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ABSTRACT
In this work, we answer the question: Is it worth adopting a hardware-
assisted zero trust monitoring solution? To answer it, we revisit a
cost model for incident response and complement it with perfor-
mance costs related to malware infections and security monitoring.
We show that having an efficient monitoring solution not only (i)
decreases the security costs by preventing attacks and lowering
the incident responder’s burdens, but also (ii) decreases the perfor-
mance costs by requiring lower CPU loads to continuously monitor
the full system. Based on it, we advocate for the immediate adoption
of hardware-assisted, full-system security monitoring solutions.
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1 INTRODUCTION
Malicious Software (Malware) infections cause financial losses to
organizations and disrupt their operations, such that it is currently
more important than ever to defend against system threats. Over
time, malware has been evolving not only in number but also in
complexity, such that all parts of a system might be now either
the source or the target of attacks. The current state-of-the-art
in defense against advanced attacks is zero trust, where a system
operation is verified in all its operational steps.

The key challenge for deploying zero trust is keeping system
performance, since continuously monitoring the entire system op-
eration imposes significant performance overhead to the regular
application’s execution. A strategy to enable zero trust is to move
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monitoring from software to hardware [1, 2], thus alleviating the
main CPU load. The major drawback of this class of solutions is
the need for hardware redesign, which is costly due to the required
design paradigm shift. This drawback has been delaying a more
widespread adoption of hardware-assisted security monitors.

In this work, we present a cost argument for the immediate
adoption of hardware-assisted security monitoring solutions and
the streamlining of zero-trust models. Our contribution is to in-
clude system performance requirements in addition to security
requirements into an established cost model. We model the secu-
rity monitoring problem mathematically to show that the costs of
not adopting hardware-assisted zero trust are larger not only in
incident response but also in performance costs.

2 THE ESTABLISHED COST MODEL
The cost of security is typically measured in terms of the cost
of detection warnings and incident response. In this sense, we
started our investigation by shedding light on the assumptions
and hypotheses behind the traditional security cost models. More
specifically, we took a consolidated cost model [4] and evaluate its
application to a real detection scenario [3].

Equation 1 shows the modeling of the security costs of operating
an endpoint solution over the years. The cost is given by an initial
solution setup cost (𝐶𝑖 (, plus yearly (𝑌𝑖 ) costs composed of fixed
subscription costs (𝐶𝑏 ) and the dynamic costs of raising detection
warnings for goodware (𝐶𝑔) and malware (𝐶𝑚).

𝐶𝑜𝑠𝑡 = 𝐶𝑖 + 𝑌𝑖 ∗ [𝐶𝑏 +𝐶𝑔 +𝐶𝑚] (1)

Whereas the setup and subscription costs of a hardware-assisted
solution might be a little bit different from software-based solutions,
they still do not account for the major part of the costs, that are
given by the detection warnings. Thus, we did not focus on these
fixed costs ins our analyses, but on the detection ones. Similarly,
we did not focus on the total cost over the years, but on analyzing
the cost components within the same year. Thus, we concluded
that the costs are proportional to the costs of raising warnings for
malware and goodware, as in the expression shown in Equation 2.

𝐶𝑜𝑠𝑡 (𝑦𝑒𝑎𝑟 ) ∝ 𝐶𝑔 +𝐶𝑚 (2)

Since detectors are not perfect, the cost of raising warnings for
malware and goodware can be broken down into the costs of la-
beling (i) goodware as goodware (𝐶𝑔𝑔); (ii) goodware as malware
(𝐶𝑔𝑚); (iii) malware as goodware (𝐶𝑚𝑔); and (iv) malware as mal-
ware (𝐶𝑚𝑚), as shown in Equation 3. The rationale behind that is
that each type of warning implies distinct costs. Correctly label-
ing goodware implies zero additional costs. Mistakenly flagging
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goodware as malware requires an analyst to flag the false positive.
Labeling malware as goodware has the cost of a security breach.

𝐶𝑜𝑠𝑡 (𝑦𝑒𝑎𝑟 ) ∝ 𝐶𝑔𝑔 +𝐶𝑔𝑚 +𝐶𝑚𝑔 +𝐶𝑚𝑚 (3)
Modeling the cost of a triggered warning is hard. Traditionally,

the cost is modeled as shown in Equation 4. A set of infections (M)
have varied costs over time (t). The rationale of this modeling is that
a malware infection has increased but limited impact over time, i.e.,
the more the malware runs, the more impact it causes (e.g., the more
data is exfiltrated). Therefore, detecting early maximizes the return
of the security solution. If the sample is not detected, the malware
executes all its malicious actions, causing maximum damage/cost.
This cost achieves a plateau after some time because there is no
infinite damage (e.g., the damage ceases after the malware has
exfiltrated all valuable information for a company).

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡 (𝑡) = 𝑀 ∗ 𝑒−( 𝛼
𝑡
)2∗ln 2 (4)

To better understand how this model represents reality, we ap-
plied it to a concrete scenario. Table 1 shows the parameters used
in a validated application of the model to real endpoint security
solutions. We used these same parameters in our simulation.

Table 1: Simulation Parameters. Values retrieved from [3].

𝐶𝑖 2000$ 𝑌𝑖 1 𝐶𝑏 8000$
M 2000 𝑇𝑎𝑣𝑔 900s 𝑇𝑚𝑎𝑥 3000s 𝐶𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 70$
TPR 90% TNR 95% FPR 5% FNR 10%

Figure 1 shows the total cost of detection for multiple detectors
over time–i.e. when detection is triggered at different points in time.
Themore time spent until the detection, themore harm themalware
causes. Ideally, the detection should occur as soon as possible, thus
mitigating the caused damage.
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Figure 1: Security Cost Simulation. Best, Worst, and Average
scenarios.

The perfect detector presents the lowest cost as it would detect
all malware samples and have no False Positives (FPs). Its growth is
exponential over time because even though the detector is perfect
regarding the number of triggers, the damage caused by the mal-
ware by being detected late is still present. The average detector
costs a bit more than the perfect one since it misses a few malware
samples and also presents a few FPs. The scenario with no detector,
when malware run freely, was initially revealed to be most costly
than the two previous ones, because every malware infection would
cause total harm.

Whereas the no-detection scenario does not change over time,
the previous detectors lose their mitigation abilities if detection
happens in the long tail. The break-even point is 1500 for the av-
erage detector and 2500 for the perfect detector. After this point,
having a perfect detector or a no detector makes no difference. Also,
having an average detector is worse than having no detector since
it will impose the costs of handling FPs.

The extreme case of FPs is shown in the detect-all curve. This
scenario presents the highest cost because although all malware in-
fections are detected, all goodware executions are flagged, requiring
an analyst to disambiguate the FPs. Since there is more goodware
than malware running, the FP cost majors the total monitoring cost.
Based on these results we conclude that (i) malware should be de-
tected as soon as possible and that (ii) errors on flagging goodware
execution imposes the largest part of the security monitoring costs.

3 PERFORMANCE COST-MODEL
Whereas the previously-presented security modeling is reasonable,
it does not take into account the costs of performance monitoring.
We here complement the modeling to claim that detection should
not only be fast but also efficient. Once again, we opted to skip
minor details and focus on the larger effects. Thus, we assumed
that (i) Typical CPU load is constant in most server machines; (ii)
The performance overhead of software-based monitors is mostly
constant; and (iii) hardware-assisted monitors cause CPU bursts [1].

Modeling the performance of malware samples is as hard as
modeling the security cost. Thus, we modeled the malware per-
formance following the same parameters accepted for its security
cost. However, to make it compatible with the assumption that the
malware causes each time less damage over time, we assume that
its performance curve has the opposite format of the security curve,
i.e., it starts with high CPU usage and presents each time less impact.
The final performance cost over time is shown in Equation 5.

𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐶𝑜𝑠𝑡 (𝑡) = 𝑀 ∗ (1 − 𝑒−( 𝛼
𝑡
)2∗ln 2) (5)

Table 2 shows the parameters used in the simulations to measure
the performance impact of multiple types of detectors.

Table 2: Performance Simulation Parameters. Parameter es-
timation in [1]

CPU_{avg} 50,00% CPU_{mw} 50,00%
AvgOverhead_{sw} 20,00% PeakOverhead_{hw} 50,00%
Cost_{cpu} 0,034 (per second at 50% load)
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Figure 2: Performance cost of detecting malware at t=500s.
Cost for different detection methods.

Figure 2 shows simulation results for scenarios with and with-
out hardware-assisted monitoring solutions. We illustrate the case
where the detection occurs at t=500s. We show the cases of true
detection and False Negatives (FNs). We observe that the detectors
operate differently by design. Software monitoring (SW) imposes a
continuous overhead (B+SW). hardware monitoring (HW) imposes
a peak overhead during detection, but no continuous overhead.
When malware infects the system (I), it costs CPU. thus, fighting
malware is key not only to prevent security violations but to cut
performance costs. If the malware is not detected (FN), the perfor-
mance cost (B+I) tends to return to the initial values as the malware
finishes executing. If the malware is detected by the software mon-
itor (B+I+SW), the malware operation ceases, but the performance
cost does not return to the baseline (B), because the software moni-
tor keeps occupying the CPU with constant monitoring (B+SW).
The trigger of the hardware detector (HW) has the highest per-
formance cost, as it operates in bursts. However, after malware is
detected (B+I+HW), the cost returns to the base value (B), as the
hardware imposes no CPU cost to the monitoring of the remaining
goodware files.

The effect of different detectors is highlighted when we consider
the accumulated cost of monitoring, as shown in Figure 3. In ad-
dition to the base cost of computing the main task (B), software
monitoring incurs an additional cost (25K$ in the period) even
without detecting anything. Infecting a system imposes additional
costs as the malware runs, but the cost is different if detection
is performed in hardware or software. If a hardware detector is
considered, the cost tends to return to the base level in the long
term. If the detection is software-based, the total cost keeps in-
creasing even after the detection, as the monitoring keeps loading
the CPU.whereas. In the case of FPs, the performance cost is of
additional 50K$, or 50% more than the base cost.
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Figure 3: Accumulated PerformanceCosts.Malware andMon-
itoring solution execution impose execution coststs.

4 CONCLUSION
In this work, we enriched security cost models with performance
models to provide an argument for the immediate adoption of
hardware-assisted zero-trust monitoring solutions. We concluded
that whereas security-wise detection should happen early to avoid
the malware impact, performance-wise detectors should be hard-
ware-assisted to avoid the impact of goodware monitoring.
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