis and detection via machine learning,
automatic signature generation still needs to be more studied and
developed by academia. We found no correlation between signature
writing and working in AV companies, such that analyst working
in other types of companies also write signatures and write reports.
How important is performance in the writing of signatures?
Malware analysts have to make multiple project decisions when
writing signatures. We asked the analysts how important is per-
formance when writing signatures. Table 22 shows the responses
broken down by the importance reported by the analysts: Same
priority for accuracy and performance; Accuracy comes First; or
Only Accuracy matters. We notice that most analysts (80%) care
about performance, such that efficient signature matching should
be an important academic research topic (e.g., efficient YARAmatch-
ing [16]). However, as for tool performance, a significant part of
the analysts (67%) consider performance a secondary aspect, not
only for the tools they use but also for the signatures they write.

Table 22: Required Properties for Signature Generation.
Category Same Acc. First Only Acc.
Answers 7 (33%) 10 (47%) 4 (20%)

We highlight the fact that even analysts who reported in the
previous question to not write signatures were allowed to answer
about the characteristics of the signatures they write. The inter-
pretation for that is that whereas in the previous question they
were answering about their typical experience, in this question
they answered about their experience as a whole, which might
have involved the writing of signatures in other epochs.

6 TOOLS EVALUATION
What are the tools most used by malware analysts? The tools
used by the analysts significantly shape the analysis practices and
they are also the most direct way research outcomes can be tran-
sitioned to practice. Thus, it is key to understand which tools are
used by the analysts. We asked the analysts to rank the usage of
different tools. Table 23 shows the rate of analysts that reported
using each tool and the rate of samples analyzed using them.

Analysts’ responses ranged from 0% to 100% for all tools but
AntiViruses (AVs). The use of AVs illustrates how the use of tools is
shaped by the scenarios. The only professionals to largely use AVs in
the analysis procedures were the CSIRT analysts (correlation=1.0).
This use is explained by the need for collecting information (e.g.,
labels) for incident response. In turn, AV analysts rarely use AVs
in their investigations (correlation=-0.95). This is explained by the
fact that the AV analysts are creating the detectors themselves.

The most used solution used by analysts is a disassembler. In-
terestingly, this is not the most studied subject in the academic
literature, even though it presents multiple challenges [4, 52]. The
second most popular solutions are decompilers, another class that
presents key challenges [14, 72] to be addressed by future research.
How do malware analysts rate debuggers?We delve into the
details of the different tools to understand how academic research
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Table 23: Tools Usage.
Category Similarity Hash Debugger Sandbox Decompiler Unpacker AntiVirus Disassembler
Answers 16 (76%) 18 (86%) 20 (95%) 19 (90%) 19 (90%) 11 (52%) 20 (95%)
Rate 47% 57% 58% 61% 49% 58% 66%

can be transitioned to the practice of malware analysis. We started
our investigation with debuggers, one of the most popular tools in
this field. We asked analysts how they rate the use of debuggers.
Table 24 shows analyst’s responses broken down by the level of
satisfaction: (i) they are essential but require the analyst to perform
Repetitive tasks; (ii) they are essential and Enough for the analysis
procedures; or (iii) they are Not Essential for malware analysis.

Table 24: Analysts’ Perception about Debuggers Usefulness.
Category Repetitive Enough Not essential
Answers 15 (71%) 4 (19%) 2 (10%)

Most analysts (90%) perceive debuggers as essential for malware
analysis at some level. Although essential, 71% of the analysts be-
lieve that the debuggers could be better, especially in avoiding repet-
itive tasks. Whereas the academic literature has multiple proposals
for new debuggers, only a few of them are focused on malware
analysis [27, 50], and most do not focus on usability for analysts,
an open development field.
How do the malware analysts rate the role of debugging plu-
gins? Since the analysts previously reported that debuggers can be
enhanced, we investigated how they rate the use of plugins. Debug-
ger plugins are popular for malware analysis because they increase
usability, analysis capabilities, and reduce repetitive tasks. Develop-
ing plugins will be the most straightforward manner to transition
academic research to practice. We asked analysts to rate the use of
plugins. Table 25 shows responses broken down by the satisfaction
level: Plugins are Essential for malware analysis; Plugins help in
Specific cases; or Plugins make No Difference.

Table 25: TheRole of Debugger Plugins forMalwareAnalysis.
Category Essential Specific No Difference
Answers 9 (42%) 12 (48%) 0 (0%)

We notice that all analysts (100%) agree that plugins help to some
extent. However, in another practical divide (42%-48%), most ana-
lysts believe that plugins help only in specific tasks, whereas many
ones can be performed using the native debugging capabilities.
The correlation between those who believe that debuggers require
repetitive tasks and those who believe that plugins are essential is
significant (0.62), thus explaining the different views analysts have
about debuggers. An analyst summarized the relation with plugins
as: “Plugins are amazing, but they should be part of the tool.” and
exemplified: Current plugins to disasm Go or LLVM are non-native”.
This shows that the path to move the field forward in the analyst
views is to integrate features from the plugins into the debuggers
designed specifically for malware analysis.
How do the malware analysts rate the role of decompilers?
Since analysts referred to decompilers as one of the most useful
tools for their tasks, we asked the analysts to better detail their
experience with decompilers. Table 26 shows responses broken

down by the satisfaction level: Decompilers are Very Useful; Useful
in a Minor part of the cases; or Not Useful at all.

Table 26: The Role of Decompilers in Malware Analysis.
Category Very Minor Not Useful
Answers 17 (81%) 4 (19%) 0 (0%)

All analysts agree that decompilers are useful tools for their
tasks. Most (81%) agree that decompilers are very useful, which is
somehow surprising since current decompilers still present many
drawbacks [14], that must be addressed by academic research. We
can understand this result as the benefit brought by a solution being
proportional to the complexity of the problem they address, i.e.,
decompilation is hard, but reading assembly code is also hard for
humans [19], so even small decompilation advancements cause
significant advances in malware analysis.

A known limitation of most decompilers is in the generation of
functional code. In many cases, the decompiled code is readable but
not compilable. Whereas this is a major problem for multiple fields,
malware analysts explain that this drawback has to be put in the
context of the malware analysis task: “It is useful to get a snippet
code from malware to use externally. For that, function correctness is
important, but whole code correctness is not.”. In this sense, academic
research developments might focus more on making parts of the
decompilation functional [14].

On the exception side, those who do not consider decompilers
very useful justify their preferences on the amount of information
displayed by the disassemblers. As explained by one of the analysts:
“In most cases, the disassembly is enough. I use decompilers only to
speed up analyses, but they are not really required to understand the
malware. The disassembly tells me more information, such as calling
convention and use of XORs”.
What new tools would malware analysts like to exist? Once
we identified the limits of existing tools for the practice of malware
analysts, we gave a step ahead and asked the analysts which tools
they would like to exist to help with their tasks. The complete
answers are presented in Appendix E.

We classified analysts’ answers in two groups: (1) Engineering So-
lutions., i.e., solutions that require implementation developments,
but whose basis are already established; and (2) Scientific Solu-
tions, i.e., solutions that require new knowledge development, even
though their final outcome might be a product. Analysts’ requests
fitting these two categories highlight that not only academic re-
search need to be transitioned to practice, but also there is room
for improvement on the existing tools used by the analysts.

The common source for the need for new scientific developments
is the request for more automation. Analysts request automatic
ways to (1) Configure symbolic executors; (2) Select Sandbox Hooks;
(3) Dump memory artifacts; and (4) Identify functions in binaries.
All these tasks require new research developments because they all
require the bridge of the semantic gap between the data collection
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and the data interpretation. In other words, they are cross-domain
applications. These solutions require not only being able to handle
the malware sample but also to infer what the analyst considers
as “interesting” about them. The emerging AI developments have a
significant potential to address these challenges.

7 FUTURE INSIGHTS
This work’s goal is to identify which developments academic re-
search needs tomake to contribute to the future of malware analysts.
We asked analysts’ opinions, as follows.
What do malware analysts think the role of AI in malware
analysis is? We started our investigation with the use of Artificial
Intelligence (AI), since it is a growing trend in the security field
and it was voluntarily expressed by some analysts as an important
concept. We asked the analysts what will be the role of AI in the
future of malware analysis. Table 27 shows the responses catego-
rized by the reported impact: AI Solves the problem; AI Helps to
solve, but not completely; or AI causes No Change to the field.

Table 27: Analysts’ Impressions about AI usage.
Category Solve Help No Change
Answers 1 (5%) 19 (90%) 1 (5%)

We notice that most analysts recognize the potential of AI but
are cautious about their real impact. Only one analyst thinks that
AI will have no impact in the field. Also, only one analyst thinks
that AI will completely solve the malware analysis problems. Most
analysts (90%) think that AI will help, but not completely solve the
problem. The major reason for that pointed out by the analysts is
that they think someone will still have to feed and train AI models
and discover new malicious features (their thoughts are detailed in
the next question).
What domalware analysts think about the future of malware
analysis? The analysts freely commented about the multiple as-
pects of malware analysts they considered important for the future.
The complete analysts’ responses are presented in Appendix F. We
here summarize the reasoning flow of most analysts as follows:

(1) From analysts to intelligence. Multiple analysts mention
that analyzing individual malware samples is not enough.
The analysis products must evolve from individual analysis
to intelligence (e.g., data correlation) to allow the detection
and prediction of attacks at scale. AI plays a key role in it.

(2) AIs will not replace humans.Multiple analysts agree that
AI has a key role in moving the field forward, but most of
them agree that human analysts are still required. The main
reason for that is the need to update AI with the latest attack
movements, that only humans can spot.

(3) We need better education of human analysts. The an-
alysts that will feed AI with data must be well-prepared to
recognize unknown constructions. Most analysts agree that
we need better training since now.

8 RELATEDWORKS
Human-Focused Cybersecurity. The ultimate goal of any cy-
bersecurity system is to protect the human stakeholders affected
by the given system. Whereas cybersecurity research has initially

put an almost exclusive focus on technical aspects of the studied
system, the field has made progress toward the investigation of the
human aspects involved in the system’s operations, which is key
for addressing security risks in a broad sense. It is essential to ac-
knowledge how human factors play a key role in the security field.
Even concepts such as malware, this paper’s topic, are not agnostic
to human definitions, as shown by recent research that investigates
how humans and machines classify malware differently [5].

Malware analysis is a task that largely relies on human decisions
and each human being approaches reverse engineering problems
very differently [70]. A study showed that the decisions made by
reverse engineers during their (non-malware analysis) reversing
tasks are varied to the point of some preferring to start analysis
onwards whereas others prefer backwards [36]. This same behavior
diversity is likely to be found in malware analysts reverse engi-
neering malware samples. Understanding how humans perform
security tasks is not only important as a way of developing base
knowledge on how humans operate, but it can also lead to concrete
improvements to practical tools. For instance, evaluations in how
humans decompile [19] can be used to develop improvements on
the readability of code produced by decompilers [23].
Malware Analysis Landscape. Whereas investigating the mal-
ware analysts’ practices is key to enhancing them, a few works
present comprehensive evaluations of the current malware analysis
landscape. An industry survey [51] recently presented findings to
support that security companies need more automation in their
malware analysis practices. Whereas this result provides some inter-
esting direction for research in the field, it does not cover the needs
of human analysts, as they were not individually interviewed. In
this sense, the closest work to ours is the survey with 21 malware
analysts [73] that investigated their malware analysis practices,
such as how they use sandboxes. Whereas providing valuable in-
sights about the field, the work does not focus on the tools the
analysts would like to be developed to help in their practices.
Security Tools Landscape.Whereas evaluating how security ex-
perts interact with state-of-the-art security tools is essential to
identifying how to make the tools better, the current literature is
limited in evaluation reports. Our literature review found: (i) an
analysis of offensive tools capabilities [66], which certainly pro-
vides some general insights but that lacks usability evaluations; and
(ii) an HCI-focused evaluation of reverse engineering tools [38] that
identified several limitations in existing tools (e.g., lack of analysis
methods selectors) but that is not focused in malware analysis.

9 CONCLUSION
We investigated the practice of malware analysis by surveying 21
professional analysts and presented a critical analysis of the survey
results to pinpoint current challenges and existing development
opportunities from a research perspective (App. G). We discovered
that: (1) Most malware analysis tasks are performed manually, such
that developing automation mechanisms is a promising avenue to
contribute to the field; (2) existing automation tools (e.g., public
sandboxes) are not enough because they are not configurable and
do not provide fine-grained information about analysis outcomes,
such that developing methods to explain malicious paths is key
to streamlining automation procedures; (3) decompilers are very
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popular tools among analysts, but significant developments are still
possible in this domain; and (4) Many SOTA solutions described in
the academic literature are still not widespread in practice, such
that they need to be transitioned to practice to help analysts.

ACKNOWLEDGMENTS
We thank all the survey responders for sharing their invaluable
time and knowledge with us. We also thank all members of our
professional network who helped to distribute the survey among
their malware analysis teams. Finally, we thank NSF for the support
via the CNS 2327427 grant.

REFERENCES
[1] Hojjat Aghakhani, Fabio Gritti, Francesco Mecca, Martina Lindorfer, Stefano Or-

tolani, Davide Balzarotti, Giovanni Vigna, and Christopher Kruegel. 2020. When
malware is packin’heat; limits of machine learning classifiers based on static
analysis features. In Network and Distributed Systems Security (NDSS) Symposium
2020, Vol. 1. IFIP, US, 1.

[2] Olusola Akinrolabu, Ioannis Agrafiotis, and Arnau Erola. 2018. The Challenge of
Detecting Sophisticated Attacks: Insights from SOCAnalysts. In Proceedings of the
13th International Conference on Availability, Reliability and Security (Hamburg,
Germany) (ARES 2018). Association for Computing Machinery, New York, NY,
USA, Article 55, 9 pages. https://doi.org/10.1145/3230833.3233280

[3] Bio Akram and Dion Ogi. 2020. The making of indicator of compromise using
malware reverse engineering techniques. In 2020 International Conference on ICT
for Smart Society (ICISS). IEEE, IEEE, Indonesia, 1–6.

[4] Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia Slowinska, and Herbert
Bos. 2016. An In-Depth Analysis of Disassembly on Full-Scale x86/x64 Binaries..
In USENIX Security Symposium. USENIX, US, 583–600.

[5] Simone Aonzo, Yufei Han, Alessandro Mantovani, and Davide Balzarotti. 2023.
Humans vs. Machines in Malware Classification.

[6] Erin Avllazagaj, Ziyun Zhu, Leyla Bilge, Davide Balzarotti, and Tudor Dumitras.
2021. When Malware Changed Its Mind: An Empirical Study of Variable Program
Behaviors in the Real World.. In USENIX Security Symposium. USENIX, US, 3487–
3504.

[7] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, and Camil Demetrescu.
2017. Assisting Malware Analysis with Symbolic Execution: A Case Study. In
Cyber Security Cryptography and Machine Learning, Shlomi Dolev and Sachin
Lodha (Eds.). Springer, US.

[8] Davide Balzarotti, Marco Cova, Christoph Karlberger, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. 2010. Efficient Detection of Split Personalities in
Malware.. In NDSS, Vol. 1. IFIP, US, 1.

[9] Parth Bhatt, Edgar Toshiro Yano, and Per Gustavsson. 2014. Towards a frame-
work to detect multi-stage advanced persistent threats attacks. In 2014 IEEE 8th
international symposium on service oriented system engineering. IEEE, IEEE, UK,
390–395.

[10] Steve Bono. 2005. Thinking Like an Attacker. In 19th Large Installation System
Administration Conference (LISA 05), Vol. 1. USENIX, US, 1.

[11] Marcus Botacin, Hojjat Aghakhani, Stefano Ortolani, Christopher Kruegel,
Giovanni Vigna, Daniela Oliveira, Paulo Lício De Geus, and André Grégio.
2021. One Size Does Not Fit All: A Longitudinal Analysis of Brazilian Finan-
cial Malware. ACM Trans. Priv. Secur. 24, 2, Article 11 (jan 2021), 31 pages.
https://doi.org/10.1145/3429741

[12] Marcus Botacin, Fabricio Ceschin, Ruimin Sun, Daniela Oliveira, and André
Grégio. 2021. Challenges and pitfalls in malware research. Computers & Security
106 (2021), 102287. https://doi.org/10.1016/j.cose.2021.102287

[13] Marcus Botacin, Paulo Lício de Geus, and André Grégio. 2019. “VANILLA” mal-
ware: vanishing antiviruses by interleaving layers and layers of attacks. Journal
of Computer Virology and Hacking Techniques 1 (2019), 1. https://doi.org/10.1007/
s11416-019-00333-y

[14] Marcus Botacin, Lucas Galante, Paulo de Geus, and André Grégio. 2020. RevEngE
is a Dish Served Cold: Debug-Oriented Malware Decompilation and Reassembly.
In Proceedings of the 3rd Reversing and Offensive-Oriented Trends Symposium
(Vienna, Austria) (ROOTS’19). Association for Computing Machinery, New York,
NY, USA, Article 1, 12 pages. https://doi.org/10.1145/3375894.3375895

[15] Marcus Botacin and André Grégio. 2021. Malware MultiVerse: From Automatic
Logic Bomb Identification to Automatic Patching and Tracing. https://doi.org/
10.48550/ARXIV.2109.06127

[16] Michael Brengel and Christian Rossow. 2021. YARIX: Scalable YARA-based
Malware Intelligence. In 30th USENIX Security Symposium (USENIX Security
21). USENIX Association, US, 3541–3558. https://www.usenix.org/conference/
usenixsecurity21/presentation/brengel

[17] Sarah Brown, Joep Gommers, and Oscar Serrano. 2015. From Cyber Security
Information Sharing to Threat Management. In Proceedings of the 2nd ACM
Workshop on Information Sharing and Collaborative Security (Denver, Colorado,
USA) (WISCS ’15). Association for Computing Machinery, New York, NY, USA,
43–49. https://doi.org/10.1145/2808128.2808133

[18] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Song, and
Heng Yin. 2008. Automatically identifying trigger-based behavior in malware.
Botnet Detection: Countering the Largest Security Threat 1, 1 (2008), 65–88.

[19] Kevin Burk, Fabio Pagani, Christopher Kruegel, andGiovanni Vigna. 2022. Decom-
person: HowHumans Decompile andWhatWe Can Learn From It. In 31st USENIX
Security Symposium (USENIX Security 22). USENIXAssociation, Boston,MA, 2765–
2782. https://www.usenix.org/conference/usenixsecurity22/presentation/burk

[20] Marcus Carpenter and Chunbo Luo. 2023. Behavioural Reports of Multi-Stage
Malware. arXiv:2301.12800 [cs.CR]

[21] Fabrício Ceschin, Heitor Murilo Gomes, Marcus Botacin, Albert Bifet, Bernhard
Pfahringer, Luiz S. Oliveira, and André Grégio. 2020. Machine Learning (In)
Security: A Stream of Problems. arXiv:2010.16045 [cs.CR]

[22] Binlin Cheng, Jiang Ming, Jianmin Fu, Guojun Peng, Ting Chen, Xiaosong
Zhang, and Jean-Yves Marion. 2018. Towards Paving the Way for Large-
Scale Windows Malware Analysis: Generic Binary Unpacking with Orders-of-
Magnitude Performance Boost. In Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security (Toronto, Canada) (CCS
’18). Association for Computing Machinery, New York, NY, USA, 395–411.
https://doi.org/10.1145/3243734.3243771

[23] Steffen Enders, Eva-Maria C. Behner, Niklas Bergmann, Mariia Rybalka, Elmar
Padilla, Er Xue Hui, Henry Low, and Nicholas Sim. 2022. dewolf: Improving
Decompilation by leveraging User Surveys. https://doi.org/10.48550/ARXIV.
2205.06719

[24] Mohammad Reza Farhadi, Benjamin CM Fung, Yin Bun Fung, Philippe Charland,
Stere Preda, and Mourad Debbabi. 2015. Scalable code clone search for malware
analysis. Digital Investigation 15 (2015), 46–60.

[25] Mariano Graziano, Davide Canali, Leyla Bilge, Andrea Lanzi, and Davide
Balzarotti. 2015. Needles in a Haystack: Mining Information from Public
Dynamic Analysis Sandboxes for Malware Intelligence. In 24th USENIX Secu-
rity Symposium (USENIX Security 15). USENIX Association, Washington, D.C.,
1057–1072. https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/graziano

[26] Panos Kampanakis. 2014. Security Automation and Threat Information-Sharing
Options. IEEE Security & Privacy 12, 5 (2014), 42–51. https://doi.org/10.1109/
MSP.2014.99

[27] Mohammad Sina Karvandi, MohammadHosein Gholamrezaei, Saleh Khalaj Mon-
fared, Soroush Meghdadizanjani, Behrooz Abbassi, Ali Amini, Reza Mortazavi,
Saeid Gorgin, Dara Rahmati, and Michael Schwarz. 2022. HyperDbg: Reinventing
Hardware-Assisted Debugging. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security. ACM, US, 1709–1723.

[28] Yuhei Kawakoya, Makoto Iwamura, and Mitsutaka Itoh. 2010. Memory behavior-
based automatic malware unpacking in stealth debugging environment. In 2010
5th International Conference on Malicious and Unwanted Software. IEEE, France,
39–46. https://doi.org/10.1109/MALWARE.2010.5665794

[29] Eujeanne Kim, Sung-Jun Park, Dong-Kyu Chae, Seokwoo Choi, and Sang-Wook
Kim. 2020. A Human-in-the-Loop Approach to Malware Author Classification. In
Proceedings of the 29th ACM International Conference on Information & Knowledge
Management (Virtual Event, Ireland) (CIKM ’20). Association for Computing
Machinery, New York, NY, USA, 3289–3292. https://doi.org/10.1145/3340531.
3417467

[30] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. 2014. Barecloud: Bare-
metal analysis-based evasive malware detection. In 23rd {USENIX} Security
Symposium ({USENIX} Security 14). USENIX, US, 287–301.

[31] Alexander Küchler, Alessandro Mantovani, Yufei Han, Leyla Bilge, and Davide
Balzarotti. 2021. Does Every Second Count? Time-based Evolution of Malware
Behavior in Sandboxes.. In NDSS. IFIP, US, 1.

[32] Giuseppe Laurenza, Leonardo Aniello, Riccardo Lazzeretti, and Roberto Baldoni.
2017. Malware Triage Based on Static Features and Public APT Reports. In Cyber
Security Cryptography and Machine Learning, Shlomi Dolev and Sachin Lodha
(Eds.). Springer International Publishing, Cham, 288–305.

[33] Giuseppe Laurenza, Riccardo Lazzeretti, and Luca Mazzotti. 2020. Malware Triage
for Early Identification of Advanced Persistent Threat Activities. Digital Threats
1, 3, Article 16 (aug 2020), 17 pages. https://doi.org/10.1145/3386581

[34] Martina Lindorfer, Matthias Neumayr, Juan Caballero, and Christian Platzer. 2013.
Poster: Cross-platform malware: write once, infect everywhere. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications security. ACM,
Germany, 1425–1428.

[35] Yuying Liu, Pin Yang, Peng Jia, Ziheng He, and Hairu Luo. 2022. MalFuzz:
Coverage-guided fuzzing on deep learning-based malware classification model.
Plos one 17, 9 (2022), e0273804.

[36] Alessandro Mantovani, Simone Aonzo, Yanick Fratantonio, and Davide Balzarotti.
2022. RE-Mind: a First Look Inside the Mind of a Reverse Engineer. In 31st USENIX
Security Symposium (USENIX Security 22). USENIX Association, Boston, MA,

https://doi.org/10.1145/3230833.3233280
https://doi.org/10.1145/3429741
https://doi.org/10.1016/j.cose.2021.102287
https://doi.org/10.1007/s11416-019-00333-y
https://doi.org/10.1007/s11416-019-00333-y
https://doi.org/10.1145/3375894.3375895
https://doi.org/10.48550/ARXIV.2109.06127
https://doi.org/10.48550/ARXIV.2109.06127
https://www.usenix.org/conference/usenixsecurity21/presentation/brengel
https://www.usenix.org/conference/usenixsecurity21/presentation/brengel
https://doi.org/10.1145/2808128.2808133
https://www.usenix.org/conference/usenixsecurity22/presentation/burk
https://arxiv.org/abs/2301.12800
https://arxiv.org/abs/2010.16045
https://doi.org/10.1145/3243734.3243771
https://doi.org/10.48550/ARXIV.2205.06719
https://doi.org/10.48550/ARXIV.2205.06719
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/graziano
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/graziano
https://doi.org/10.1109/MSP.2014.99
https://doi.org/10.1109/MSP.2014.99
https://doi.org/10.1109/MALWARE.2010.5665794
https://doi.org/10.1145/3340531.3417467
https://doi.org/10.1145/3340531.3417467
https://doi.org/10.1145/3386581


Conference’17, July 2017, Washington, DC, USA Marcus Botacin

2727–2745. https://www.usenix.org/conference/usenixsecurity22/presentation/
mantovani

[37] Lorenzo Martignoni, Mihai Christodorescu, and Somesh Jha. 2007. Omniunpack:
Fast, generic, and safe unpacking of malware. In Twenty-Third Annual Computer
Security Applications Conference (ACSAC 2007). IEEE, IEEE, US, 431–441.

[38] James Mattei, Madeline McLaughlin, Samantha Katcher, and Daniel Votipka. 2022.
A Qualitative Evaluation of Reverse Engineering Tool Usability. In Proceedings
of the 38th Annual Computer Security Applications Conference (Austin, TX, USA)
(ACSAC ’22). Association for ComputingMachinery, New York, NY, USA, 619–631.
https://doi.org/10.1145/3564625.3567993

[39] Vasileios Mavroeidis and Audun Jøsang. 2018. Data-Driven Threat Hunting
Using Sysmon. In Proceedings of the 2nd International Conference on Cryptography,
Security and Privacy (Guiyang, China) (ICCSP 2018). Association for Computing
Machinery, New York, NY, USA, 82–88. https://doi.org/10.1145/3199478.3199490

[40] Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Rekha Bach-
wani, Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar, Tony Wu, George Yiu,
Anthony D. Joseph, and J. D. Tygar. 2016. Reviewer Integration and Performance
Measurement for Malware Detection. In Proceedings of the 13th International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment -
Volume 9721 (San Sebastián, Spain) (DIMVA 2016). Springer-Verlag, Berlin, Hei-
delberg, 122–141. https://doi.org/10.1007/978-3-319-40667-1_7

[41] Jiang Ming, Meng Pan, and Debin Gao. 2013. iBinHunt: Binary hunting with
inter-procedural control flow. In Information Security and Cryptology–ICISC 2012:
15th International Conference, Seoul, Korea, November 28-30, 2012, Revised Selected
Papers 15. Springer, Springer, South Korea, 92–109.

[42] Najmeh Miramirkhani, Mahathi Priya Appini, Nick Nikiforakis, and Michalis
Polychronakis. 2017. Spotless sandboxes: Evading malware analysis systems
using wear-and-tear artifacts. In 2017 IEEE Symposium on Security and Privacy
(SP). IEEE, IEEE, US, 1009–1024.

[43] Abhijit Mohanta and Anoop Saldanha. 2020. Malware Analysis and Detection
Engineering: A Comprehensive Approach to Detect and Analyze Modern Malware.
Springer, US.

[44] KA Monnappa. 2018. Learning Malware Analysis: Explore the concepts, tools, and
techniques to analyze and investigate Windows malware. Packt Publishing Ltd,
US.

[45] Andreas Moser, Christopher Kruegel, and Engin Kirda. 2007. Exploring multiple
execution paths for malware analysis. In 2007 IEEE Symposium on Security and
Privacy (SP’07). IEEE, IEEE, US, 231–245.

[46] Nuthan Munaiah, Akond Rahman, Justin Pelletier, Laurie Williams, and Andrew
Meneely. 2019. Characterizing Attacker Behavior in a Cybersecurity Penetration
Testing Competition. In 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). ACM/IEEE, Brazil, 1–6. https:
//doi.org/10.1109/ESEM.2019.8870147

[47] Terry Nelms, Roberto Perdisci, Manos Antonakakis, and Mustaque Ahamad.
2015. Webwitness: Investigating, categorizing, and mitigating malware download
paths. In 24th {USENIX} Security Symposium ({USENIX} Security 15). USENIX,
US, 1025–1040.

[48] Cory Q. Nguyen and James E. Goldman. 2010. Malware Analysis Reverse En-
gineering (MARE) Methodology & Malware Defense (M.D.) Timeline. In 2010
Information Security Curriculum Development Conference (Kennesaw, Georgia)
(InfoSecCD ’10). Association for Computing Machinery, New York, NY, USA, 8–14.
https://doi.org/10.1145/1940941.1940944

[49] Anita Nikolich. 2019. Grey Science. In Enigma 2019 (Enigma 2019). USENIX
Association, Burlingame, CA, 1. https://www.usenix.org/node/226466

[50] Igor Novkovic and Stjepan Groš. 2016. Can malware analysts be assisted in
their work using techniques from machine learning?. In 2016 39th International
Convention on Information and Communication Technology, Electronics and Mi-
croelectronics (MIPRO). ACM/IEEE, Taiwan, 1408–1413. https://doi.org/10.1109/
MIPRO.2016.7522360

[51] OPSWAT. 2022. State of Malware Analysis. https://info.opswat.com/hubfs/
opswat-2022-state-of-malware-analysis.pdf.

[52] Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo Br-
uschi. 2010. N-version disassembly: differential testing of x86 disassemblers. In
Proceedings of the 19th international symposium on Software testing and analysis.
ACM, China, 265–274.

[53] Kyuhong Park, Burak Sahin, Yongheng Chen, Jisheng Zhao, Evan Downing,
Hong Hu, and Wenke Lee. 2021. Identifying Behavior Dispatchers for Mal-
ware Analysis. In Proceedings of the 2021 ACM Asia Conference on Computer
and Communications Security (Virtual Event, Hong Kong) (ASIA CCS ’21). As-
sociation for Computing Machinery, New York, NY, USA, 759–773. https:
//doi.org/10.1145/3433210.3457894

[54] Younghee Park and Douglas Reeves. 2011. Deriving common malware behavior
through graph clustering. In Proceedings of the 6th ACM Symposium on Informa-
tion, Computer and Communications Security. ACM, China, 497–502.

[55] Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhiqiang Lin, and Zhendong
Su. 2014. X-force: Force-executing binary programs for security applications.
In 23rd {USENIX} Security Symposium ({USENIX} Security 14). USENIX, US,
829–844.

[56] Daniel Plohmann, Sebastian Eschweiler, and Elmar Gerhards-Padilla. 2013. Pat-
terns of a cooperative malware analysis workflow. In 2013 5th International
Conference on Cyber Conflict (CYCON 2013). IEEE, Estonia, 1–18.

[57] Edward Raff, Richard Zak, Gary Lopez Munoz, William Fleming, Hyrum S. An-
derson, Bobby Filar, Charles Nicholas, and James Holt. 2020. Automatic Yara
Rule Generation Using Biclustering. In Proceedings of the 13th ACM Workshop on
Artificial Intelligence and Security (Virtual Event, USA) (AISec’20). Association
for Computing Machinery, New York, NY, USA, 71–82. https://doi.org/10.1145/
3411508.3421372

[58] Md Omar Faruk Rokon, Risul Islam, Ahmad Darki, Evangelos E Papalexakis,
and Michalis Faloutsos. 2020. SourceFinder: Finding Malware Source-Code from
Publicly Available Repositories in GitHub.. In RAID. Springer, 2020, 149–163.

[59] Hassen Saıdi, Phillip Porras, and Vinod Yegneswaran. 2010. Experiences in
malware binary deobfuscation. Virus Bulletin 1, 1 (2010), 1.

[60] Stefano Sebastio, Eduard Baranov, Fabrizio Biondi, Olivier Decourbe, Thomas
Given-Wilson, Axel Legay, Cassius Puodzius, and Jean Quilbeuf. 2020. Optimizing
symbolic execution for malware behavior classification. Computers & Security 93
(2020), 101775. https://doi.org/10.1016/j.cose.2020.101775

[61] Shanhu Shang, Ning Zheng, Jian Xu, Ming Xu, and Haiping Zhang. 2010. De-
tecting malware variants via function-call graph similarity. In 2010 5th Interna-
tional Conference on Malicious and Unwanted Software. IEEE, France, 113–120.
https://doi.org/10.1109/MALWARE.2010.5665787

[62] Monirul I Sharif, Vinod Yegneswaran, Hassen Saidi, Phillip A Porras, and Wenke
Lee. 2008. Eureka: A Framework for Enabling Static Malware Analysis.. In
ESORICS, Vol. 8. Springer, Springer, Spain, 481–500.

[63] Narasimha Shashidhar and Peter Cooper. 2016. Teaching malware analysis: The
design philosophy of a model curriculum. In 2016 4th International Symposium
on Digital Forensic and Security (ISDFS). IEEE, US, 119–125. https://doi.org/10.
1109/ISDFS.2016.7473529

[64] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SOK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE,
US, 138–157. https://doi.org/10.1109/SP.2016.17

[65] Michael Sikorski and Andrew Honig. 2012. Practical malware analysis: the hands-
on guide to dissecting malicious software. no starch press, US.

[66] TwoSixLabs. 2020. Edge of the Art in Vulnerability Research. https://apps.dtic.
mil/sti/citations/AD1096948.

[67] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G. Bringas.
2015. SoK: Deep Packer Inspection: A Longitudinal Study of the Complexity of
Run-Time Packers. In 2015 IEEE Symposium on Security and Privacy. IEEE, US,
659–673. https://doi.org/10.1109/SP.2015.46

[68] Xabier Ugarte-Pedrero, Mariano Graziano, and Davide Balzarotti. 2019. A Close
Look at a Daily Dataset of Malware Samples. ACM Trans. Priv. Secur. 22, 1, Article
6 (jan 2019), 30 pages. https://doi.org/10.1145/3291061

[69] Marie Vasek and Tyler Moore. 2012. Do malware reports expedite cleanup? An
experimental study. In USENIX CSET. USENIX Association, USENIX, US, 1.

[70] Daniel Votipka, Seth Rabin, Kristopher Micinski, Jeffrey S. Foster, and Michelle L.
Mazurek. 2019. An Observational Investigation of Reverse Engineers’ Process
and Mental Models. In Extended Abstracts of the 2019 CHI Conference on Human
Factors in Computing Systems (Glasgow, Scotland Uk) (CHI EA ’19). Association
for Computing Machinery, New York, NY, USA, 1–6. https://doi.org/10.1145/
3290607.3313040

[71] Aaron Weathersby. 2021. Prevalence of PII within Public Malware Sandbox
Samples and Implications for Privacy and Threat Intelligence Sharing: Student
Paper Abstract. J. Comput. Sci. Coll. 37, 3 (oct 2021), 166.

[72] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-Padilla, and Matthew Smith.
2016. Helping johnny to analyze malware: A usability-optimized decompiler and
malware analysis user study. In 2016 IEEE Symposium on Security and Privacy
(SP). IEEE, IEEE, US, 158–177.

[73] Miuyin Yong Wong, Matthew Landen, Manos Antonakakis, Douglas M. Blough,
Elissa M. Redmiles, and Mustaque Ahamad. 2021. An Inside Look into the
Practice of Malware Analysis. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security (Virtual Event, Republic of Korea)
(CCS ’21). Association for Computing Machinery, New York, NY, USA, 3053–3069.
https://doi.org/10.1145/3460120.3484759

[74] Katsunari Yoshioka, Yoshihiko Hosobuchi, Tatsunori Orii, and Tsutomu Mat-
sumoto. 2010. Vulnerability in Public Malware Sandbox Analysis Systems. In
2010 10th IEEE/IPSJ International Symposium on Applications and the Internet.
IEEE, South Korea, 265–268. https://doi.org/10.1109/SAINT.2010.16

A LITERATURE REVIEW
To identify the knowledge gaps in malware practices in a represen-
tative way, we relied upon a Systematic Literature Review (SLR)
strategy. More specifically, we refined a previous SLR on malware

https://www.usenix.org/conference/usenixsecurity22/presentation/mantovani
https://www.usenix.org/conference/usenixsecurity22/presentation/mantovani
https://doi.org/10.1145/3564625.3567993
https://doi.org/10.1145/3199478.3199490
https://doi.org/10.1007/978-3-319-40667-1_7
https://doi.org/10.1109/ESEM.2019.8870147
https://doi.org/10.1109/ESEM.2019.8870147
https://doi.org/10.1145/1940941.1940944
https://www.usenix.org/node/226466
https://doi.org/10.1109/MIPRO.2016.7522360
https://doi.org/10.1109/MIPRO.2016.7522360
https://info.opswat.com/hubfs/opswat-2022-state-of-malware-analysis.pdf
https://info.opswat.com/hubfs/opswat-2022-state-of-malware-analysis.pdf
https://doi.org/10.1145/3433210.3457894
https://doi.org/10.1145/3433210.3457894
https://doi.org/10.1145/3411508.3421372
https://doi.org/10.1145/3411508.3421372
https://doi.org/10.1016/j.cose.2020.101775
https://doi.org/10.1109/MALWARE.2010.5665787
https://doi.org/10.1109/ISDFS.2016.7473529
https://doi.org/10.1109/ISDFS.2016.7473529
https://doi.org/10.1109/SP.2016.17
https://apps.dtic.mil/sti/citations/AD1096948
https://apps.dtic.mil/sti/citations/AD1096948
https://doi.org/10.1109/SP.2015.46
https://doi.org/10.1145/3291061
https://doi.org/10.1145/3290607.3313040
https://doi.org/10.1145/3290607.3313040
https://doi.org/10.1145/3460120.3484759
https://doi.org/10.1109/SAINT.2010.16


What do malware analysts want from academia? A survey on the state-of-the-practice to guide research developments Conference’17, July 2017, Washington, DC, USA

research [12] to cover the aspects specific to the analysts’ practices.
We chose this previous SLR because it follows a widely accepted
SLR methodology (PRISMA); it was already peer-reviewed: and it
covered 18 years of publications in top security conferences. We
got access to the papers used in the previous SLR and refined the
search criteria to include only the following keywords in the ti-
tle, the abstract, or the text: “malware practice”, “analysis practice”,
“analyst’s practice”, “practice of”, “reverse engineering practice”, “anal-
ysis process”, and “reverse engineering process”. We then manually
inspected each one of the matching papers to verify if the matches
correspond to the description of an analysis practice. We under-
stand as an analysis practice any action actively taken by malware
analysts, either it being part of the decision-making or the hands-on
reverse engineering process. We considered all analysis practices
we identified in the literature.

Table 28 shows the distribution of the selected papers over the
years and the venues, both for the Original SLR and the Refined
one. We notice that whereas multiple solutions are proposed in
the papers, analysis practices are only covered in small fractions.
Among the conferences, the rate of papers covering analysis prac-
tices ranges from 6% to 21%, with a combined average of 11% of all
papers. Over time, the rate of papers covering analysis practices in
each ranged from 0% to 36%, which was achieved in 2005 (4 out of
11 malware papers).

In total, we found 55 papers mentioning some analysis prac-
tice. We discarded repeated topics and summarized the practices in
the workflow presented in Appendix B. We reviewed the resulting
workflow to identify existing Knowledge Gaps (KGs), i.e., analysts’
practice problems claimed as open by the reviewed literature works.
We conducted a second literature search in the works published
after the original SLR to identify if more recent works answered
some of the so-far open questions. The identified works are pre-
sented in Section 2 whenever appropriated. The remaining open
KGs were translated to the 31 questions presented in Appendix C.

B MALWARE ANALYSIS WORKFLOW
The analysis practices we identified in the literature are not per-
formed in isolation. In turn, they are part of an integrated set of
reverse engineering practices; Some actions depend on previous
ones or provide the basis for future developments. Therefore, we
attempted to summarize the practices in a clear workflow, based on
the placement of the practices in the literature works. We tried to
respect the order of the practices as reported in the original papers,
but we took the freedom to assume and reorder actions whenever
the papers did not clearly state which practices they assumed. We
acknowledge that malware analysts might play different roles and
only perform parts of these actions, but our goal is to establish a
general workflow that applies to most malware analysts. We sum-
marized the tasks performed by malware analysts in the workflow
shown in Figure 4. The steps are the following:

(1) One learns malware analysis techniques and is hired as a
malware analyst.

(2) The employee assigns a task to the analyst.
(3) In most cases, but not all, it is a reverse engineering task.
(4) In reverse engineering tasks, the analyst receives (one or a

set of) samples to analyze.
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Figure 4: Malware Analysis Workflow.
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Table 28: Paper Selection. Paper distribution per year (2000 – 2018) and per venue for the Original [12] and the Refined SLR.
Venue/Year 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Total

O R O R O R O R O R O R O R O R O R O R O R O R O R O R O R O R O R O R O R O R
USENIX 1 0 0 0 0 0 0 0 0 0 1 0 1 0 6 2 2 0 3 1 7 1 8 1 10 1 12 0 9 2 7 0 9 3 13 1 6 0 95 12
CCS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 4 1 6 0 6 0 7 0 11 0 9 2 11 1 14 0 2 0 11 2 6 0 89 6

ACSAC 0 0 0 0 0 0 0 0 2 0 3 2 2 0 4 0 4 1 1 0 3 0 8 0 10 3 7 0 10 0 6 1 3 1 7 0 8 0 78 6
IEEE S&P 0 0 1 0 0 0 0 0 0 0 1 0 3 2 2 1 1 0 0 0 0 0 10 0 17 2 12 0 3 0 6 1 4 2 5 1 3 1 68 11
DIMVA 0 0 0 0 0 0 0 0 0 0 4 1 4 0 3 0 8 0 2 0 3 0 0 0 8 1 4 1 8 1 7 0 7 2 5 1 4 2 67 9
NDSS 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 3 0 3 1 3 1 3 0 2 0 4 0 5 0 4 1 9 1 7 0 3 1 49 5
RAID 0 0 0 0 1 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 3 0 5 1 5 1 3 0 4 1 3 0 3 0 31 3

ESORICS 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 2 1 1 0 0 0 0 0 2 0 3 0 3 0 0 0 1 0 1 1 0 0 14 3
Total 1 0 1 0 1 0 0 0 3 0 11 4 15 2 17 3 24 3 16 2 22 2 36 1 63 7 56 4 54 5 47 3 39 10 52 6 33 4 491 55

(5) If working with a team, the analyst syncs with the team the
samples to be analyzed.

(6) Upon starting to analyze, an analyst might collect additional
(often similar) samples to enrich the analysis procedure.

(7) The analystmight recognize the sample is a variant of previously-
analyzed samples. Specific actions might be taken in this case
to speed up analyses.

(8) The analyst starts reversing each sample.
(a) The analyst starts the investigation by the first malware

stage.
(i) The analyst performs the first analysis run.
(A) Unpack, Deobfuscate, and Find the triggers for each

sample.
(B) Use the appropriate tool for each task.
(C) Extract the IOCs.

(ii) Compare the results from multiple runs.
(iii) If the results are not coherent, perform an additional

run. Otherwise, stop.
(b) The analyst verifies if the malware has a next stage to

analyze. If so, repeat the process.
(9) Having analyzed all samples, the analyst is ready to report

the outcomes.
(10) The analyst decides if the sample will only be reported or if

a new signature is required.
(11) The analyst might collect more samples (e.g., variants) to

amplify the impact of the analyses (e.g., more comprehensive
signatures).

(12) The analyst writes the reports and the signatures.
(13) As the process is finished, the analyst and/or the company

might store the analyzed sample for future queries.
(14) By the end of the process, the analyst is more experienced,

and this experience is shared with other analysts to build
more robust malware analysis teams.

C SURVEY QUESTIONS
The invited participants were asked to initially sign the consent
form and then were presented to the following blocks of questions:

C.1 Professional Background (PB)
• PB1. “Considering your daily job tasks. How often do you
perform malware analysis tasks?”
– (A) I’m a full-time malware analyst.
– (B) Most of my tasks, but not all, are malware analysis
tasks.

– (C) A reasonable number of my tasks are malware analysis
tasks.

– (D) I eventually do malware analysis tasks.
– (E) I don’t do malware analysis tasks.

• PB2. “How do you characterize your current work/job?”
– (A) I’m part of a team and we analyze samples together.
– (B) I’m part of a team, but we analyze samples indepen-
dently.

– (C) I’m an independent researcher.
• PB3. “How much context about the malware collection do you
often have about the analysis?”
– (A) I’m part of a team that analyzes regionalized/focused
threats, thus I know the context of the infection.

– (B) I’m part of a local analysis team that analyzes threats to
our own company thus I know howmalware was collected.

– (C) I work with samples collected from a 3rd-party, thus I
never know where they came from.

C.2 Professional Skills (PS)
• PS1. “How did you learn to analyze malware?”
– (A) Post-grad in the field.
– (B) Bsc in the field.
– (C) Certification.
– (D) Experience working (B.Sc. in another field).
– (E) Self-taught.

• PS2. “How long have you been working as a malware analyst?”
– Open answer.

• PS3. “How do you get updated about new malware analysis
developments? Rate accordingly:”
– (A) Academic Papers [0-100]
– (B) White Papers/Blog posts [0-100]
– (C) Youtube Videos [0-100]
– (D) Security events [0-100]
– (E) Training [0-100]

C.3 Analysis Practices (AP)
• AP1. “Do you collect more samples than the one you are ana-
lyzing to perform the analysis tasks?”
– (A) I often collect more samples, to write better/broader
signatures.

– (B) I often collect more samples, to measure the impact on
reports.

– (C) I sometimes collect more samples, to understand how
a new technique works.

– (D) No, I only analyze the requested samples.
• AP2. “Do you store the analyzed samples for further queries?”
– (A) They are always stored by the company I work for.
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– (B) They are always stored by me.
– (C) They are eventually stored by me, just as a curiosity.
– (D) They are never stored.

• AP3. “Where and Who hosts analysis procedures?”
– (A) Mostly on my own computer.
– (B) Mostly on public web services.
– (C) Mostly on company-provided sandboxes.

• AP4. “What’s your relation with public malware analysis sand-
boxes?”
– (A) My employer allows using it, but I don’t like using it.
– (B) My employer allows using it, and I like using it.
– (C) My employer doesn’t allow me to use it.

• AP5. “How often do you see malware variants to the point of
recognizing that you analyzed a similar construction before?”
– (A) Rarely, the company triage system does a good job.
– (B) Sometimes, but it is more common to see different
families of malware.

– (C) Very often, there are too many variants out there to
be analyzed.

• AP6. “How much of your work involves manual tasks? (e.g.,
debugging vs tracing)”
– (A) Most of my work is manual.
– (B) Around 50% manual and 50% automated.
– (C) I run fully automated analysis pipelines.

• AP7. “How do you handle multi-stage/multi-format malware?”
– (A) With multiple tools, but mostly via automatedly inte-
gration.

– (B) With multiple tools, but treating each stage as a com-
pletely new analysis.

– (C) With multiple tools, but manually copy-pasting data
from one tool to another.

– (D) With a single tool that handles all formats at once.
– (E) I only analyze a single infection vector.

• AP8. “Considering your skills, how much do you struggle doing
the following tasks?”
– (A) Unpacking malware [0-100]
– (B) Identifying triggers [0-100]
– (C) Deobfuscating malware [0-100]

• AP9. “Considering your available time, how much do you
struggle doing the following tasks?”
– (A) Unpacking malware [0-100]
– (B) Identifying triggers [0-100]
– (C) Deobfuscating malware [0-100]

C.4 Analysis Accuracy (AA)
• AA1. “Howmany runs of a sample do you typically do on sand-
boxes and debuggers? It doesn’t count restarting the debugger
to set breakpoints or so. It means complete analysis sessions.”
– (A) Always one.
– (B) Typically one, but sometimes more.
– (C) Typically a couple of runs.
– (D) Always multiple runs.

• AA2. “Howmany different dynamic analysis systems (sandbox,
debuggers, so on) do you typically run a sample?”
– (A) Always one.

– (B) Typically one, but sometimes more.
– (C) Typically a couple of runs.
– (D) Always multiple runs.

• AA3. “When you change the analysis environment, do you
change the sandbox execution environment across the runs?”
– (A) Always test multiple Architecture (32/64) and OS ver-
sions (e.g., Windows).

– (B) Always test multiple architectures, but no OS versions.
– (C) Always test OS versions, but no architectures.
– (D) Neither OS nor architecture (single environment).

• AA4. “Which techniques do you use for discovering new mal-
ware paths? Rate the amount of use.”
– (A) Fuzzing [0-100]
– (B) Symbolic Execution [0-100]
– (C) Concolic Analysis [0-100]
– (D) Forced Execution [0-100]
– (E) Manual Inspection [0-100]

• AA5. “When you perform multiple malware runs, how do you
compare the different traces?”
– (A) Based on the IoCs.
– (B) Graph-based comparison.
– (C) Multiple versions are considered regardless of the dif-
ferences.

C.5 Analysis Procedures Performance (APP)
• APP1. “How do you rate the overall performance of the tools
that you use?”
– (A) They are slow, but it’s intrinsic to the malware nature.
– (B) They are slow, and they could be improved.
– (C) They are fast enough.

• APP2. “Specifically about sandboxes, how do you think making
tracing faster would help your work?”
– (A) Very helpful.
– (B) Makes a difference only in specific cases.
– (C) Makes no difference.

C.6 Analysis Outcomes Performance (AOP)
• AOP1. “What are the typical outcomes of your analysis tasks?”
– (A) Threat report and signatures with the same frequency.
– (B) Threat reports only.
– (C) Signatures only.

• AOP2. “How much do you worry about signature matching
performance (matching time) when writing a signature?”
– (A) Performance is as important as accuracy.
– (B) Performance is important, but accuracy first.
– (C) Only accuracy is a requirement.

C.7 Tools Evaluation (TE)
• TE1. “How often do you use these tools to analyze a malware
sample? (0 means no sample, 100 for all samples)”
– (A) Similarity hashing [0-100]
– (B) Debugger [0-100]
– (C) Sandbox [0-100]
– (D) Decompiler [0-100]
– (E) Unpacker [0-100]
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– (F) Antivirus [0-100]
– (G) Disassembler [0-100]

• TE2. “How do you rate the current state of debuggers for mal-
ware analysis?”
– (A) They are essential but they require me to perform
repetitive tasks.

– (B) They are essential and I can perform all tasks with no
problem.

– (C) They are not essential to my work.
• TE3. “How do you see the role of plugins in the debugging
process?”
– (A) They are essential for malware analysis.
– (B) They help, but they are not essential.
– (C) They make no difference.

• TE4. “How do you rate the current state of decompilers for
malware analysis?”
– (A) They are very useful.
– (B) They help in a minor part of the cases.
– (C) They are far from being useful.

• TE5. “What are the tools you would like to exist to help your
malware analysis tasks?”
– Free-text answer.

C.8 Future insights (FI)
• FI1. “How do you see the role of AI in the future of malware
analysis?”
– (A) AI will solve the problem and eliminate analysts.
– (B) AI will help in some tasks, but analysts will still be
required in most cases.

– (C) AI will not play a key role.
• FI2. “What are your general thoughts about the future of mal-
ware analysis?”
– Free-text answer.

C.9 Voluntary Disclosure (VD)
• VD1. “This survey is anonymous. However, if you disclose
some information about yourself, it helps us to draw stronger
conclusions about the findings based on your declared position,
expertise, and so on. We can also reach out with follow-up
questions. Now that you have filled out the survey, if you feel
comfortable, you can voluntarily deanonymize yourself. Feel
free to stay anonymous if you want.”
– Free-text answer.

D FOLLOWUP SURVEY
The follow-up questions were designed individually to reach mal-
ware analysts who voluntarily disclosed their identities. We high-
light that the follow-up questions were used to explain their re-
sponses, and not to measure prevalence, such that they do not
impact the statistical results. All developed questions adopt the
following template:

D.1 Follow-Up Questions (FU)
• FU-N. “You mention to use the tool <NAME> to analyze mal-
ware. How do you use this tool?”

– Free-text answer.
• FU-N+1. “You mention to never use the strategy <NAME> to
analyze malware. Why not?”
– Free-text answer.

E ANALYST’S DESIRED TOOLS
We below present the analysts’ answers about desired tools classi-
fied by how much new knowledge they require to be implemented.
We identify the participants by a number (P_ID), according to Ta-
ble 1 from Section 4.1, to highlight that their requests and needs
are diversified.
Engineering Developments: Solutions that can be implemented
using current knowledge.

Analysts want more scalability:
P13. “A Windows VM provided by Microsoft without
many security things and tailored to allow me to change
any characteristics of the machine without much trou-
ble, like language, username, etc.”

Analysts want better Usability:
P18. “Better GUI based API tracer (similar like outdated
API monitor)”
P8. “I wish x64dbg could be called from the CLI and run
a script with a sample.”

Analysts want more efficiency:
P8. “In Linux, I’d like to have more injection capabilities
in strace and a Yara-like tool to match instructions.”

Analysts want to increase accuracy:
P6. “Better Unpackers.”

Scientific Developments: Solutions that require additional scien-
tific developments, even though deployed via a product.

Analysts want increased accuracy:
P5. “Multi-Architecture Sandbox.”

Challenge: Whereas the construction of a sandbox is a well-
studied topic, the correlation of data between multiple architectures
is still an open problem.

Analysts want more usability:
P7. “A more automated angr.” (Ref. [64])
P8. “A good API logger that doesn’t require me to choose
which function calls I want to see. Something like strace
but for Windows.”
P14. “A memory monitoring tool that you attach to a
process before executing it and it automatically dumps
anything interesting when allocated in memory (like
PE files).”
P20. “AI-assisted function identification for stripped
binaries that actually works.”

Challenge: Whereas analysis and tracing are well-studied top-
ics, the existing tools still require analysts to manually configure
lots of key aspects of an analysis procedure (e.g., which functions
to hook, how to explore multiple paths, where to stop analysis,
where to put breakpoints, and so on). The analyst’s request for
automation is not only a matter of adding a new feature to the tools,
but a request for the development of new reasoning tools, since to
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automatically hook a function, the analysis tool must be able to
“guess” if that function is important in that given context. In this
sense, the analyst’s suggestion for AI assistance is in line with the
problem challenge, since it requires additional reasoning.

The case of decompilers: They were reported as one of the most
popular solutions among analysts. They were also the most com-
mented solution, as they still have development gaps, as follows:

P9. “better decompilers to languages like delphi, go,
rust.”

P14. “An easy-to-use decompiler based on the execution
trace (for virtualized samples)”

P19. “Improved decompilers with better types and static
library detection; better ways to identify malware fam-
ilies.”

P10. “IA behavior analysis based on intermediate ma-
chine code.”

Challenges: The advancements requested by the analysts re-
quire additional scientific advancements, since most of these ca-
pabilities involve additional reasoning by the tools, in addition to
better engineering support. The automatic identification of libraries
or the best parts of the code to be decompiled requires the decom-
piler not only to know how to handle the code but also to interpret
the goal and importance of the code pieces.

F ANALYST’S INSIGHTS ABOUT THE FUTURE
We below present the analysts’ answers about their perceptions
about the future of the malware analysis field. We identify the par-
ticipants by a number (P_ID), according to Table 1 from Section 4.1,
to highlight that their requests and needs are diversified.

Malware Tactics: It is increasingly important to identify how a
malware works, not only if it is malicious or not.

P5. “It will require more and more skilled people. Mal-
ware evasion are common place now.”

P7. “Multi-stage, fileless, firmware and other types of
samples that are difficult to analyze with traditional
techniques will have a great impact on users’ security,
but at the same time will provide new opportunities for
research in the field.”

P5. “With the increase of ARM devices, I believe we
will have an increase of multi-architecture malware
(recently I have seen an increase of multi-platform mal-
ware, but multi-architecture is still rare).”

Developing Intelligence: Malware attacks appear in variants and
can be stealth. It is increasingly important to develop knowledge
about the attackers to map operations and anticipate movements.

P15. “Focus will change from file/code analysis on initial
attack vectors (phishing, social engineering, network
behavior etc.)”

P8. “Being able to fully analyze amalware sample/family
is not the most important thing IMHO. We have to have
context and we need to extract intelligence from it, not
only describe its features. Maybe we have to interact
with its C2, track the actors, etc. So, malware analysis

plays a key part on campaign/incident investigation,
but it doesn’t help much alone.”

The role of AI: The most trending technique at the moment
was commented by many analysts. They expressed their views as
follows:

P12. “I think the presence of a malware analyst will al-
ways be necessary. Perhaps there will be a day when an
AI will be able to analyze with precision, but even in this
case there will have to be a malware analyst to "feed"
the AI with more inputs and progress the techniques
and tools.”

P13. “AI will help and eliminate trivial tasks, but often
is necessary to perform advanced tweaks to make the
malware work, So, this needs to be done by a human
being.”

P14. “AI will be useful for anomaly detection, but man-
ual malware analysis will still be required to better
understand how the attack works.”

P18. “AI will help in future more but there will be always
a need for analysts.”

Education: More than any tool, current analysts express concern
about training the next-generation of analysts, a goal academia
might supply.

P19. “We need better education, but it is a niche job.”

P1. “An ever-growing field with a great need for great
and open-minded researchers. Start to think like attack-
ers and combine it with the mindset of a defender and
you’ll more chance to win.”

P9. “Always will raise new challenger malware that will
need skilled professionals and better courses will be a
differential to prepare new professionals.”

G MOVING FORWARD
This work’s goal is to help move the field forward. In Table 29, we
summarize our multiple research findings and point out possible
research directions to address the identified development gaps.

H STUDY REPLICATION AND
GENERALIZATION

Reaching a significant number of participants is the biggest chal-
lenge and threat to the validity of any survey study. We attempted
to overcome this challenge and mitigate this risk in our main ex-
periment by increasing the confidence in the representativeness of
the analysts that we interviewed. To that, we limited the survey
distribution to only analysts acknowledged to work in the field. We
here take a further step. We reproduce the experiments with a dif-
ferent group of participants to evaluate how the answers generalize
between them.
Participants. For the new survey round, we opted to distribute
the survey via the Internet, as performed by related works. We
distributed our survey via posts on social media and web forums
to attract voluntary participants. The drawback of this approach is
that we (and previous works) cannot guarantee that the responders
are actually malware analysts and have the reported skills. The
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Table 29: Moving Forward Summary. Research findings and suggested directions.
# Finding Suggested Direction
1 Malware analysts perform more and varied daily tasks

than reverse engineering all day.
Develop tools that allow easy context switching.

2 Most malware analysts work in teams, but they analyze
samples individually.

Develop collaboration tools that focus more on the shar-
ing of the final result than on real-time collaboration.

3 Most analysts have to handle regional threats. Develop more region and context-specific malware eval-
uations, such as region-specific longitudinal studies.

4 Most professionals are self-taught malware analysts. Develop more malware courses in the universities.
5 Reading papers is the preferred form of getting updates

for most analysts. However, most analysts read more
white papers than academic papers.

Make academic papers reach out to professional commu-
nities to increase their impact and better support security
professionals.

6 Most analysts collect additional samples to enrich their
analysis procedures. Enhance similarity detection tools for threat triaging.7 Most malware analysts still receive recognizable mal-
ware variants for analysis.

8 Many analysts end up hosting their own analysis solu-
tions rather than using a COTS one due to their lack of
configuration possibilities.

Service-based solutions such as public sandboxes should
be more customizable.

9 Some analysts use their own analysis solutions due to
companies not allowing the use of public services.

Develop easier-to-install and easier-to-configure solu-
tions to not put the configuration burden on the analyst.

10 Most analysts still handle multi-stage malware via mul-
tiple, non-integrated tools.

Increase the integration between tools, such as via stan-
dardized data transfer protocols

11 Most analysts still handle multi-stage manually. Develop automation tools that integrate different types
of threats, and not only support different tasks for the
same threat type.

12 Unpacking samples is hard, regardless of the malware
analyst’s expertise level. Develop automated unpacking and obfuscation tools.13 Unpacking and deobfuscation are also time-consuming,
even for skilled analysts.

14 Most analysts do not run analyses multiple times or in
multiple sandboxes as a standard practice.

Develop guidelines and metrics to evaluate when a sam-
ple requires additional inspection.

15 Most analysts explore multiple execution paths manu-
ally and not via structured approaches and solutions
described in the literature.

Popularize solutions for automatic multipath exploration
such as fuzzing and symbolic execution.

16 Half of all surveyed analysts believe that the performance
of analysis solutions can be improved.

Develop faster sandboxes, that are acknowledged by
most analysts as a point of improvement.

17 Decompilers are the most useful tool in most analysts’
opinion even though decompiler limits are widely ac-
knowledged by them.

Develop more decompilers focused on malware analysis
because, despite decompiler limits, it is the tool that helps
analysts in the most complicated tasks.

18 An increased automation level for the analysis tools is
desired by most analysts.

Benefit from Artificial Intelligence (AI) developments to
develop automated hooking and automation function
identification mechanisms.

19 Most analysts believe AI will help in their work, but they
believe analysts are still required to train the AI models.

Train new analysts in the creation of AI-assisted security
solutions and the creation of security core knowledge
for these solutions.

20 Education is voluntarily pointed out by most analysts as
the most required change for the future.

Focus on the training of the next generation of malware
analysts workforce with special attention in the devel-
opment skills to understand attacker’s mentality.
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survey was open between October and December/23. In total, 20
analysts completed the survey. With this number of answers, we
can compare the new results with the reference one on the same
basis (we previously surveyed 21 analysts).
Population Differences. Whereas in the main experiment, we
were able to trace back analysts to their occupations, this is not
possible in the reproduced survey due to the limitations of the
Internet-based, open invitation strategy. The most significant dif-
ference noticed for the user population is that the new responders
are younger than the first ones. The average expertise years is now
4.33 vs. the previous 7 years. The most experienced professional
holds 15 years of experience in both cases. However, 3 professionals
reported having this seniority in the first run vs. 1 professional in
the replication study.
Methodology and Findings.We performed the same data anal-
yses as described in the main paper. Due to space constraints, we
opted to not reproduce all tables here, but only to compare the
summary of each analysis.

Malware analysis is still one of themultiple tasks of most security
professionals. The findings of the reproduced survey experiments
are aligned with the ones from the original survey. No responder
reported not performing malware analysis, which suggests that our
survey reached the right audience, even facing Internet distribu-
tion challenges. The minority of analysts reported to be full-time
malware analysts (prev. 14% vs. 10%). Most analysts position them-
selves on an intermediate number of analysis tasks. The fraction of
eventual malware analysts is also constant (prev. 42% vs 40%). The
only noticeable difference between the surveys is a swap between
those who previously reported mostly performing malware analysis
(23%) that are now only 10%, migrating to the reasonable number
of malware analysis tasks category.

Most analysts are individuals part of a team This result is also
consistent with previous observations. Most analysts are part of a
team but analyze samples individually (prev. 76% vs. 80%). The only
noticeable difference is a swap between those who were indepen-
dent analysts (19% vs 10%) vs. teams that analyze samples together
(prev. 4% vs. 10%).

Analysts know the context of the infections. This result is par-
tially aligned with our previous findings. Previously, most analysts
reported analyzing regional threats (52% vs. 30%) whereas nowmost
analysts analyze samples for their own local companies (14% vs.
50%). In common, the analysis of collected samples without further
infection context is the less frequent scenario (7% vs. 20%).

Most analysts are self-taught. This result aligns with the previ-
ous findings. Most analysts are self-taught (prev. 42% vs. 60%). The
only observable difference is a swap between those who previously
learned via post-grad in the field and those who learned via a certi-
fication process (10%). No analyst learned via formal undergraduate
courses in the field.

Analysts remain updated mainly via whitepapers. This result
aligns with the previous survey round.Whitepapers are the primary
information source for the analysts (prev. 46% vs. 34%). Academic
papers are still a minority part (prev. 14% vs. 10%). The training
category remained stable (prev. 12% vs. 13%). The newly interviewed
analysts rely more on YouTube videos and events to remain updated
(prev. 11% and 21% vs. 25% for each now).

Collected samples are important for signature and report gen-
eration. The fraction of analysts using previous samples to help
generate signatures (prev. 38% vs. 30%) or writing reports (prev. 9%
vs. 10%) is relatively constant. The only observable difference is that
fewer analysts collect more samples to understand their internal
working (prev. 33%

Samples storage depends on the company policy. The rate of
analysts that never store samples is relatively constant (prev. 9%
vs. 10%). Among the analysts that report to store samples for the
future, the most observable difference is in their reason. Whereas
previous survey results reported company obligation to store (42%
vs. 20%), now analysts report more of their curiosity as the main
reason (23% vs. 50%).

Most analysts run procedures on their own machines. This result
is aligned with the initial findings. Most analysts run the analysis
procedures on their own machines (prev. 85% vs. 70%). The re-
maining analysts in this replication study reported using company
sandboxes (prev. 9% vs. 30%).

The use of public sandboxes remains a controversial point. The
first survey revealed that whereas almost half (52%) of the analysts
like public sandbox services, another half (48%) do not like or are not
allowed to use them. In this new study, the number of companies
disallowing their use has grown (prev. 19% vs. 40%). Among the
60% allowed to use, 30% like and 30% dislike them (prev. 28%). This
shows that the use of a public sandbox is a fracture point in the
malware analysis community.

Analysts still see malware variants. The number of malware
analysts rarely observing malware variants has grown in the repli-
cation study (prev. 5% vs. 30%). However, most of the analysts still
report seeing variants sometimes (prev. 42% vs. 60%) or very often
(52% vs. 10%). The growth in the analysts rarely seeing malware
variants is explained by the growth in analysts analyzing threats
to their local companies. All (100%) analysts that reported rarely
seeing malware variants also report only analyzing threats to their
local companies.

Most analysis tasks are still manual. This is aligned with previous
findings. No analyst reported in any of the surveys to use fully
automated solutions. In both cases, most analysts report that their
analysis procedures are half manual (prev. 52% vs. 60%). Second,
they report their analyses to be mostly manual (prev. 48% vs. 40%).

The analysis of multi-stage malware requires constant analysts
intervention. This result aligns with previous findings. Most an-
alysts treat each malware stage as a new analysis (prev. 66% vs.
60%) and another significant fraction manually copy and paste the
results from one stage as input for the next (prev. 19% vs. 30%).
No analyst reported using fully automated analysts and 1 analyst
reported only analyzing the first malware stage.

ulKnowing to deobfuscate samples is a key malware analyst skill.
This result aligns with the previous finding. Analysts report that
deobfuscating samples is the skill they most struggle with (prev.
45% vs. 54%). The second most challenging task for the analysts
is unpacking (prev. 32% vs. 28%). Finally, identifying execution
triggers comes last (prev. 23% vs. 22%).

Deobufscating malware samples takes the analyst’s time. This
result is in line with previous findings. Deobfuscating samples is



Conference’17, July 2017, Washington, DC, USA Marcus Botacin

a time bottleneck for most analysts (prev. 56% vs. 59%). Unpack-
ing is the second most time-consuming task (prev. 26% vs. 32%).
Identifying detection triggers comes last (prev. 25% vs. 11%).

There is no standard for the number of sandbox runs. This result
aligns with the previous findings. In this new survey round, once
again, no analyst reported to always test samples multiple times.
Half of the analysts (50%) reported to typically run only once, but
sometimes more. Another half of the analysts (50%) reported to
typically runmore than once, but not always. In the previous survey,
this same division was observed, with 38% of the analysts being in
each category.

There is no standard for sandbox configuration. A significant
number of malware analysts report not changing sandbox config-
urations (prev. 66% vs. 40%). Among the modified aspects, a few
change only the OS (prev. 0% vs. 10%), and some only the architec-
ture (prev. 9% vs. 10%). From the ones who make sandbox changes,
the majority opt to change both parameters (prev. 23% vs. 40%).

The discovery of new execution paths is still widely manual.
This finding aligns with previous results. For most samples, analyst
report to manually discover their execution paths (prev. 73% vs.
57%). Forced execution is the second most common technique (prev.
49% vs. 30%). The remaining strategies account for less than 20%
each one.

Multi-path malware is often characterized via their IoCs. This
result aligns with the previous findings. In this new survey round,
once again the malware analysts reported to consider only the
IoCs when comparing execution traces (prev. 62% vs. 80%). The
remaining analysts reported considering any malware trace that
presents malicious behavior as representative (prev. 28% vs. 20%).
No analyst reported using another analysis strategy.

Tool’s performance is another controversial point. Previous re-
sults revealed that the community is split into those who believe
that the tools are fast enough (38%) or are intrinsically slow (14%)
and those who believe that current tools are slow and could be
improved (47%). The new survey round reveals that the division re-
mains, although at a slightly different scale. Half of the participants
(50%) believe that the tools are fast enough. Another half believe
the tools are slow, but some (30%) believe it is an intrinsic limitation
whereas others (20%) believe that the tools can be improved.

Sandbox performance is also a controversial topic. As in the
previous round, most analysts (prev. 100% vs. 80%) agree that faster
sandboxes would be helpful. However, the practical divide between
those who believe it helps in specific (prev. 52% vs. 60%) and in
broader (prev. 48% vs. 40%) cases remains.

Signatures and Reports are the most frequent analysis outcomes.
This result is in line with previous findings. Most analysts report to
produce both signatures and reports (prev. 47% vs. 50%). Another
set of analysts produces only reports (prev. 42% vs. 30%). The pro-
duction of signatures only is limited in both cases (prev. 10% vs.
20%).

Accuracy is more important than performance for signature
generation. This finding is in line with the previous results. The
minority of the analysts give the same weight to the accuracy and
performance of the written signatures (prev. 33% vs. 10%). Most
analysts put accuracy first (prev. 47% vs. 70%), and a minority only
worry about accuracy (prev. 19% vs. 20%).

Decompilers and AVs at extreme positions. This finding is aligned
with the previous survey results. Decompilers remain at the top of
the most used solutions (prev. 61% vs. 65%). On the other extreme,
AVs remain the less used ones (prev. 58% vs. 29%). The solutions in
between did not present significant variation.

Debuggers require performing repetitive tasks. This result is
aligned with the previous findings. Most analysts consider debug-
gers key for malware analysis (prev. 90% vs. 90%). However, most
analysts report that debuggers require them to perform repetitive
tasks (prev. 71% vs. 80%), whereas a minority part believe that de-
buggers are enough for their tasks as they are (prev. 19% vs. 10%).

Plugins help improve debuggers for malware analysis. As in
the previous survey round, plugins are reported to improve the
debugger operation for malware analysis (prev. 100% vs. 90%). Once
again, there is a divide between thosewho consider plugins essential
(prev. 42% vs. 60%) and those who believe in help only in specific
situations (prev. 57% vs. 30%).

Decompilers are solutions with high cost-benefit. This result
aligns with previous findings. Most analysts consider decompilers
as very useful tools (prev. 81% vs. 80%).

Analysts believe AI will help and not replace them. This finding
is aligned with the previous results. Most analysts believe that AI
will affect their job (prev. 96% vs. 90%). Most of them believe that
AI will help (prev. 90% vs. 90%), whereas a few to none believe it
will completely solve current analysts’ problems (prev. 4% vs. 0%).

Analysts want AI to automate tools. Analysts once again reported
desire for (i) new engineering tools; and (ii) new conceptual tools.
Among the conceptual tools, all analysts expressed a desire for AI
to be used to automate repetitive tasks.
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