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Abstract

The biggest drawback of AntiViruses (AVs) experiments is label heterogeneity–each AV labels the
same samples very distinctly. Whereas AV labeling issues have been well studied from the sample
point of view, they have not been widely studied from the AV perspective, i.e., to what extent label
diversity allows AV identification. Thus, we question: (1) How unique among all the AVs are the
labels produced by the same given AV? (2) Can we fingerprint AVs based on their assigned labels? and
(3) How many labels are required to fingerprint an AV? In this work, we answer these questions via
experiments with a dataset of 720000 AV-assigned labels for Windows malware spread over 15 years
(2006-2020). We discovered that: (1) AVs can be fingerprinted by their assigned labels with 100%
accuracy in many cases; (2) AVs can be fingerprinted with a confidence score of 99% using only 1% of
the dataset; (3) AV fingerprinting rates vary over time, as the label changes caused by the AV updates
have a key effect on AV recognition, causing some AV models to lose their ability to recognize their
AV generated labels over time; and (4) Android AVs can be fingerprinted the same way as Windows
AVs, but that Linux labels are harder to be grouped. We expect our work might shed light on the
label heterogeneity problem, incentivize further developments to mitigate it, and provide future works
with data to support their design decisions.
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1 Introduction

Antiviruses (AVs) are key security solutions, being
responsible for protecting millions of users every
day. AVs are also key for security research. Many
works rely on AV scanners such as Virustotal [1]
for their developments. Virustotal and most AVs
usually provide detection rates and labels for mal-
ware samples. Whereas useful for many research
tasks, such as training Machine Learning (ML)
models [2], the reliance on AV labels presents
many challenges [3].

A major drawback of current AV solutions is
the label heterogeneity problem, i.e., the fact that
different AVs label the same sample differently,
even though there is a naming convention that
should be followed [4]. Having multiple different
labels for the same threat significantly complicates
incident response procedures. Label heterogeneity
has been studied in many previous works [5–7],
but no previous work studied the inverse phe-
nomenon, i.e., if the label heterogeneity allows
fingerprinting their assigning AVs.

1



If the AVs agreed on assigning similar labels
to the same samples, it might be infeasible to dif-
ferentiate the AVs that generated a given label for
a sample. But, if the AV labels are so different,
it might be possible to trace back the originating
AV from a given assigned label. We here test this
hypothesis. The closest work to ours grouped AV
labels for family identification [8] and not for AV
fingerprinting, such that the test of this hypothesis
is an open problem.

To test this hypothesis, we consider a rep-
resentative dataset of 720K Windows malware
labels spread among 72 AVs and over 15 years
(2006-2020) of label collections from VirusTotal.
We present the ML modeling framework required
to encode the labels and to train ML models
that allow separating the labels assigned from one
AV to another. We characterize the fingerprinting
ability regarding its (1) viability; (2) scalability;
and (3) longitudinal aspects.

In sum, we discovered that: (1) Fingerprinting
AVs from their assigned labels is possible, and it
might be performed with 100% accuracy for small
problem instances (12 AVs); (2) AVs can be fin-
gerprinted with 99% confidence with less than 100
queries (lower than 1% of the whole dataset); and
(3) AV labels change over time causing AV models
to lose their ability to recognize prior AV labels.

In sum, our contributions are: (1) Proposing
classifying AV labels as a fingerprinting mech-
anism to identify which AVs generated them;
(2) Presenting the methodology and ML model-
ing required to test the AV labels fingerprinting
hypothesis; and (3) Comprehensively characteriz-
ing the dynamics of the AV label fingerprinting
process regarding viability, scalability, and tempo-
ral validity.

2 Motivation

Why would one fingerprint AVs? Suppose an
attacker targeting a highly valuable asset (not a
low-hanging fruit type of operation). The attacker
can offline create multiple Adversarial Examples
(AEs) and keep them in a pool [9]. The target
system is protected by an unknown detection solu-
tion (an AV) and the attacker expects some AE
in the pool to transfer [10] to the real world (i.e.,
bypass the AV). The attacker can randomly sam-
ple one AE from the pool and try to infect the
system by chance. If it fails, the network host

(node) originating the attack is blocked by the
defense system [11]. Since many AEs are likely to
fail, the attacker uses a botnet to launch individ-
ual infection attempts (one AE per node), as in
Figure 1.

Label

Target SystemBotnetPool of AEs

Fig. 1 Attacker probing system’s defenses.

While a naive attacker would exhaustively try
all AES, a smarter attacker knows that the bot-
net would have to be as large as the number of
AEs (they might be even millions). Larger botnets
are hard to build and maintain, and easy to spot.
Also, the more failed attempts, the more infor-
mation attackers provide about their TTPs [12].
This is the reason why attacker want to minimize
the number of adversarial queries [11]. A more
targeted attack would require attackers to know
which AV the target system uses. This way, the
attacker could perform an informed selection of
AEs from the pool by testing them offline against
a substitute model for the target AV [13].

Now, imagine that the attacker has access to
the AV labels produced by each failed infection
attempt. This might be because (1) the system
provides it, (2) or the attacker can eavesdrop on
communications, or (3) the has access to the log
console due to prior lateral movements. If the
attacker could map the labels back to the AV that
originated them, then the attacker could perform
the targeted attack. If AVs produced homoge-
neous labels, this task would not be possible, but
if the AV labels are heterogeneous, the attackers
can identify the AV. An attacker could identify
the AV by submitting their detected samples to a
pool of AVs (e.g., VirusTotal), but this would once
again reveal much information about the attacker.
Instead, the attacker could have offline models for
the AV labels. It is reasonable to suppose substi-
tute models for AV labels once substitute models
for the AV detectors are already initially supposed
by most AE generators [13, 14]. The viability of
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the attack depends on the feasibility of fingerprint-
ing the AVs by their labels. Characterizing this
feasibility is this work’s goal.

3 Methodology

3.1 AV Modeling.

We created a uniform AV label representation by
tokenizing and encoding them. The tokenization
step splits the labels into their separators (e.g.,
commas, semi-colons, dots, and so on), thus allow-
ing us to obtain the malware information directly.
Leaving the separators would make classification
less precise because similar words separated differ-
ently would be classified differently based on the
AV label structure and not on the information pro-
vided by the AV about the samples. Since each AV
might produce labels with a different number of
tokens, we normalized all labels about the longest
token vector in our dataset, padding the blanks.
Each position of the tokenized and normalized vec-
tor is encoded via 1-hot encoding, chosen due to
its simplicity. We encoded even the empty tokens
since an AV having distinct label lengths might be
important information for attributing AV labels.

[W32,Worm,Blaster,123]

[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]

W32/Worm-Blaster.123

Fig. 2 Label 1. One-hot
encoding.

[W32,Worm,Blaster,””]

[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,0]]

W32-Worm/Blaster

Fig. 3 Label 2. One-hot
encoding.

Figure 2 exemplifies the label-handling pro-
cess. The initial label is tokenized into 4 words.
Each word is then encoded in its own vector.
The final vector is inputted into the ML model.
Figure 3 shows a similar label to the one from
Figure 2 but with different separators and without
the “version” information (123). It is also tok-
enized into 4 words, with the missing information
leading to an empty entry. All words are encoded,
which leads to an array in which the first three
positions are similar to the previous one.

After the label representation normalization,
we trained multi-class ML models to represent the

AVs. In this paper, all mentioned models are based
on the RandomForest (RF) classifier, since it is
the classifier that usually presents the best results
in most related works. When a 1-class classifier is
applied (self-recognition experiment), we trained
a 2-class classifier where one class is supplied with
a single AV label and the other class is trained
based on the remaining labels.

3.2 Datasets

To characterize AV label fingerprinting in multi-
ple dimensions we rely on three different datasets.
The most significant part of this work is built on
top of a dataset of labels from Windows malware
samples, since most malware and AVs have been
developed for this OS. We also present the first
results of AV fingerprinting on Android and Linux,
aiming to present potential points of convergence
or divergence between them.
Windows Dataset. Our dataset construction
goals were to be: (i) Broad, i.e., to cover the max-
imum number of AVs possible; (ii) Longitudinal,
i.e., that the information was spread over the years
to allow temporal analyses; and (iii) Coherent, i.e.,
that the labels refer to the same samples and that
they were generated by the same set of AVs, thus
allowing comparisons. To meet these criteria, we
discard the hypothesis of crawling random samples
and consider 3rd-party labels. Instead, we opted
to rely on our own collection of malware, which
allowed us to have full control of when labels were
generated.

We started dataset construction with a col-
lection of 21K malware samples collected from
infected machines over multiple years. This
dataset was characterized in previous research [15]
and provides us with more than 1M different
labels queried on Virustotal over time. For the
tests, we discarded the Virustotal AVs whose
labels are based on Machine Learning (ML)
scores (e.g. label=malware:confidence:90%),
since these labels are not informative of mal-
ware families. We identified 72 different AVs that
labeled a subset of 667 of our samples. Thus, our
test dataset is composed of 720000 labels (10000
labels for each one of the 72 AVs). These labels
are spread over 15 years (from 2006 to 2020), thus
48000 labels per year are considered; 667 labels
per AV each year. These samples belong to diverse
high-level families (e.g., Trojan, Backdoor, and so
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on): 9 according to the AV that assigns fewer fam-
ily labels; 14 on the average of all AVs; and 20 for
the one that most assign different family labels.
Android Dataset. We constructed the Android
dataset following the same strategy adopted for
the Windows one. Unfortunately, we did not have
as many APKs in our collection as we have
Windows malware, so we had to relax some con-
straints. We opted to reduce the longitudinal
aspect to increase the number of considered sam-
ples/labels (broadness) and to be able to present
more coherent results. Thus, we could keep eval-
uating a set of 72 different AVs, but now with
100 labels each one diversely spread over multiple
years. In total, we considered 7200 APK labels for
the same 100 samples.
Linux Dataset.We applied for the Linux dataset
with the same rationale as for the Android one.
From our initial set of 5K collected samples, we
were able to select 100 samples labeled by the
same 72 AVs. In total, we considered 7200 labels
diversely spread over multiple years.
Temporal Consistency. We collected all AV
labels a significant time after they were first seen
in the VT service (¿30 days), which was enough
time for the labels to stabilize and not present
transient divergencies [3]. Also, we retrieved all
data directly from the VT service and not from
third parties, thus minimizing the risks of mali-
cious label-flipping attempts that could disrupt
our classifiers [16, 17].

4 Evaluation

We following present our experiment results
according to the obtained findings.

4.1 Is AV label fingerprint possible?

The Identification Rate (IR) depends on
the number of AVs. We first investigated if AV
labels could be mapped back (attributed) to their
assigning AVs. For such, from the multi-class con-
fusion matrix resulting from the grouping process,
we collected the accuracy scores, i.e., the relative
frequency in which the labels for each AV were cor-
rectly attributed in the respective assigning AV.
We hypothesize that label attribution might be
possible, but the problem might become harder
as more AVs are considered. Thus, in our experi-
ment, we varied the number of considered AVs in

each run. Since not all AVs could be considered
at once in small test scales, we randomly selected
N AVs for each run. We ran the tests multiple
times until reaching the 95% confidence score. The
results are reported in terms of the average score
of the multiple runs (see Section 6).
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Fig. 4 AV classification accuracy (small dataset).
Rate of AVs identified with a 100% accuracy for a distinct
number of AVs. The more AVs are considered, the harder
the classification problem.

Figure 4 shows the rate of AVs presenting a
100% accuracy score (Y-axis) for an increased
number of AVs in the test set (X-axis). The graph
shows curves for 3 different numbers of samples
per test set: 100, 300, and 500. It means that when
2 AVs and 100 samples are considered, the train-
ing is performed with 200 samples of the dataset
and tested with another 200 samples. Similarly,
when 100 samples and 72 AVs are considered, 7200
samples are used in the training and another 7200
samples are used for the prediction step.

The results show that, for 2 AVs, the classifier
achieves a 100% accuracy in all runs, thus show-
ing that the labels are easily separable. The rate
of perfect identification decreases as more AVs are
added to the test since there is an increased chance
that some labels might belong to more than one
class (i.e., distinct AVs producing the same label,
e.g., Trojan). Despite the observed decrease, the
perfect identification rate is still above 90% on
average in total for scenarios with up to 27 AVs,
which is still very practical for many scenarios,
where one is expected to disambiguate between
only a few AVs. When all AVs available in our
dataset were considered (N=72), the perfect score
rate decreased to 80%, i.e., 80% of all AVs have
completely separable labels. No differences were
observed between the three set sizes (100, 300,
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500), thus the results hold for experiments in this
order of magnitude.
The Identification Rate (IR) depends on
the AV label diversity. Once we demonstrated
that fingerprinting AVs was feasible (small-scale
test), we investigated to which extent the results
hold. Thus, we repeated the previous experiments
with different amounts of samples (set sizes).
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Fig. 5 AV classification accuracy (medium
dataset). Rate of AVs identified with a 100% accuracy
for distinct AV set sizes. The more AVs are considered,
the harder the classification problem.

Figure 5 shows curves for 3 different numbers
of samples per AV set: 1000, 3000, and 5000. For 2
samples, the perfect separation score is once again
achieved during all runs with different AVs, thus
showing that disambiguating between two AVs
is easy (computationally speaking). The curves
decrease a bit more than before but in a similar
proportion to the previous experiment. Now, with
27 AVs, the perfect identification rate is at least
80% for all group sizes. In the most challenging
scenario, N=72, 70% of all groups are completely
separable.

Figure 6 shows curves for 3 different numbers
of samples per group: 10000, 30000, and 50000.
Once again, 2 AVs are clearly separable. However,
unlike the previous experiments, the decrease is
immediate and abrupt as more AVs are added
to the experiment. In the worst-case scenario,
the perfect identification rate is around 50%, i.e.,
only half of the AV labels are completely sepa-
rable. This difference from previous experiment
results indicates that this amount of data takes
the problem to another difficulty level.
The Identification (IR) depends on the
required accuracy. A solution to make the AV
fingerprint task feasible for very large instances is
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Fig. 6 AV classification accuracy (large dataset).
Rate of AVs identified with a 100% accuracy for distinct
AV set sizes. The more AVs are considered, the harder the
classification problem.

to lax some constraints, thus reducing the prob-
lem’s complexity. Whereas completely separating
the AV labels (100% accuracy) is the ideal case, in
some cases a lower accuracy might be enough–i.e.,
it might be enough if the majority of the samples
attributed to a given AV are correct. To evaluate
to which extent this task is feasible, we repeated
previous experiments with lower thresholds.
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Fig. 7 AV classification accuracy (small dataset).
Rate of AVs identified with the targeted accuracy for dis-
tinct AV set sizes. The tighter the threshold, the harder
the classification problem.

Figure 7 shows the rate of groups (AVs) achiev-
ing the target accuracy score (Y-axis) for an
increased number of AVs (X-axis). We show the
scenario with 100 samples per class as represen-
tative of the small dataset problem class. The
graph shows curves for 3 different target accura-
cies: 100%, 95%, and 50%. It means that 100%,
95%, or 50% of the samples assigned to a given
group really belong to that group.

Lowering the threshold 5% (from 100% to
95%) increases the average number of groups tar-
geting the desired accuracy in 7% on average.
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We consider this a reasonable trade-off since the
majority of the labels assigned to each group are
still correct. We observe no significant effect for
other accuracy values. In fact, lowering the thresh-
old to 50% (impractical for actual scenarios) does
not make the problem much easier. In this case,
many AVs (10%) still cannot meet the target crite-
ria. This phenomenon is explained by the presence
of labels that are common among multiple AVs.
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Fig. 8 AV classification accuracy (medium
dataset). Rate of AVs identified with the targeted accu-
racy for distinct AV set sizes. The tighter the threshold,
the harder the classification problem.

Figure 8 shows the rate of groups (AVs) achiev-
ing the target accuracy score (Y-axis) for an
increased number of AV groups (X-axis). We show
the scenario with 1000 samples per class as rep-
resentative of the medium dataset problem class.
We observed results similar to the previous experi-
ment. Lowering the threshold by 5% resulted in an
average gain of 9% in the number of correctly clas-
sified groups. Training with more samples helped
mitigate the ambiguous labels (labels common to
more than one AV), but lowering the threshold to
50% is still impractical for 5% of all AVs.

Figure 9 shows the rate of groups (AVs) achiev-
ing the target accuracy score (Y-axis) for an
increased number of AV groups (X-axis). We show
the scenario with 10000 samples per class as rep-
resentative of the large dataset problem class. The
overall scores are significantly lower in comparison
to previous experiment results, which reinforces
that the problem is really harder at this scale.
Lowering the target accuracy requirement by 5%
increases the number of AVs reaching the target by
13.5% on average. Increasing the training size did
not help classify more samples this time. It shows
that the complexity of the problem dominates the
results.
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Fig. 9 AV classification accuracy (large dataset).
Rate of AVs identified with the targeted accuracy for dis-
tinct AV set sizes. The tighter the threshold, the harder
the classification problem.

4.2 How fast is it to fingerprint an
AV from its labels?

Although we previously showed experiments con-
sidering all AV labels at once, in practice, one
will likely not assign all labels to a group before
making a conclusion. Instead, the most practical
scenario from one having a trained grouping model
is to test the minimum number of labels possi-
ble to discover which AV generated them. This is
usually the case when one has a dataset of labels
assigned by the same AV and whose task is to dis-
cover which AV generated them. One might simply
randomly select a label from this set, test it using
the trained grouping model, and assume the same
result holds for the other labels in the dataset. If
one wants a higher confidence in the result, one
might repeat this same step for a few other labels.
We put this scenario to test in the experiments
reported in this section. Our goal is to discover the
minimum number of queries one must make to a
trained grouping model to discover the AV which
generated them. All tests were performed with the
trained models that achieved 100% accuracy in the
training step (previous section experiments).
The number of queries to fingerprint an AV
depends on the targeted confidence level.
When one queries a classifier, it outputs a label
and a confidence score on the given prediction.
Thus, if one queries a single label, one has only a
single confidence value to decide if the prediction
is correct. If the confidence is low or below a tar-
get threshold, one might want to query additional
labels to get additional confidence values and
decide if the combined statistical confidence meets
the target criteria. In the following, we present the
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Fig. 10 Average number of queries to fingerprint
an AV with 95% confidence (small dataset). On aver-
age, a smaller number of queries is enough to fingerprint the
AVs even in instances with an increased number of classes.
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Fig. 11 Average number of queries to fingerprint
an AV with 99% confidence (small dataset). On aver-
age, a smaller number of queries is enough to fingerprint the
AVs even in instances with an increased number of classes.

results of the experiments performed to identify
the minimum number of queries required to meet
distinct target confidence scores.

Figure 10 shows the number of queries (Y-axis)
required to reach the 95% confidence score for
the AVs in AV sets of multiple sizes (X-axis). We
considered AV sets with 100, 300, and 500 sam-
ples each. We observe that as a general rule, the
required number of queries is low (in comparison
to the number of totally considered samples); Less
than 40 queries are enough to identify an AV in all
tested scenarios. Although the grouping complex-
ity exponentially increases with AV set size, we
notice that the number of required queries for this
experiment does not grow in the same proportion,
thus showing that identifying which AV labeled a
set of samples is an easier task than grouping the
samples from scratch.

Figure 11 shows the number of queries (Y-
axis) required to reach the 99% confidence score
for the AVs in AV sets of multiple sizes (X-axis).
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Fig. 12 Average number of queries to fingerprint
an AV with 99.9% confidence (small dataset). On
average, a smaller number of queries is enough to finger-
print the AVs even in instances with an increased number
of classes.

We notice that although increasing only 4% of the
target confidence score, it implies a more compli-
cated problem. Now, to cover all cases, one needs
a bit less than 60 queries in the worst scenario,
a 50% increase in comparison to the previous
scenario. Despite that, this number can still be
considered moderate in comparison to the total
number of considered labels and the growth is still
not exponential.

Figure 12 shows the number of queries (Y-axis)
required to reach the 99.9% confidence score for
the AVs in sets of multiple sizes (X-axis). There
is no significant difference from the previous sce-
nario, which shows that we had already achieved
a 99.9% confidence level in the previous queries.
The number of queries to fingerprint an AV
depends on the number of labels in the test
set. Given the impact of group size observed in
the previous experiments, we also investigated the
effect of the AV set size on the number of queries
required to identify the AV that labeled a given
dataset.

Figure 13 shows the number of queries (Y-
axis) required to reach the 95% confidence score
for the AVs in sets of multiple sizes (X-axis). We
considered groups with 1000, 3000, and 5000 sam-
ples each. In comparison to the previous scenario,
whereas the number of samples per group was
multiplied by 10, the number of queries is only
multiplied by 1.5 on average, thus showing scal-
ability. Most cases can be covered with less than
60 queries. This number once again is low in com-
parison to the total number of samples (now one
order of magnitude lower). Even though the num-
ber of samples in each group was multiplied by 10,
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Fig. 13 Average number of queries to fingerprint
an AV with 95% confidence (medium dataset). On
average, a smaller number of queries is enough to finger-
print the AVs with instances of up to 3 thousand labels.
The number of queries becomes exponential for instance
with more than 5 thousand labels.

the number of required queries is still in the same
magnitude order as in previous experiments. The
exceptions are the sets with 5000 labels, whose
growth becomes exponential, as in the previous
attribution experiments, thus being less practical
to address.
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Fig. 14 Average number of queries to fingerprint
an AV with 99% confidence (medium dataset). On
average, a smaller number of queries is enough to finger-
print the AVs with instances of up to 3 thousand labels.
The number of queries becomes exponential for instance
with more than 5 thousand labels.

Figure 14 shows the number of queries (Y-axis)
required to reach the 99% confidence score for the
AVs in AV sets of multiple sizes (X-axis). As for
the analogous experiment with a smaller dataset,
whereas the target confidence score increased only
4%, the average number of queries increased by
50%. Now, to cover most cases, an average number
of 90 queries is required in the worst case. Once
again, the exceptions are the sets sized 5000. These
sets showed a stepping growing characteristic,
highlighting that the task gets more complicated

in steps. It shows different characteristics in the
intervals [2-12], [13-22], [23-32], [33-37], [38-57],
and [58-72].
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Fig. 15 Average number of queries to fingerprint
an AV with 99.9% confidence (medium dataset).
On average, a smaller number of queries is enough to fin-
gerprint the AVs with instances of up to 3 thousand labels.
The number of queries becomes exponential for instance
with more than 5 thousand labels.

Figure 15 shows the number of queries (Y-
axis) required to reach the 99.9% confidence score
for the AVs in sets of multiple sizes (X-axis). As
in the analogous experiment, the required num-
ber of queries has not grown significantly from
the 99% confidence level, thus showing that a
high confidence level had already been achieved.
Once again, the sets sized 5000 become exponen-
tial with a stepping growth characteristic, thus
being impractical. We did not test sets sized by a
greater magnitude order (e..g, 10000), as we had
already reached the exponential increase level.

4.3 How does AV label
fingerprinting change over time?

In addition to demonstrating fingerprinting viabil-
ity, it is also essential to establish the limits for
such possibilities. Thus, we characterize the fin-
gerprinting process according to multiple factors
that might influence its viability. Given previous
works [3, 18] have shown that AVs are subject to
the effect of time, we investigate if it also impacts
the fingerprinting viability. To do so, we repeated
the previous attribution experiments now break-
ing down the dataset by year. For each given year,
all available AVs were considered.
Labels change over time and it makes
AV fingerprinting moderately easier over
time. We first attributed all labels for each year.
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Fig. 16 Attribution accuracy over the years. Label
evolution change attribution results. Attribution abilities
are moderately getting better over time.

Figure 16 shows the rate of AV sets presenting
a 100% accuracy score (Y-axis) over the years
(X-axis). The graph shows curves for 3 different
numbers of samples per set: 1000, 3000, and 5000.
We considered this order of magnitude because it
is large enough to be representative but it is still
at the border of exponential growth (as seen in
previous experiments) to still be tractable.

We notice from the figure that the AV labels
indeed change over time and that it affects
the attribution, as the number of AVs correctly
attributing all labels changed over time. No sig-
nificant difference is observed for the different
problem instance sizes, such that the effect of time
dominates the observed effects. We notice that the
label differentiation between the AVs is reason-
ably stable over time since on average 70% of the
AVs can be completely differentiated via their gen-
erated labels. However, the effect of label change
over time cannot be neglected, as a significant
variation is observed in the [2007-2009] period. We
cannot claim this variation is only statistical as
the same samples generated the considered labels
and no random AV sampling was performed in
this experiment, thus only a change in the labels
might have caused a change in the classification
accuracy. A moderate trend of accuracy growth
is observed over time. At the end of the period,
a larger fraction of AVs was correctly classifying
100% of the labels. This implies that the AVs
are becoming “easier” to fingerprint over time.
We explain it by noticing that the labels become
more specific over time, including more sample
information, such as family and variant identifica-
tion. This extra information facilitates associating
labels to their generated AVs.

Label variations over the years imply that
a distinct number of queries is required to
fingerprint AVs with confidence depending
on the year. Once the effect of label changes
over time has been demonstrated in the controlled
environment, we consider the case of one trying
to identify which AV generated each set of labels
with respect to a given confidence level. For this
test, we removed the constraint on the number of
samples per set and repeated the sampling experi-
ment based on sets composed of all labels assigned
by the AVs in each given year.
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Fig. 17 Number of queries per year (Average AV).
Sampling with confidence guarantees becomes easier in the
latest years after an initial step involving more complicated
labels.

Figure 17 shows the average number of queries
(Y-axis) required to reach the 95% and 99% confi-
dence scores for the AVs in the sets corresponding
to the multiple years (X-axis). We selected the tar-
get confidence values based on the results demon-
strated for the previous experiments. The figure
shows an exponential increase in the required
number of queries to fingerprint an AV in the first
observation years, which shows that the AV labels
become harder to distinguish in the period. The
exponential growth was expected because remov-
ing the group size constraint takes the problems
to the border of exponential growth, as shown by
previous experiment results. We notice a period of
moderate stability during the [2009-2017] period.
The linear growth is still inside the statistical
error margin. There has been a decrease in the
number of required queries to fingerprint an AV
in recent years, which is compatible with previ-
ous findings that AV labels have become easier to
distinguish in recent years. As expected, the num-
ber of queries to reach the 99% confidence level
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is greater than for the 95% level, but the differ-
ence is small, thus showing that a small number
of queries is already informative. Regardless of the
individual variations over the years, the AVs could
be fingerprinted in all years with less than 200
queries, which is a small proportion compared to
the thousands of labels in each set, thus showing
fingerprinting viability.
The average result is different from individ-
ual AV results. It is important to highlight that
the results presented in all previous experiments
are an average for all tested AVs. A way to inter-
pret these results is as if they were the results for
an AV solution that is the average of all tested
AVs–supposing it is possible to create an average
AV solution. Naturally, not all AVs behave the
same way, thus the number of queries varies per
AV. Whereas our average results already show the
feasibility of AV fingerprinting in the average case,
we discovered that the average values were pushed
up by the AVs which required a greater number of
queries. Therefore, it is important to highlight the
existence of AVs that can be fingerprinted with a
significantly smaller number of queries.
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Fig. 18 Number of queries per year (Individual
AVs). There is a significant difference between the AV that
required more and the one that required fewer queries to
be fingerprinted with confidence.

Figure 18 shows the number of queries (Y-
axis) over the years (X-axis) required to reach the
95% confidence score in the label fingerprinting
task for the AVs that required the biggest and
smallest number of queries on average over the
years. We chose the 95% values as the target based
on the previous experiment’s results. The num-
ber of queries required by the selected AVs can
be considered as lower and upper boundaries for
the previously presented average values. We notice

that whereas one of the AVs presents a significant
variation over time, requiring hundreds of queries
to be fingerprinted with confidence, the other AV
is very constant in the way it assigns labels, with
a few queries being enough to fingerprint it. These
results imply: (i) in the first case, the AV produces
very similar labels, thus one needs multiple queries
to identify a small variation that is unique to the
AV; and (ii) in the second case, the AV produces
very unique labels, such that a few queries are
enough to find characteristics unique to that AV.
It highlights once again the feasibility of the fin-
gerprinting process, as less than 50 queries allow
the identification of thousand-sized sets of labels
with confidence guarantees.
AVs lose their ability to recognize their own
labels over time. The previously shown effect of
label changes over time on AV label fingerprinting
procedures makes us wonder if the AVs still recog-
nize their own labels after a long time has passed.
To test that, we developed an experiment based on
incremental learning/incremental windowing. We
initially trained a one-class classifier model with
the labels assigned by an AV in an initial year
and then tested its ability to recognize the labels
assigned by the same AV in future years. We pro-
ceeded by teaching the model data from another
year (2 initial years in the training set) and test-
ing it against the labels assigned in future years.
We repeated the process by increasing the training
data year by year.
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Fig. 19 AVs self-recognition over time. The labels an
AV sees in future years are very different from the labels
AVs see in their initial years, thus making models lose their
self-recognition ability.

Figure 19 shows the average self-recognition
rate (Y-axis), i.e., the fraction of the own labels
correctly recognized, over the years (X-axis).
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We notice that when training the models with
2006’s data, the self-recognition rate immediately
dropped by half in the subsequent year, thus
showing that labels for this next year were very
different from the labels from the previous year,
such that the AVs did not effectively recognize
part of their own labels as generated by them. The
label diversity remained moderately stable during
the [2007-2015] period, as the same training set
was able to keep a self-recognition rate around the
same value (50%). The labels significantly changed
again after that, thus we can observe a new rate
drop. In the last year (2020, 14 years after the ini-
tial training), the labels produced by the AVs are
so different that the original models do not rec-
ognize almost any of the new labels as generated
by them. Adding more data to the training set
increases the self-recognition rate in all scenarios.
For instance, adding the labels from 2007 to the
training set helped increase the self-recognition
rate for all consecutive years, although we can still
observe a moderate decrease in the final years.
The curves and thus the inferred label dynam-
ics are overall the same as the training size is
increased: the more data (years) in the training
set, the more the AVs are able to identify their
future labels. Even though, the self-identification
rate decreases are still observed, which shows that
new labels are still and periodically created by the
AV companies.
Recognizing among others and recognizing
itself are different problems. It is important
to highlight that the presented results are the
average values for the results of all AVs. Our
goal with that is to shed light on the effect on
the whole AV ecosystem. Individual AVs might
present particular variations. More specifically, in
our tests, whereas 80% of all AVs presented sig-
nificant variation, 20% of all AVs were able to
sustain a self-recognition rate superior to 90% of
the whole period. Interesting to note that one of
these AVs is the one whose number of queries was
considered an upper boundary for the average in
the experiment shown in Figure 18. It shows that
this AV has always been diverse, such that the
label diverse is only spread over the years and did
not emerge at a specific moment. It also shows
the difference between the tasks of comparing the
labels against (i) other AV labels (a challenging
task for recognizing this AV); (ii) against its own
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Fig. 20 Self-Recognition vs. Known AVs. When the
labels change to the point of not being recognized by the
original model, they are perceived as coming from a differ-
ent AV than the ones from the training set.

labels (easy for the model). Finally, it is impor-
tant to highlight that as mentioned in Section 3,
our experiments did not include AVs completely
based on ML. This is important to guarantee that
our results are not biased. Pure ML-based AVs do
not provide a family label, but only a binary label
(e.g., confidence=100), so identifying their labels
is easy for the classifiers and no change is observed
over time.
The time creates “new” AVs.When AV labels
evolve and stop being recognized as coming from
the original AV, what are they recognized as? If
they are confused with labels from the other AVs,
this would show that the AV companies are work-
ing towards making the labels more similar. As a
consequence, this would also imply that the results
of our initial experiments would be biased by this
temporal incoherence. We tested it by repeating
the previous temporal experiments but now with
an Out-Of-Distribution (OOD) detection strategy.
We start by initially training the multi-class classi-
fier with all known AVs (72) and by only allowing
a sample to be assigned to a class if it has a
confidence greater than 50% on the decision. Oth-
erwise, it is assigned to a new cluster. As a result,
if the incoming samples are confused with sam-
ples from other AVs, the number of clusters seen
by the classifier would remain stable. In turn, if
these samples are not confidently assigned to any
cluster, the total number of clusters will grow.

Figure 20 illustrates this phenomenon happen-
ing with the “Average AV” from Figure 19. As
the self-recognition drops, the number of observed
samples grows, indicating that the new samples
are assigned to new clusters. Over the years, more
new clusters are observed, indicating that the new
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labels are not assigned to the existing newly-
created clusters, but to newer and newer clusters
every year. We can interpret this result as the
model understanding the labels of each year as
coming from a completely different (“new”) AV.
This result ensures that our previous experiments
are not temporally biased, because although the
AV labels change over time, they are disjoint from
the existing AVs, such that the complete label
recognition model for an AV can be seen as a
collection of different concepts that this AV has
presented over the years.
The merging of AV engines is reflected in
the self-identification rate over the years.
The merging of AV engines is a common event
in the industry; one product might have been
acquired by another company and integrated into
its product. A side effect of these merges is that
both solutions start to exhibit the same labels. It
has been observed in previous works [19, 20] and
is also present in our experiments when observing
the self-identification rate of some AVs.
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Fig. 21 Avast model predicting AVG labels. The
labels became more similar around 2016.

Figure 21 shows the self-identification rate
(Y-axis) over the years (X-axis) for two special
scenarios: when the models for the AVG AV are
trained with its own labels in 2006 and 2016 but
tested against the labels produced by Avast in
the same years. We chose to represent these two
years for didacticism, but the effect is observed for
all years. Considering the 2006’s model, we notice
that the self-cognition rate is initially low (10%)
as expected since this is the rate of Avast labels
that AVG was considering as created by itself,
which is normally interpreted as a classification
error. We notice a significant increase (from 10%
to 50%) in the self-recognition rate around 2016,

the year in which the Avast and AVG engines were
merged. Whereas the self-recognition rate is mod-
erate (50%), as the model was trained 10 years
before, it is clear that a change in the Avast labels
happened and that they are more similar to the
AVG ones now. When we train AVG models with
the labels up to 2016, we notice that, for that year
to the future, the model recognizes all Avast labels
as created by itself, thus showing that the engines
were integrated and they are producing the same
labels. The results are similar if we perform the
test in the other direction: training Avast models
and testing AVG samples.

4.4 AVs in other OSes

We previously presented a comprehensive char-
acterization of the AV label dynamics for the
Windows environment, the OS most targeted by
malware writers, and also the most traditional
AV ecosystem. However, we know that malware
dynamics is OS-dependent. Thus, a characteri-
zation of the AV fingerprinting process is only
complete when we understand how the environ-
ment affects the label dynamics. To evaluate that,
we considered two other scenarios: (i) Android,
the most popular mobile OS, with an emerging
number of malware threats and AVs; and (ii)
Linux, a traditional but not-so-popular OS. This
combination allows us to explore the two dimen-
sions of label dynamics: OS/AV consolidation and
popularity.
APK labels are similar to Windows ones.
To investigate the dynamic of the APK labels, we
took a comparative approach. i.e., we compared
the APK results with the exhaustive investigation
of the Windows label dynamics to identify if the
APK dynamic is compatible with it. More specif-
ically, we took the AV Identification Rate (IR) as
a proxy for all metrics.

Figure 22 shows the rate of groups (AVs)
achieving the target accuracy score (Y-axis) for
an increased number of AVs (X-axis). The graph
shows curves for 2 different target accuracies:
100% and 95%. It means that 100% and 95% of
the samples attributed to a given label set were
really generated by that AV. The behavior of the
curve is very similar to the one for Windows sam-
ples presented in Figure 7. In both cases, the IR is
sustained at 100% until 12 AVs, when it starts to
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Fig. 22 AV Identification Rate for APK samples.
The curve characteristic is similar to the Windows labels.

drop. The final IR is around [80-85] in the Win-
dows case and [75-80] in the APK case. Previous
work already suggested that much of the mal-
ware dynamics is similar between Windows and
Android [21, 22]. Now, we claim that the AV label
dynamics are very similar between the two envi-
ronments. It shows that there is a label dynamics
association with the variety of malware samples in
a popular platform, despite the internal OS and
AV implementations [19] differences.
ELF/Linux labels are harder to clas-
sify than Windows ones. To investigate the
dynamic of the ELF labels, we also took a com-
parative approach with Windows. Once again, we
took the AV Identification Rate (IR) as a proxy
for all metrics.
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Fig. 23 AV Identification Rate for ELF/Linux sam-
ples. The curve characteristic differentiates from the Win-
dows labels, being harder to classify.

Figure 23 shows the rate of AV sets achiev-
ing the target accuracy score (Y-axis) for an
increased number of AVs (X-axis). The graph
shows curves for 2 different target accuracies:
100% and 95%. The behavior of the curve is very

different from, the one for Windows samples pre-
sented in Figure 7. The ELF/Linux labels are not
completely separable even between only two dif-
ferent AVs, even if we lower the threshold, which
shows that the Linux AVs are assigning more sim-
ilar labels to the same samples than the Windows
ones. This fact is reflected in the final IR, which
is much lower (50% and 70%) than for Windows
and Android. We hypothesize that the obtained
results can be explained by the different natures
of ELF/Linux malware. Previous works [23, 24]
have already pointed out the differences between
the malware dynamics in Windows and Linux. A
major difference is the significantly larger amount
of exploits in the ELF/Linux environment, such
that if more AVs are all assigning exploit labels to
the samples, it is harder to differentiate which AV
produced that label.

4.5 What does explain the results?

We proceeded with our investigation to under-
stand what causes AV labels to be easily sepa-
rable. To that, we delve into the composition of
the labels. Our empirical experience demonstrates
that the same tokens appear in different posi-
tions according to the AV (e.g., Gen.Trojan.Heur
and Gen.Variant.Trojan). We hypothesize that
not all components (tokens) in an AV label con-
tribute equally to the fingerprint process. To eval-
uate that, we repeated the previous attribution
experiments to each individual label component.
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Fig. 24 Recognition rate by AV label component.
The more specific, final labels are more discriminant than
the initial, more generic ones.
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Figure 24 shows the distribution of the accu-
racy rates of the attribution process for all
AVs according to the individual components of
their labels, considering only the cases when the
components are available. We observe that the
attribution rates are diverse over the AVs, ranging
from very low to very high, which corroborates
previous findings on the heterogeneity of AV
behaviors. The graph shows that despite the huge
variance, the average accuracy rate grows with
the final label components. This happens because
the final label components tend to be more spe-
cific, carrying information from that specific AV
product, thus making it easy to differentiate AV
labels based on them. For instance, the label
for one of the tested AVs follows the format
a-variant-of-Win32-Bundled-Toolbar-Ask-G-

potentially-unsafe, which makes it unique.
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Fig. 25 Recognition rate by AV label component.
The initial components provide an overall greater discrim-
ination rate than the final label components.

The specificity of label composition, however,
does not explain the whole attribution process. If
it did, the labels from all AVs should be 100%
separable only by using their specific components,
which is not the case. It happens because not all
AV labels have the same number of specific com-
ponents. Long labels as the previously presented
ones are in fact rare. Therefore, discriminant anal-
yses must also consider the relative frequency in
which these labels appear.

Figure 25 shows the distribution of the accu-
racy rates of the attribution process for all AVs
according to the individual components of their

labels, now considering all cases, being compo-
nents available or not. The high variance is still
present in the results, but now the accuracy does
not grow with the label components in the over-
all case. In fact, the attribution capabilities of
these final components tend to be zero. It happens
because although these components are very dis-
criminative when present, their relative presence
is low.

The first 4 components are the ones that
most affect the overall attribution process, with
a peak caused by the second component. This
result leads to two hypotheses. First, if the pres-
ence of components affects the AV identification,
then the peak should be at the first compo-
nent, which is present in all AVs, by defini-
tion. It does not happen exactly because many
AVs present similar first components (e.g., many
labels start with HEUR), thus complicating the
attribution. A second hypothesis is the inverse:
the valley should be at the first position if all
labels were similar. It does not happen because
some AVs are clearly recognized even using a
single label, as they use very specific labels
(e..g, BehavesLike.Win32.Autorun.th). There-
fore, the maximum point of attribution is shifted
to the second component, which is present in
most of the labels and does not present as many
common tokens as the initial one.
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Fig. 26 Recognition rate by AV label component.
Initially, the more components are considered, the greater
the recognition rate. The growth stops after 4 components.

A final aspect to consider in the explanation
is that the label components are not considered
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individually, but associated. Therefore, new cor-
relations might appear between the label compo-
nents. We tested that by repeating the previously
presented experiments in an incremental form–i.e.,
considering each time one additional label compo-
nent in the experiment. Figure 26 shows how the
accuracy of the attribution process varies with the
increase in the number of considered label compo-
nents. We notice that the label recognition grows
with the first 4 label components, and presents a
marginal increase with the remaining ones. It is
possible to state that the accuracy rate achieves
stability at the 80% value (remind that the recog-
nition problem is more complex at this scale, as
shown in previous experiments). The contribution
given by the first 4 components can be explained
by the use of the CARO naming system [4], which
standardizes the 4 components of an AV label.
Most AVs follow this convention, even though they
heavily rely on extensions to it [3], causing the
impacts we demonstrated in this work.

5 Summary and Implications

In this section, we present a summary of our find-
ings to be used as a checklist for future AV label
fingerprinting applications.
For AV label grouping:

• Two AVs tend to be always completely separa-
ble based on their assigned labels.

• AV labels can be grouped with 100% accuracy
for small instances (less than 12 AVs).

• The grouping problem becomes exponential for
more than 10K labels per AV.

• Reducing the targeted grouping accuracy to
95% leads to the best cost-benefit.

For random label sampling without confi-
dence guarantees:

• 70% of the first sampled labels tend to be
correct.

For label sampling with confidence guaran-
tees:

• Less than 100 queries (less than 1% of the whole
dataset) is enough to fingerprint AVs with 99%
confidence.

• The problem becomes exponential for more
than 5K labels per AV.

• The average value is dominated by the AV
outliers.

For considering the effect of time:

• AV label updates over time moderately change
the fingerprinting rates.

• AVs are getting moderately easier to finger-
print over time, which means their labels are
differentiating even more.

• AV engine merging is reflected in the finger-
printing process. This is clearly observed for
Avast and AVG.

For other OSes:

• Android AV labels tend to present a dynamic
similar to Windows ones.

• Linux label dynamics are different from Win-
dows and Android and are harder to fingerprint.

6 Discussion

In this section, we discuss the findings and limi-
tations of our experiments to better position our
work.
A note on confidence Analysis. Given the
probabilistic nature of the AV selection process,
we repeated the experiments until reaching the
95% confidence interval. The number of runs
varies according to the number of combinations
possible for each given set of AVs, i.e., it is pos-
sible to combine 72 AVs 2-by-2 in 2556 ways, but
72 AVs can only be combined 72-by-72 in a single
way. On top of that, we used the own prediction
result as feedback for the sampling, which reduces
the number of runs required to achieve the 95%
confidence interval in some cases. For instance,
since the AVs were 100% separable in the 2-by-
2 scenario, it reached the 95% confidence score
according to the Wilson interval after only 385
runs.
What were we expecting from the AVs? Our
results show that AV labels are easily separable.
It means that the AVs do not agree on assign-
ing the same labels to the same malware samples.
This label heterogeneity is an undesired effect as
it significantly complicates the incident response.
For instance, if one searches for information about
a malware sample labeled by one AV, one will
find information only from the AV research team
from that specific AV product, not from other
sources that might provide better answers. Ideally,
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we would like all AVs to agree on a sample label,
which would have the side-effect of making finger-
printing harder (if not impossible), as seen for the
ELF/Linux case. Unfortunately, the industry does
not seem to be moving toward label uniformity.
The most successful label handling approaches
so far rely on trying to uniformize the diverse
labels after their generation [5–7] than fixing their
generation itself.
Does the separation between the labels of
two AVs apply to any AV? Our results demon-
strate that the labels coming from two different
AVs are completely separable. This should not be
interpreted as any two different AV solutions are
separable, but that two different AV engines are
separable. It is known by the literature that many
AV solutions share the same AV engines [19],
which would make their labels indistinguishable.
These cases were not included in any of our
experiments.
Contributions & Limitations. Whereas previ-
ous works already pointed out the label hetero-
geneity problem [2, 5, 25, 26], we are the first to
invert the research point of view and attempt to
fingerprint the AVs based on their assigned labels.
The strong point of our work is the unique dataset
of Windows samples, labeled for 14 consecutive
years. Despite that, our work does not exhaust the
subject, and experimental limitations must still be
overcome. A major end of our study is the dataset
used for APK/Android and ELF/Linux experi-
ments. Whereas they are the best datasets we can
provide at the moment, we know that specific phe-
nomena can only be observed at a large scale, thus
more studies are warranted.
How does one apply our findings? The dis-
covery of the possibility of label fingerprinting
AVs might foster new security applications, such
as forensic analysts identifying which AV previ-
ously labeled a given set of samples–in case this
information is absent (e.g., attributing from which
legitimate AV a rogue AV got its labels). Despite
this positive side effect, this research does not aim
to have immediate applications. Instead, our goal
is to present a new view of the label heterogeneity
problem. In this sense, the most important find-
ing of our research is to show that the problem
is bigger than originally described in the litera-
ture, as we demonstrate it is a two-way problem: it

happens from AVs to samples and also from sam-
ples to AVs. Thus, we expect our insights (e.g.,
our observations of the most diverse label com-
ponents) to support future developments on the
normalization of AV labels.
Privacy Implications. Using our proposed
approach to fingerprint AVs might disclose the
defensive strategy of given individuals and/or
organizations. However, we do not consider our
solution as increasing the privacy risks one is sub-
ject to because this same risk is already present in
existing fingerprinting mechanisms, such as net-
work scanners, that can be used against public and
private networks.
Future Work. We will break down our inves-
tigation result to the level of which malware
families are harder to classify and thus finger-
print the AVs from them. Previous research has
pointed out that labels vary significantly accord-
ing to the family [27], which motivates further
investigations.

7 Related Work

In this section, we present related work on
antivirus studies to better position our contribu-
tions. Since AVs are well-studied in the literature,
we focus on the proposals that allow us to better
differentiate our work from previous contributions.
Understanding AV internals is key to having
proper knowledge of AV operation. The literature
has presented previous work that delves into the
AVs implementation details and project decision
implications [19]. Whereas this knowledge is fun-
damental, in this work, we address AV issues at a
higher level, looking only at the labels and treating
their respective generating engines as black boxes.
Evaluating AVs is another key security task
essential to ensure that one is running a sys-
tem at the highest protection level possible. The
literature is rich on AV evaluations, that even
propose new metrics to evaluate them [3]. These
metrics are important to evaluate AVs in a multi-
dimensional perspective, accounting for effects
such as regression—when a sample stops being
detected after some time [28]. In this paper, we
evaluate AVs not for their detection capability, but
by their label diversity, complementing previous
studies.
The label diversity phenomena has been pre-
viously observed in the practice and it is reported
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in the literature. Previous work pointed out, for
instance, that the use of AV non-agreeing labels
may even decrease AV classification accuracy [29].
Whereas previous work presented a complete
treatment of the subject from the sample point
of view–i.e., observing how AVs assign different
labels to the same sample–we here approach the
problem from the AV point of view–i.e., verify-
ing if labels are diverse from the AV generation
perspective.
Label normalization is an important step to
overcome the label diversity phenomena. Multi-
ple solutions are described in the literature to
normalize AV labels to an agreeing one (e.g.,
AVClass [5], AVClass2 [30], and Euphony [31]).
In this work, we take the opposite direction. We
explore label diversity to fingerprint their gener-
ating AV engines.
Label correlation is the process of identifying
that similar labels might have been generated by
the same AV. Previous work demonstrates that
it is possible to observe when different AV com-
panies merge their engines only by observing the
label dynamics [20]. In this work, we extend this
concept to fingerprint AV engines in general.

8 Conclusions

We investigated the question: Can AVs be finger-
printed based on the labels that they assign? We
performed experiments with a dataset of 720000
AV-assigned labels for Windows malware spread
over 15 years (2006-2020) and discovered that AVs
can be fingerprinted by their assigned labels. In
most cases, it is possible to achieve 100% group
accuracy. AVs can be fingerprinted with a confi-
dence score of 99% using only 1% of the dataset.
We show that these results vary over time, as the
label changes caused by the AV updates have a key
effect on AV recognition. In extreme cases, some
AVs lose their ability to recognize their own gen-
erated labels over time. We also present results to
show that Android AVs can be fingerprinted the
same way as Windows AVs, but that Linux labels
are harder to be grouped.
Reproducibility. All code developed for this
research work is available at https://github.com/
marcusbotacin/AV.Label.Uniqueness
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Appendix A Individual AV
results

All over this paper, we focused our results on
the average AV–i.e., on how AVs behave on aver-
age, without individualizing AV results. In some
cases, however, having individual AV information
is desired (e.g., for one selecting an AV to per-
form experiments similar to the ones reported in
this paper). Thus, to streamline reproducibility,
we here report individual AV results.

Table A1 classifies the 72 AVs considered in
this paper in three different groups: (i) the ones
of low complexity, i.e., those which can be fin-
gerprinted with a number of attempts in the
magnitude order of individual queries; (ii) the ones
of medium complexity, i.e., those which can be
fingerprinted with a number of attempts in the
magnitude order of dozen queries; and (iii) the
ones of high complexity, i.e., those which can be
fingerprinted with a number of attempts in the
magnitude order of hundred queries.

We notice that, as previously reported for
the general case, the majority of AVs require a
few queries to be fingerprinted. We believe the
obtained results are coherent, as AV products that
share the same AV engine are grouped together.
For instance, we observe that (i) AVG and Avast;
(ii) multiple McAfee versions; and (iii) VIPRE
and AVWare are grouped in the same complexity
level.
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Table A1 Individual AV queries. AVs grouped according to the average number of queries required to fingerprint
them. Most AVs can be fingerprinted with a few queries.

AVs Difficulty Level Magnitude
AhnLab-V3 Antiy-AVL APEX Arcabit

Few 1s

Avira BitDefenderTheta ClamAV CrowdStrike
Cybereason Cylance Cynet eGambit
Elastic Emsisoft Endgame ESET-NOD32
Ikarus NOD32 Paloalto Panda
PCTools SentinelOne Symantec Zillya
AegisLab Avast AVG Bkav

Moderate 10s

CAT-QuickHeal CMC Comodo Cyren
DrWeb FireEye Fortinet F-Prot
F-Secure GData K7AntiVirus K7GW
Kingsoft Malwarebytes McAfee McAfee-GW-Edition
Microsoft Qihoo-360 Sangfor Sophos
SUPERAntiSpyware TheHacker TotalDefense VBA32
ViRobot Webroot ZoneAlarm Zoner
AntiVir Ad-Aware ALYac AVware

Many 100s
Baidu-International BitDefender Kaspersky MicroWorld-eScan
NANO-Antivirus Norman nProtect TACHYON
TrendMicro TrendMicro-HouseCall VIPRE Yandex
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J. & Le Traon, Y. On the lack of consensus
in anti-virus decisions: Metrics and insights
on building ground truths of android malware
(2016).

[3] Botacin, M., Ceschin, F., de Geus, P.
& Grégio, A. We need to talk about
antiviruses: challenges & pitfalls of av eval-
uations. Computers & Security 95, 101859
(2020). URL https://www.sciencedirect.
com/science/article/pii/S0167404820301310.

[4] CARO. A new virus naming conven-
tion. http://www.caro.org/articles/naming.
html (1991).

[5] Sebastián, M., Rivera, R., Kotzias, P. &
Caballero, J. Avclass: A tool for massive
malware labeling (2016).

[6] Kantchelian, A. et al. Better malware ground
truth: Techniques for weighting anti-virus
vendor labels (2015).

[7] Chen, L., He, Z., Wu, H., Gong, Y. &
Mao, B. Avminer: Expansible and semantic-
preserving anti-virus labels mining method.
arXiv preprint arXiv:2208.14221 (2022).

[8] Pirscoveanu, R.-S., Stevanovic, M. & Peder-
sen, J. M. Clustering analysis of malware
behavior using self organizing map (2016).

[9] Demetrio, L., Biggio, B., Lagorio, G., Roli,
F. & Armando, A. Functionality-preserving
black-box optimization of adversarial win-
dows malware. IEEE Transactions on Infor-
mation Forensics and Security 16, 3469–3478
(2021).

[10] Demontis, A. et al. Why do adversarial
attacks transfer? explaining transferability of
evasion and poisoning attacks (2019).

[11] Apruzzese, G. et al. “real attackers
don’t compute gradients”: Bridging the gap
between adversarial ml research and practice
(2023).

18

https://www.sciencedirect.com/science/article/pii/S0167404820301310
https://www.sciencedirect.com/science/article/pii/S0167404820301310
http://www.caro.org/articles/naming.html
http://www.caro.org/articles/naming.html


[12] Sharma, Y., Giunchiglia, E., Birnbach, S.
& Martinovic, I. To ttp or not to ttp?:
Exploiting ttps to improve ml-based malware
detection (2023).

[13] Wang, J. et al. Mal-lsgan: An effective adver-
sarial malware example generation model
(2021).

[14] Bostani, H. & Moonsamy, V. Evadedroid:
A practical evasion attack on machine learn-
ing for black-box android malware detection.
Computers & Security 139, 103676 (2024).

[15] Botacin, M. et al. One size does not fit
all: A longitudinal analysis of brazilian finan-
cial malware. ACM Trans. Priv. Secur.
24 (2021). URL https://doi.org/10.1145/
3429741.

[16] Nowroozi, E., Jadalla, N., Ghelichkhani, S. &
Jolfaei, A. Mitigating label flipping attacks in
malicious url detectors using ensemble trees.
IEEE Transactions on Network and Service
Management 1–1 (2024).

[17] Taheri, R. et al. On defending against
label flipping attacks on malware detec-
tion systems. Neural Comput. Appl. 32,
14781–14800 (2020). URL https://doi.org/
10.1007/s00521-020-04831-9.

[18] Gashi, I., Sobesto, B., Mason, S., Stankovic,
V. & Cukier, M. A study of the relation-
ship between antivirus regressions and label
changes (2013).

[19] Botacin, M. et al. Antiviruses under the
microscope: A hands-on perspective. Com-
puters & Security 112, 102500 (2022). URL
https://www.sciencedirect.com/science/
article/pii/S0167404821003242.

[20] Zhu, S. et al. Measuring and mod-
eling the label dynamics of online
anti-malware engines (2020). URL
https://www.usenix.org/conference/
usenixsecurity20/presentation/zhu.

[21] Monika, Zavarsky, P. & Lindskog, D.
Experimental analysis of ransomware on
windows and android platforms: Evolution

and characterization. Procedia Com-
puter Science 94, 465–472 (2016). URL
https://www.sciencedirect.com/science/
article/pii/S1877050916318221. The 11th
International Conference on Future Networks
and Communications (FNC 2016) / The 13th
International Conference on Mobile Systems
and Pervasive Computing (MobiSPC 2016)
/ Affiliated Workshops.

[22] Darabian, H. et al. A multiview learning
method for malware threat hunting: windows,
iot and android as case studies. World Wide
Web 23, 1241–1260 (2020).

[23] Cozzi, E., Graziano, M., Fratantonio, Y. &
Balzarotti, D. Understanding linux malware
(2018).

[24] Galante, L., Botacin, M., Grégio, A. &
de Geus, P. Malicious linux binaries: A land-
scape. https://www.lasca.ic.unicamp.br/
paulo/papers/2018-SBSeg-WTICG-lucas.
galante-marcus.botacin-malicious.linux.
binaries.pdf (2018).

[25] Mohaisen, A. & Alrawi, O. Av-meter:
An evaluation of antivirus scans and labels
(2014).

[26] Mart́ınez Torres, J., Iglesias Comesaña, C. &
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