Towards Explainable Drift Detection and Early Retrain
in ML-based Malware Detection Pipelines

Jayesh Tripathi', Heitor Gomes?, and Marcus Botacin'

Texas A&M University (TAMU) - USA
{jtjayesh98,botacin}@tamu.edu
Victoria University of Wellington - NZ
heitor.gomes@vuw.ac.nz

Abstract. The current largest challenge in ML-based malware detection is main-
taining high detection rates while samples evolve. Although multiple works have
proposed drift detectors and retraining-aware pipelines that work with reasonable
efficiency, none of these detectors and pipelines are currently explainable, which
limits our understanding of the threats’ evolution and the detector’s efficiency.
Despite previous works that presented taxonomies of concept drift events, no prac-
tical solution for explainable drift detection in malware pipelines existed until this
work. Our insight to change this scenario is to split the classifier knowledge into
two: (1) the knowledge about the frontier between Malware (M) and Goodware
(G); and (2) the knowledge about the concept of the (M and G) classes. Thus,
we can understand whether the concept or the classification frontier changed by
measuring the variations in these two domains. We make this approach practical
by deploying a pipeline with meta-classifiers to measure these sub-classes of the
main malware detector. We demonstrate via SK+ experiment runs the viability of
our solution by (1) illustrating how it explains every drift point of the DREBIN
and AndroZoo datasets and (2) how an explainable drift detector makes online
retraining to achieve higher rates and requires fewer retraining points.

Keywords: Malware Detection - Concept Drift - Explainable Al
This is the public author version.

1 Introduction

Computer systems are targeted daily by a myriad of malware samples, such that we
cannot keep up with this high volume of attacks without the help of automated tools,
which are currently largely based on Machine Learning (ML). Although ML can be very
effective, designing and deploying an efficient ML pipeline for malware detection has
many challenges, as extensively discussed in related works [10]. The main challenge
for ML-based malware detection nowadays is the degradation that the models face due
to the attacker’s new Tools, Tactics, and Procedures (TTPs), which require frequent
classifier retrains. Constantly retraining the classifier is not efficient; thus, precise triggers
for the retraining process are warranted. Currently, drift detection algorithms are the
best triggers for a retraining task. Drift detectors work by observing the distribution of
the predicted labels in comparison to ground-truth labels (e.g., provided by malware
sandboxes or human analysts) and report significant growths in the prediction error rate,
which is used as a proxy for the distribution change.

The drawback of current drift detection algorithms is that, by the nature of their
design, they do not explain the causes of the drift but just report the drift detection

2 Tripathi et al.

based on the observed error rates. Although it is enough to keep the pipeline operating
at reasonable rates, this limits other applications, such as benchmarking and dataset
characterization. Benchmarking is limited because it is impossible to know what the drift
detector is recognizing as different in a stream. Therefore, it is hard to have a ground
truth for eventual false positive reports. It also makes it hard to fairly compare two drift
detectors as they detect different phenomena. In this scenario, identifying the best drift
detectors for a given scenario has become a trial-and-error task rather than a scientific
task. For similar reasons, the nonexplainability also limits the understanding of real
scenarios, which limits incident response. Even if a drift detector points out that an
in-the-wild stream of malware has changed its distribution, analysts cannot know what
is present in the new samples that was not present in the previous ones, which limits
remediation and prevention actions.

Ideally, Drift-aware pipelines should provide a clear view of what has changed from
one period to another. Recent works in drift detection took their first steps in this direction.
A proposed pipeline [11] innovates by retraining not only the classifiers but also the
feature extractors when drift is detected. Thus, by comparing the vocabulary in different
epochs, it is possible to know the malware features that gained and lost importance. This
technique was used to identify, for example, when SMS sending permissions became
less prevalent in Android malware because the OS stopped allowing apps with this
permission in the app store. Despite this advance, this work still did not explain how the
feature changes caused the models to change. A step in this direction was given by works
that tried to model probabilistically and statistically the chances of a sample belonging
to a distribution or not [23]. Again, despite being a significant advance, this approach
still provides an incomplete treatment of the drift problem, even after its complement [6],
because although identifying the best retraining moments, it still does not explain the
drift points and changing features. Thus, the current scenario is: Drift detectors that
explain features do not explain models and vice-versa.

We propose changing this scenario with a practical solution to explain drift events.
This solution is based on the key insight that the classification process is composed of
two different aspects: (1) the frontier between the classes and (2) the concept of the
classes. This differentiation highlights the fact that sometimes drift is reported because
(i) the frontier is misplaced and sometimes because (ii) the concept itself changed. We
propose that if we measure these two aspects, we can explain drift events by assigning
them to one of these two classes (frontier or concept change).

Unlike conformal evaluation [6], which also breaks down the problem in two, we do
not rely on explicitly math modeling (e.g., via averages and variances) the problem, but
on using their own ML classifiers (meta-models) for the task. This allows one to deploy
our solution using the same ordinary drift detectors used in the main classifier (e.g.,
DDM, ADWIN, and so on) while still benefiting from the non-linearity of ML models
to learn the concepts. We propose that detecting drift in the meta-models exposes the
change in the frontier and the concepts. To test our hypothesis, we deploy the classifiers
under test with a main drift detector in addition to (1) drift detectors in their classes,
and (2) drift detectors in a second layer deployment of one-class versions of the main
classifiers, specifically trained to recognize the concepts known by the main classifier.

2. ANALYZING CONCEPT DRIFT 3

We tested our solution via SK+ experiments with the DREBIN and Androzoo datasets
with different settings (e.g., detectors, imbalances, policies, etc.), and we found that:

— Our approach explains all classification points, including true drift points, but also
false positive drift detections and bad frontiers caused by limited training data.

— Explaining detection and retraining are the two faces of the same coin, as recogniz-
ing true concept changes allows making online retraining procedures faster (early
retrain), more effective (achieving higher rates), and more efficient (requiring fewer
retrains) compared to traditional retraining.

In sum, our contributions are as follows.

— Proposing viewing concept drift as two separate problems: one is establishing the
decision boundary, and another is learning the concept for the classes.

— Proposing using meta-classifiers as practical solutions to measure changes in the
decision boundaries and the in-class concepts to explain drift detection decisions
and suggesting early retraining.

— Evaluating our proposals on the DREBIN and AndroZoo datasets to demonstrate
the practical viability of explaining concept drift events in malware detectors.

2 Analyzing Concept Drift

Understanding Classification Errors. When we train a binary classifier for a task like
separating malware and goodware, we teach the classifier to divide the feature space
with a decision frontier. The samples on one side of the frontier are assigned to one class,
and the same is true for the other class. Figure 1 exemplifies it with a horizontal frontier
in a 2D feature space for didactic purposes. It is key to note that the classifier might not
learn the actual concept of the samples belonging to each class, i.e., what they have in
common (the circle), but just a frontier that separates one from another.

In the ideal scenario, the frontier should adapt perfectly to the concept, but this is not
what often happens in practice. This gap opens a space for positive and negative effects.
On the positive side, some newer samples might still be classified in the right class even
if they do not match the learned concept. To that, it is enough to be farther to the wrong
class frontier. On the negative side, False Positives (FPs) might occur if the samples still
belong to the same original concept but the initial frontier was improperly defined. This
happens. For example, when the sampling process to define the training set was biased or
did not consider enough representative samples. Figure 2 illustrates this case. Although
the newer samples still belong to the same concept (the wider circle), they are flagged in
the wrong class because the frontier is improperly defined. Ideally, the classifier should
learn the actual concept to avoid these cases. In practice, the establishment of a new
frontier (the diagonal line) is what is achieved with classifier retraining.

If the classifier learned the concept, FPs due to an improper frontier would not
happen, but the classifiers would still make an increasing number of incorrect predictions
over time. This is caused by the concept drift/evolution effects, i.e., the malware samples
changing their characteristics significantly to avoid detection such that the learned
concepts do not apply anymore. In these events, the newer samples tend to slowly deviate
from the learned concept to multiple directions, as illustrated in Figure 3. When the
samples drift towards the frontier, they might cross the boundaries and cause FPs.

4 Tripathi et al.

Model before Drift 3yodel With Improper Frontier Model Under Concept Drift

-~ Decision Frontier --- Old Frontier 3.5 --- New Frontier

--- New Frontier L
+ Goodware 3.0 ’
« Malware i

h
Additional Malware 2,5 [
\

« Goodware
« Malware . /

+ Goodware
+ Malware

N
CJ
N
o

»
N
°
~

[
o
[
«

Feature 2
=
w

Feature 2
RN
\
A\
/
Feature 2

“+—(Concept
5 Change
‘ Never Drift
Concept g)
Change
Will Drift

0.0 i 3 3 0.0 i 373 1 23

Feature 1 Feature 1 Feature 1

Fig. 1: Initial Training. Fig. 2: Additional Data. Fig. 3: Multiple Drifts.

Detecting vs. Explaining Drift. Constantly retraining the classifier to change the frontier
is costly and inefficient. Thus, in practice, MLSec operators benefit from the loose
coupling between concept and frontier to let systems operate while producing correct
results—even outside the borders of the ideal concept—and only retrain the classifier when
the frontier is affecting the correctness of results. The moment to change the frontier is
indicated by drift detectors. The major limitation of this approach is that current drift
detection algorithms and architecture do not explain their result, i.e., they do not draw a
big picture of the phenomenon that is happening, as previously discussed. By observing
only the main result, current solutions can’t even tell if the result is wrong because the
frontier is misplaced or because an actual concept change happened. Achieving greater
explainability is possible by observing the multiple drift scenarios and mitigating the
detector’s blind spots, as follows.

Traditional drift detectors operate by only measuring the error rate in the classifier
frontier. The underlying idea is that if the concept changes, more samples will cross
the frontier, and thus, the error rate will increase. We can interpret this type of detector
operation as measuring if the samples of our example are crossing the horizontal frontier
from Figure 1 to Figure 2. The first blind spot is that samples cross the frontier not
only when the concept changes but also when the frontier itself is misplaced. By only
looking at the frontier, it is not possible to tell the cause of the drift alert. The second
blind spot is that this type of detector is only triggered when the result is already affected,
and this happens at a late drift stage. The concept might have started to change early
and remained in the gap between the concept and the frontier before crossing it. In
this case, the classifier did not benefit from this situation to start proactively retraining
the classifier. The third blind spot is that drift detectors based on the frontier might
be affected by class imbalance (depending on their internal construction, but we will
remain agnostic here). If the number of samples crossing the frontier is relatively small,
it is not “worthy” retraining the classifier. However, this decision is problematic in very
imbalanced scenarios, where the majority class might always be correctly predicted,
whereas the minority one might always be wrong. The fourth blind spot is that, due
to practical storage and processing limits, the drift detectors do not observe the entire
history of predictions but only a window, which makes them susceptible to FPs. If a
sequence of wrong predictions (e.g., a few from each class) sequentially appears by
simple randomness, the drift alarm will be triggered. Current drift detectors have no way
to identify their own FPs. The fifth blind spot is that traditional drift detectors do not
differentiate which classes are drifting but only observe if the frontier was crossed by

2. ANALYZING CONCEPT DRIFT 5

a significant amount of samples. Therefore, many drift detectors are not even able to
explain which class is problematic.

Class-aware drift detectors is a potential solution for mitigating the blind spot of
not telling which class crossed the line. By measuring the error rate in each class, it
is possible to know which classes (malware, goodware, or both) have their samples
crossed the lines. In the didactic example from Figure 2, the malware class is causing
the drift identification event. It also solves the blind spot of not identifying the FP cases
because if none of the classes have their samples crossing the frontier, an eventual drift
identification event can only be caused by a rare sequence of wrong predictions within
the limited window. However, since it keeps monitoring only the decision frontier, it
does not solve the blind spot of only detecting the drift at a late stage, and it is not able
to explain if the frontier was misplaced or if the concept actually changed.

Concept-Aware Detectors is our proposal for an ideal model of a detector that learns
the concept of the samples (the circles in Figure 3) independently of the frontier. In this
model, the samples are not only assigned to classes but also classified as belonging or
not belonging to known concepts. This way, it is possible to know if a sample is part of a
known concept regardless of where the frontier is placed, which allows differentiating
the reasons for drift. If a drift detector is placed in the concept detector, we can identify
if the concept actually changed. If there is no drift in the (ideal) concept classifier but a
drift in the (real-world) main classifier, it means that the initial frontier was misplaced.

The concept-aware drift detector acts in tandem with the main classifying by helping
to explain its drift and non-drift events. This interaction also allows for anticipating
eventual drift occurrences. When the concept is actually changing, three cases might
be identified, as illustrated in Figure 3: first, the concept might change in a direction
that does not go towards the frontier (the parallel line to the frontier in Figure 3). In this
case, the detection benefits from the concept-frontier gap to keep classifying the new
samples correctly without the need for a retrain; Second, the new concept goes towards
the frontier, but it has not crossed yet (the horizontal drift line in Figure 3). In this case,
the classifier would benefit from an early retrain, as crossing the frontier is imminent;
Third, the new concept went towards the frontier and crossed it (the diagonal drift line
in Figure 3), which is the explanation for a true drift detection.

Based on the above discussion, we propose the following taxonomy on the type of
information that the drift detection algorithm and/or architecture can provide and the
case it identifies:

— Type 1: Main Classifier Drift. It detects whether a significant number of samples
of any class crossed the detection frontier or not within a sampling window to the
point of already harming the final classification result.

— Type 2: Sub-Class Drift. It detects whether a significant number of samples of a
specific class crossed the detection frontier or not within a sampling window to the
point of being noticeable but without guarantees that it affects the final classification
result (contingent upon Type 1 detection).

— Type 3: Concept Change. It detects if a significant number of samples of a specific
class do not match the previous knowledge the classifier had about that class,
regardless of the correct class assignment (Type 1 and 2 events). The implications of
the concept change causing drift or not are contingent on the following cases:

6 Tripathi et al.

e Case A: Concept change without drift risk. If the concept changes in a direction
that does not go toward the decision frontier, it cannot cause drift events.

e Case B: Concept change with imminent drift risk. If the concept changes
towards the decision frontier (Type 2), it will eventually cause drift when
crossing the frontier (Type 1). This point is a candidate for early retraining.

e Case C: Current Drift due to concept change. If the concept changes towards
the frontier (Type 2) and crosses it (Type 1), concept drift is detected late.

These types of detectors are cumulative, i.e., a detector type 3 implies the deployment

of type 1 and type 2 detectors. Type 3 detectors currently do not exist. The development
of a practical type 3 architecture is this work‘s goal, as following detailed.
A practical solution for explaining drift events. A first idea for improving the explain-
ability of drift detectors is to redesign the drift detection algorithms to be class- and
concept-aware. This, however, imposes limits on the types of algorithms that can be used
and significantly impacts the design of the malware detectors that become coupled to the
used drift detectors. We aim to remain agnostic to the type of drift detection algorithm,
and instead of algorithm redesign, we propose an external monitoring architecture that
implements the class and concept-aware concepts independently of the detectors used.

We propose a 2-layer architecture where the first extends the Type 1 drift detectors
already existing in current malware detection architectures to become Type 2 by instanti-
ating copies of the main drift detector and directly linking them to the prediction of each
class. The second layer consists of replicating the main classifier in 1-class settings to
focus them on learning the class concept rather than the decision frontier, thus turning
them into Type 3 detectors.

Model During Early Drift

--- Decision Frontier
(rype 3 Drif) a
(Malware)

Type20rite] 2
(MW Class)

(Type 1Drif
(Main)

Type2 Drift
(GW Class)

Feature 2

Drifting Malware
Confidence=80%
i

o
Feature 1

Fig. 4: Drift-Explainable Architecture. Fig.5: Direction-Change Drift Detection.

In the proposed architecture, illustrated by Figure 4, the training process starts as
usual, with malware and goodware ground-truth samples being provided to the main
classifier (classifier under test). However, an additional step is introduced to train the
second-layer classifier. To teach the classifier the concept of malware, for instance, the
labels correctly predicted as malware after the training of the main classifier as provided
as positive labels to the secondary classifier (Known Malware, classified correctly).
The malware samples misclassified by the main classifier as goodware are provided
to the second layer classifier as Unknown Malware samples. Thus, this second-layer
classifier learns what the main classifier knows as malware and not its difference to
goodware. The same process is repeated to train the goodware class. The prediction step
also starts as usual, with the unknown sample being classified by the main classifier,
whose predictions are later checked by the main drift detector. However, the labels of

2. ANALYZING CONCEPT DRIFT 7

each class are also forwarded to individual detectors. The sample is also classified in
parallel by the second layer classifier, having its ground-truth class as a reference, to
identify if it fits the previous classifier knowledge about that class, independently of the
main classifier prediction.

The proposed architecture is capable of detecting Type 3 drift, which is enough to
point out concept change events, but it is still not enough to anticipate concept drift
detection occurrences. to that, an additional step is required to understand the direction
of the concept change. For a practical implementation, we approximate the identification
of a drift direction by the Equation 1: Avgconcepr —Avgarifs >k, givenk >0

The rationale for that is that the confidence level of the main classifier tells how close
the samples are to the frontier. The lower the confidence, the closer to the frontier. If the
concept is changing towards a lower confidence region, it is going closer to the frontier,
and it is likely to cause a concept drift alarm. We here identify if the concept is going
towards the frontier via the average confidence of the new concept cluster compared to
the average confidence of the original concept cluster. It is key to highlight the difference
between this and previous work’s approach, as we do not simply trust in the overall
change in the confidence level for all samples, but we rely on the second-layer model to
cluster the samples whose confidence will be averaged.

Concept changes in different directions are illustrated in Figure 5, which shows two
concepts (malware and goodware) originally positioned at 80% confidence level. When
the concept changes laterally, over the same diagonal line, it triggers a Type 3 detection,
but the new concept is not a candidate for early retrain, as it does not go toward the
frontier, which is indicated by the fact that the average confidence remained the same (it
is the same in all points over the diagonal line parallel to the main frontier). In turn, if
the concept changes towards the perpendicular line to the frontier, it will trigger a Type
3 alarm, and it is a candidate for early retrain, as it tends to cross the frontier, which is
indicated by the reduced confidence level (60%).

The relation between the drift event types in the classification stream. During
the operation and/or the evaluation of a malware detection pipeline, the multiple drift
detectors of our proposed architecture will trigger simultaneously, depending on the
drift event that is happening. We summarized all valid states in Table 1, based on the
previously introduced drift taxonomy.

The simplest situations are the ones when the detectors agree. When no drift detector
fires, the operation is normal. When all detectors fire, there is a clear drift caused by
concept change. The most challenging cases are when the detectors disagree. If only the
Type 3 drift detector fires, it indicates an early drift case. Then, we need to check if the
change is towards the frontier (Type 1) or not, if wanting to decide on an early retrain. If
the Type 2 detector fires without a Type 3 one firing, this indicates that the frontier is
the problem. If the Type 1 fires without the others, this indicates a false positive. Some
detector-state combinations are not possible. For instance, if only the Type 3 detector
fires, it can only be in case 1 or 2, but never in case 3 (crossing the frontier), as it
requires the Type 1 drift to also fire. These states are our falseability points. We used
them to validate our approach. If these cases appear in our test, this indicates that our
hypothesis/theory does not hold.

8 Tripathi et al.

Table 1: Explaining Drift Events. Information types for each combination of triggered
detectors. Representing Triggered Detectors (v') and Possible (A) and Not-Applicable
(D) cases. Omitting Impossible cases.

Main Type Cases Conclusion
Type 1 Type 2 Type 3 Case A Case B Case C
4] Normal Operation
v A Early Concept Change with no impact on frontier
v A Early Concept Change with imminent impact on frontier
v 4] Bad Frontier detected without concept change hold by imbalance in main class
v v A Bad Frontier detected with concept change hold by imbalance in main class
v [9) False Positive Drift Detection
v v A False Positive with concept change in non-impactful direction
v v 4] Bad Frontier detected without concept change, with impact in the main class
v v v A Concept Change with Immediate Impact and Identification

3 Evaluation

3.1 Drift Detection Explained by Examples

Consider the Android malware detection case a representative example of the malware
detection problem. For this demonstration, we considered the DREBIN [4] dataset, given
its popularity and known drift cases. We also considered a simple model that classifies the
APK’s permissions by modeling them as a binary vector (as in DREBIN), which allows
us to easily understand when features entered and left the concept, thus highlighting the
concept change phenomenon. Whereas we initially enumerated all permissions in the
dataset to create a feature vector of the ideal size, the feature vector is only filled on
demand as the permissions appear in the data stream. In our experiment, the dataset was
temporally ordered, as recommended by the best practices in the field [10,25] to avoid
the data snooping pitfall [3]. Since DREBIN is very imbalanced [14] and could affect
the drift results, we undersampled each temporal bin to the 50-50 proportion. Our goal
in this demonstration is not to perform a real-world characterization (which is done in
the next step) but to highlight the studied drift events.

Observing drift in the main classifier output. Drift is an attacker-induced phenomenon
that can be noticed in any reasonably long temporal stream observation. Figure 6 illus-
trates this phenomenon for the evaluated DREBIN dataset setting. It shows the curves
derived from the initial training with samples from the first 3, 5, and 7 bins (epochs). In
all cases, the accuracy significantly decreased, from more than 90% to less than 80%.

Classifier Accuracy vs. Classifier Accuracy vs. Train and Test Sets
100 Train and Test Sets 100 (DDM Drift Detector)
A
90 — % N\
g %/___ — | &
> 80 \"/__’_ >, 80
o g
s]
£ j
FRA 3 v \ | \
< Accumulated Test Accuracy; 3 Traini & ___ Individual Bin Accuracy ___ Accumulated Testing Accuracy
60 —— Accumulated Test Accuracy; 5 Training Bins 60 (ind) . (Test/Acc)
—— Accumulated Test Accuracy; 7 Training Bins — :‘T‘fa'i‘:;x';‘)ed Training Accuracy « Drift Detected (DDM)
2 3 6 21 2a B R N R T 24 27 30 33

12 15
Bins (Id)

5 18 21
Bins (Id)

Fig. 6: Concept drift in practice. The clas- Fig. 7: Drift tendency vs. instantaneous

sification accuracy decreases regardless of detection. Drift points reported by the AD-
the initial training set size/period. WIN algorithm.

Concept drift is a temporal trend, but drift detection algorithms observe the instan-
taneous error rate. When the drift effect significantly influences the classifier output,
it is detected by a drift detection algorithm. Figure 7 shows how the Drift Detection

3. EVALUATION 9

Algorithm (DDM) [16] detects multiple drift points in our tested DREBIN setting. It
is key to notice that the drift effect is a tendency, which is shown by the curve of the
accumulated accuracy results. The drift detection, however, happens in the samples
received within a window (the bins), which exhibit higher variations in the instantaneous
accuracy values. In this work, we measure drift in the instantaneous results, but we
display them mapped to the accumulated ones to highlight the tendencies.

Different drift detectors detect different drift points. In addition to DDM, we also
tested the EDDM [5] and ADWIN [9] drift detectors in multiple settings. We consider
the policies of (i) never resetting the detector in the entire stream; (ii) resetting upon
detections; and (iii) resetting at every epoch. Figure 8 illustrates how each detection
algorithms detect a different number of points and at different epochs according to their
internal working and parameters. We notice that although the stream is the same, the first
time each detectors identify the drift occurrence is different and depends on a different
policy. This characteristic of current drift detectors makes it hard to compare them and
to explain their detections. Although we tested all settings in all experiments, in the rest

of this paper, we only show results for the detector that presented the best results.
Classifier Accuracy vs. Classifier Accuracy vs.

100 Train and Test Sets Train and Test Sets
- = 100
First Drift Detected (ADWIN)
Policy: Reset on Detection | .
- % \VARNI i ., [First Drift Detected (DDM) — > —T
9 Yo) A Policy: Reset on Detection | X 8o
80 V T~ o 7
z v VA N V td
£ \) v £ 0 Accumulated Test Accuracy; Overall
3 First Drift Detected (EDDM) H (Test/Acc/Main)
"] Policy: Reset on Detection I Test Class
< o TEmER AR e < T (Test/Acc/MWClass)
60 a0 Test Class
! —— Ind/Main —— Test/Acc/Main (Test/Acc/GWClass)
i 3 6 9 12 15 18 21 24 27 30 33 o 3 6 9 12 15 18 21 24 27 30 33
Bins (Id) Bins (Id)

Fig. 8: Comparing algorithms and poli- Fig.9: Separating detection rates per
cies. Each one detects a different number class reveals that the drift in the MW class
of drift points/events and at different times. causes the global performance degradation.
Class-aware detectors provide an initial explanation level. The previously presented
results with Type 1 drift detectors do not allow identifying which class caused the
drift identification. By adopting a Type 2 detector, we can easily identify it. Figure 9
shows the overall and per-class accuracies in the tested DREBIN settings. It is clear
that the classifier detection rate is the average of two cases: (i) higher goodware and (ii)
lower malware detection rates. It shows both that: (i) goodware is easier to classify than
malware; and (ii) the drift in the malware is responsible for the classifier performance
degradation.

Sub-classes drift differently than the main classifier. We proposed not only to measure
the accuracy of individual classes but actually detect drift in the subclasses. Figure 10
shows that each class presents a different number of drift points and that the drifts in the
main classifiers are not simply the sum of the drifts in the classes. It also shows that the
first drift point for each sub-class is identified at different moments. This happens when
the same classifier is applied to all classes, which reinforces that each class has its own
dynamics that should be individually monitored and understood.

Concepts are really different than frontiers. In the previous experiments, we reached
the limit of the Type 2 drift detector. It explained the classes that caused drift and the
moments each one drifted, but it still does not explain the reason. To achieve that, we
introduced the Type 3 detector with the concept of the classes. The remaining question

10 Tripathi et al.

Classifiers Accuracies vs. Train and Test Sets Classifiers Accuracies vs. Train and Test Sets

(Drift Detector: ADWIN; Policy: Reset on Detection) 100; (Drift Detector: ADWIN; Policy: Reset on Detection)
100 9 - (First Drift Detected| (Ei i
First Drift Detected N o First Drift Detected

0 s (Main Classifier) 11 ° _(Main Classifier) | _|(Malware Classifier)|
R w0 — R f RenisE——g
> 7 > “--| PO B e -
o 0 \ mocsoc” --
8 ¢ [First Drift Detected First Drift Detected O 60 | ye———pe——— ‘ First Drift Detected |
3 (Goodware Class) (Malware Class) K] |(Goodware Classifier)|

50

< . < — A Test Overall (

a0 Test/Acc/Main Test/Acc/GW(Class 40 --- Accumulated Test Accuracy; Malware Classifier (Test/Acc/MW)

30 —— Test/Acc/MWClass | 30| o A Test Classifier ()

[3 6 9 12 27 30 33 [} 3 6 9 12

15 18 21 15 18 21
Bins (Id) Bins (Id)

Fig. 10: Main class vs. sub-classes. A dif- Fig. 11: Drift in the classes self-
ferent number of drift points is identified in recognition rates. Drifts are represented
each class and at different epochs. both for the MW and GW meta-classifiers.

was if the 2-nd layer classifier would learn something different than the main classifier.
Figure 12 and Figure 13 shows the accuracy for the self-recognition of the goodware and
malware classes, respectively. It is possible to see both that: (i) the dynamics of these
classifiers are different from the individual classes of the main classifier (Figure 9); and
(ii) each one of the classes has its own dynamics. The observed results are compatible
with the overall results that the malware class is causing drift because the classifier is
losing its ability to recognize malware over time.

Goodware Classifier Accuracy vs. Malware Classifier Accuracy vs.
Train and Test Sets Train and Test Sets

2
8

Accuracy (%)
Accuracy (%)

\ /'V/ \

\ \ / \
Ind/GW ---— Test/Acc/GW \ [— mdmMw - Test/Acc/MW

o 3 6 9 12 27 30 33

15 18 21 2 15 18 21
Bins (1d) Bins (1d)

Fig. 12: GW class self-recognition rate. Fig. 13: MW class self-recognition rate.

A drift in the concept is really different than a drift in the frontier. A similar
concern was if the concepts would drift and if these drift points would provide additional
information than the drift points in the main classes. Figure 11 shows the drift points for
the subclasses in comparison to the drift in the main classifier. It is possible to see that,
once again, the drift dynamics for each concept/class are different among themselves
and from the main classifier. The first time each concept drifts is noticeably different.
Moreover, compared with the drift points for the subclasses of the main classifier
(figure 10), the drift points are significantly different, which confirms the hypothesis that
the second-layer classifier provides a different type of information about the drift events,
which enables explaining them.

A Type-3 detector enables explaining the entire classifier operation and all drift
events. Our key proposition is that looking at all types of drift detectors, we could
explain the drift events, which was achieved in practice. Figure 14 shows the explanation
of all points based on the detector’s information combined as in Table 1, except for
normal operation points, when nothing is plotted. It explains that the initial detection
drop is due to the misplaced frontier and not because of actual concept change. This
happens because the DREBIN dataset has an initial distribution very imbalanced towards
goodware, and our artificial undersampling approach introduced a limited learning of
the decision boundary. In turn, it further points out that later drift points are caused by

3. EVALUATION 11

real concept changes, which is indicated by the drift in the concept class. In all cases,
the drift point in the main classifier is explained by a drift point also in another curve.
No impossible case was observed, thus confirming the approach’s correctness.

Classifiers Accuracies vs. Train/and Test Sets
(Drift Detector: ADWIN; Policy: Reset on Detection)

N True Drifts
% :v\
N - f
="
S —
'
70 E—
> Bad Fr T, dem-
g :., NTasegon
= 60 s s = il St S g = aa =
3 =T False Positives
o -
50
2 —— Test/Acc/Main « Drift Detected in Main
—=- Test/Acc/MW « Drift Detected in MW Classifier
40 — Test/Acc/MWClass « Drift Detected in MW Class
—-—- Test/Acc/GW « Drift Detected in GW Classifier
30 —— Test/Acc/GWClass « Drift Detected in GW Class
3 6 9 5 18 21 24

12 1
Bins (Id)
Fig. 14: Explaining all operational points and all drift occurrences. Omitting points
of normal operation.

Classifiers Accuracies vs. Train/and Test Sets
(Drift Detector: ADWIN; Policy: Reset on Detection)

920

True Drif@

o \—/.\
27 e L
Y ~4
> 70 AN
(%]
O e -
s False Positives
[¥] Bad Frontier————— s
50 ~o
z —— Test/Acc/Main « Drift Detected in Main
--- Test/Acc/MW e Drift Detected in MW Classifier
40 —— Test/Acc/MWClass « Drift Detected in MW Class
—--- Test/Acc/GW o Drift Detected in GW Classifier
.

30

—— Test/Acc/GWClass

Drift Detected in GW Class

5 18 21 24

Bins (Id)

Fig. 15: Explaining all drift detection points (2:1 balance). We observe fewer frontier
problems and more False Positives.

Type-3 drift detectors reveal the impact of imbalanced datasets in the drift detection.
We attributed the previously identified frontier problems to the limited learning ability
caused by the undersampling procedure. If our theory is correct, increasing the learning
ability should result in fewer frontier problems being detected by our solution. We put
this hypothesis to the test by increasing the proportion of goodware to malware (dataset
balance) in an experiment.

Figure 15 shows the results for the 2:1 dataset imbalance. Our solution explained
all drift and non-drift points, as expected. It also reported fewer frontier problems

12 Tripathi et al.

in this scenario, thus confirming our hypothesis that Type-3 drift detectors allow the
identification of not only real drift cases but also frontier problems.

Type-3 drift detectors reveal true False Positives in Type-1 drift detectors. A phe-
nomenon first observed in the previous experiment, when increasing the dataset imbal-
ance, is that a drawback of having a more defined frontier causes False Positives (FP) to
appear. In fact, we further discovered that the more we increase the imbalance—from fully
balanced (1:1) to the natural imbalanced (N:1)-the more FPs are observed, as reported
in Figure 16.

Drift Errors and Bad Frontiers vs. Classifiers Accuracies vs. Train/and Test Sets
Different Undersampling (Drift Detector: ADWIN; Policy: Reset on Detection)
25 +9 Order Sensitivity E53 +1 Order Sensitivity —— Ideal ---- Typel,Type2 or Type3*
NN +7 Order Sensitivity == Default Sensitivity — Typel ---- Type3*
2 3 +5 Order Sensitivity Bad Frontiers ”
+3 Order Sensitivity False Positive Drifts \/\ — Type2orType3 — Typel
w0 o —— Type3
N/ R e e

Accuracy (%)

False Positives/
Bad Frontiers

lsBinslild) N

Fig. 16: Drift Detector Calibration. False Fig.17: Early retraining on concept
Positives and bad frontiers are explained by changes leads to improved accuracy than
the proposed approach. retraining only upon main class drift.

We claim that our Type-3 solution can identify FPs in the Type-1 drift detectors. If
our theory is correct and the reported points are true false positives, calibrating the drift
detectors’ sensitivity should decrease the FPs without affecting the frontier reports. In
turn, if our theory is wrong and the reported FPs are true drift points, decreasing the drift
detector sensibility should lead to more frontier problems as the samples evolve. We
put our theory to the test by conducting experiments with different dataset imbalances.
Figure 16 summarizes the results for the number of frontier problems and reported FPs.
They confirm our hypothesis that our Type-3 solution reported true FPs. As we calibrated
the drift detector sensitivity in different orders of magnitude, fewer FPs were reported.
Moreover, the frontier problems decreased the more data the model had to learn.
Explainability allows early retrain. The previously presented results are based on the
continuous run of the initial model. In most pipelines, however, the model is retrained
upon the drift alarms. Our main goal in this work was not to make drift detectors faster or
more precise but more explainable. However, if you have a better situational awareness—
i.e., you know what is happening, thus when concepts are changing—you have a better
trigger for retraining procedures. Therefore, we conclude that explainability and precise
early retraining are the two faces of the same coin.

This fact is clearly illustrated in Figure 17, which shows the achieved accuracy when
retraining models upon the trigger of the best and worst combinations of drift alarms
(only Type 1, 2, or 3, or all combinations of Type 1, 2, and 3). The results are compared
to the ideal case where the model was trained with the entire dataset, and no drift exists
by definition/calibration. Retraining has a positive effect in all cases compared to not
retraining. However, the best results are achieved when retraining upon Type 3 drift
detectors and not when retraining upon a drift in the main classifier. This confirms the
hypothesis that Type 3 detectors can identify concept change before the samples cross
the decision boundary (Type 1 and 2), when it is already harming the detection results.

3. EVALUATION 13

Average Improvement per Retraining vs. Average Improvement per Retraining vs.
Resetting Configurations 010 Resetting Configurations
Ideal . NoRetraining mm SoonmProved
Trained on
Al

Directional
W Type 3 Drift

- Non-Directional

W= Type 3 Drift

s<18

Reset on
Main
Malware

24<s<21
21<s<18

Reset on|
_ Main

/

i Reset on 1 "Ese(on |
i | | Main Drift|

Main
|Malware Class (Dir.)|

Different Configuration Reset Policies Different Configuration Reset Policy

Fig. 18: Retrain Effectiveness. The vast Fig. 19: Retrain Efficiency. The best cost-
majority of the proposed drift detection trig- benefit between the amount of retrains and
gers lead to increased accuracy gains than accuracy increase is achieved by identifying
the original Type 1 drift detector trigger. concept changes.

Figure 18 presents the distribution of accuracy gains for all combinations of retrain

triggers. It is noticeable that retraining upon a drift identification in the vast majority of
the proposed Type 2 and Type 3 detectors leads to increased gains than only retraining
upon a Type 1 drift detection event.
Explainability makes retraining more efficient. Retraining procedures should be
efficient in addition to effective, i.e., they should not only increase the overall detection
rate but do it without spending excessive resources. A procedure that retrains the classifier
every epoch is effective but not resource-efficient. We evaluated the efficiency of all
retraining policies (the set of drift detectors that trigger a retrain) via their cost-benefit,
i.e., how much they increase the total accuracy compared to the number of triggered
retrains. Figure 18 demonstrated that the proposed directional approach was the most
effective, but would it also be the most efficient?

Figure 19 shows the cost-benefit distribution for the multiple training strategies, i.e.,
their average accuracy increase per number of retrains. The results are broken down
by their 10% increase intervals. This is required because, whereas a lower number of
retrains is on average very efficient, it does not allow scaling the accuracy at higher
levels. In turn, to raise the accuracy to cover all corner conditions, a series of additional
retrains steps are required, which naturally decreases the efficiency. This is known as
the 80:20 distribution or Pareto problem—when most of the gains come initially and a
series of extra steps are required for the additional minor gains. This phenomenon is
observed by the fact that the most efficient strategy is a non-directional drift strategy,
but it did not achieve the highest increase levels. In turn, our proposed direction-aware
retraining strategy was not only the most effective one but also the most efficient. Overall,
directional strategies were the most effective for 3 out of the 5 ranges of accuracy gains.

3.2 Results Generalization

After showcasing our solution’s potential via the above examples, we extended our
analysis to evaluate how it generalizes. To do so, we repeated the previous experiments
in a wide range of settings (e.g., different drift detectors, drift detection policies, and
dataset imbalances) and assessed the outcomes’ coherence. In total, we performed
5000 different runs of our solution over the DREBIN dataset. No run produced an
“impossible” case, thus reinforcing our claims on the approach’s correctness. Overall,
the obtained large-scale results corroborated the previous experiments’ results, which
allows to explain the different effects datasets are subject to.

—_
~

Tripathi et al.

False Positives vs. Undersampling

False Positives vs. Undersampling
= EDDM
EE DDM
EEE ADWIN(Default)

Average Cases of

Average Cases of
° ADWIN (Trend)

* ADWIN (Trend) =N ADWIN(Default)

EEEENNENNSSEuREERaRY

onannBREREENERREY
Number of False Positives

Number of False Positives

sa £
Undersampling

Fig.20: DREBIN: FP Results Distribu- Fig.21: ANDROZOO: FP Results Distri-
tion for different imbalances. FPs grow bution for different imbalances. FPs grow
with the imbalance for most detectors. with the imbalance for most detectors.

False Positives identification at scale. Figure 20 shows the FP distribution of different
detector settings (e.g., detection policies) for different imbalances. For each possible
FP value (y-axis), the stacked bars show the proportion of experiments that presented
(hatched) or not (empty) that FP rate. The bars are stacked, covering all possible FP rates.
We filled the bar representing the setting with the highest proportion to highlight patterns.
In the case of ties, all settings were highlighted. We broke down the results by detectors.

The most prevalent results in each column shows that in general the more imbalanced
the dataset, the more FPs happen, as previously showcased for the individual case. This
happens for all detectors, but it is more pronounced for the default configuration of
ADWIN (4th column). ADWIN calibration mitigates the problem (column 3) for most
configurations (remember that each bar represents hundreds of runs). Retraining on
drift detection (last column) also significantly mitigates the problem, but via a different
mechanism: not because it is calibrated, but because of its continuous adjustments.

Bad Frontiers vs. Undersampling

@5 ADWIN(Calibrated)
Average Cases of
° ADWIN (Trend)

Bad Frontiers vs. Undersampling

Average Cases of

* ADWIN (Trend) = ADWIN(Default)

EEm ADWIN(Default)

[TTTTTTT

HHHH [

SEEEENERNSSELEs s aseanae

s'”zw wum
HHJ [TITTIITT

I

Number of Bad Frontiers
Number of Bad Frontiers

PN

PI
{HH
HH

Undersampling

Fig.22: DREBIN: Detectors’ Results Dis-
tribution. Frontier problems for different
undersamplings. The bigger the undersam-

Fig.23: ANDROZOO: Detectors’ Results
Distribution. Frontier problems for differ-
ent undersamplings. The bigger the under-

pling, the more frontier problems. sampling, the more frontier problems.

Bad Frontiers identification at scale. Figure 22 shows the distribution of bad frontier
points reported by our solution in different dataset imbalances. In the overall case, as
well as for the particular case previously demonstrated, the more undersampled the
dataset is from the original distribution, the more frontier problems appear due to the
limited data available to learn from. This effect is observed for all drift detection settings,

3. EVALUATION 15

and it is mitigated by calibration and/or retraining. This result shows not only that the
effect is real but also that our solution can explain it.

Retraining. Once we have demonstrated how drift events are explained in the general
case by our proposed solution, we shift our attention to remonstrating how an explainable
drift detection also favors more effective and efficient retraining processes. We computed
the retraining statistics for the thousands of runs previously presented and analyzed the
behavior of different drift detection strategies.

F1 Scores vs. Undersampling oD ADWIN F1 Scores vs. Undersampling ADWIN
23 Typel 5N Type3 WEE NoRetraining M Type 3 Directional 53 ideal 3 Typel [N Type3 WEN NoRetraining BES Type 3 Directional sl Ideal

o
F1 Scores
°
>

F1 Scores
°
S

R 777

N
\
\
\
\
\
\
\
\
\
\
N
\

SSSSSSSNINNNNISN
oo oosossssssssss
SOOI Y
Noosossssssssssssil
WL T T 77777772

N
A
\
\
\
\
\
\
\
\
\
\
\
\
\

RSOSSN INNINNN
RSSSNNNNNINNNNNN
L2777 7777 A

"
7
/
/
s
s
s
s
/
/
/
g
g

NAaTRLRRRRRRRRRN

;
/
Y
7
7
’
7
Y
Y
Y
Y
/
A

Movosoesssssss)

Nososssossssss
N

Novooooessssss)

N 0.0, 7
TS

i1 i1

1 :
Undersampling Undersampling

11 a1 5:1

Fig.24: DREBIN: Average Retraining Fig.25: ANDROZOO: Average Retrain-
Results. Average F1-score Under Time in- ing Results. The imbalance effect is less
crease over the baseline when triggering pronounced in this dataset, but the Type-3
retrains using different policies vs. the mul- retraining strategy is still the superior one
tiple dataset imbalances. in all scenarios.

Figure 24 shows the average F1-score for the multiple detectors configurations
in the tests with multiple, different dataset imbalances. It is clear that performing no
retraining (i.e., having no drift detection) is the worst case of all. The greater the dataset
imbalance, the more noticeable the impact becomes as more samples are considered, thus
accumulating the effect of wrong predictions. In this sense, using even a traditional (Type
1) drift detector is a good mitigation strategy. Class-aware (Type 2) drift detectors present
gains over Type 1 because detecting when one class is drifting instead of waiting for the
impact in the two classes at the same time allows early retraining, so the classifier spends
less time making wrong predictions. In this same line, our proposed explainable drift
detector (Type 3) presents even greater performance gains, as it allows early retraining
when the concepts change, which reduces even more the window in which the detector
makes wrong predictions. For all imbalances, our solution was the one that got closer
to the ideal scenario—where retraining was not needed because it was trained with the
complete dataset, thus not presenting drift by default.

Androzoo Generalization. While the imbalances and size of the DREBIN dataset
highlight multiple positive aspects of our proposed drift explanation, they could also
potentially hide negative aspects. Therefore, we repeated the previous experiments with
Androzoo, a much larger and more balanced dataset, to demonstrate that our solution
also operates properly under these different biases. As for the DREBIN dataset, our
proposed solution explained all event points for the Androzoo one, and no invalid point
was observed. More than that, the trends observed for the DREBIN dataset were also

16 Tripathi et al.

observed in Androzoo when different imbalances were enforced. Figure 21 shows the
average number of FPs identified in the multiple Androzoo experiments for different
dataset imbalances when considering ADWIN, the best detector in our tests (This time
we omitted the results for the other detectors to not pollute the plot with redundant
trends—they follow the same pattern as for DREBIN). As for DREBIN, the number
of FPs increases with the imbalance. Also, similarly to DREBIN, the number of bad
frontiers decreases with the imbalance, as shown in Figure 23. Finally, the overall
performance (F1 under time) also increases for AndroZoo (Figure 25), as for DREBIN.
Runtime Performance Overhead Analysis. We conclude our evaluation with the
analysis of the runtime performance overhead introduced by our solution. As a trade-off
for making our solution agnostic to the main classifier, we made our solution bigger:
as it requires 2 additional models, it is expected the total performance requirement
to also increase by 2 times. We consider this an acceptable trade-off for one aiming
to explain drifts. We measured the actual solution overhead via the total experiment
runtime (training, predictions, and retraining) in our machines. While the baseline values
might change from machine to machine, the relative overhead should be generalized
consistently.

Table 2: Runtime Performance Overhead for DREBIN and AndroZoo. The cost of
individual retrains is reduced, but the total execution time cost increases.

DREBIN AndroZoo
Retrain Total Time / Cost/ Overhead / Total Time / Cost/ Overhead /
Policy Retrains (#) Normalized Retrains (#) Normalized
Typel 11.65s/5 2.73s / 0x / Ox 4704s /5 94s /0x / 0x
Type 1 53.53s/5 10.7s/3.92x/3.92x 1688.6/5 337.7s/3.6x/3.6x
Type 2 105.77s /13 8.13s/7.74x / 2.98x 3563.9s/ 15 237.6s/7.5x/2.5x
Type 3 102.70s /13 7.90s /7.52x / 2.89x 4161.3s/19 219s/8.84x / 2.32x

Models (#)

W W W =

Table 2 shows the total execution time and overhead values normalized by the number
of retrains for both datasets (different problem sizes). The first to second rows show the
increase in the metrics scores caused by adding the external monitor to the system, i.e.,
by tripling the number of classifiers/models, but without actually using their information
for classification. Although this scenario is not realistic in practice, it works as ground
truth for isolating variables and measuring the individual impact of the architecture itself.
The third and fourth rows exemplify cases that actually consider the results of the added
classifiers, as used in practice, which allows measuring the impact of policies.

The results for the two datasets follow the same trend: The total execution time
significantly increases when new the architecture is added (first to second line). It more
than triples the total execution time, as not only the prediction and retraining time are
tripled but there are also additional costs to compute drift distances and directions. The
major overhead, however, comes from the additional number of retrains triggered by
the new policies, which are required to increase the long-term detection accuracy. This
overhead is non-linear, but exponential, because each new retrain includes all data from
previous epochs, which makes each new retrain slower. Despite this effect, the normalize

4. DISCUSSION 17

time per retrain remains constant (and lower than the triple from the original architecture
addition). In fact, the more efficient the policy, the smaller the cost of an individual
retrain. For instance, Type 3 triggers retrains in the most appropriate moments, such that
it can achieve the same accuracy as Type 2, with the same number of retrains, but by
training in a much earlier scenario, by predicting the drift occurrence, thus having to
process less data. In sum, our results allow us to conclude that adding meta-classifiers
to explain drift detector significantly increases the absolute time taken to process the
samples, but it makes the individual retrains much more efficient.

4 Discussion

Wider Implications. Whereas exemplified in the malware detection domain, where we
have domain expertise, the hereby presented findings apply to any domain that can be
modeled as a binary classification problem under the same constraints. Thus, we expect
our proposed architecture to explain drift occurrences in varied tasks.

Feedback for Operators. We expect operators of malware detection pipelines (e.g.,
MLSecOps) to benefit from our solution not only to understand the drift points but
also to understand the pipeline operation at any point. Our solution’s ability to identify
improper frontiers might assist operators in identifying when the classifier was trained
with a limited amount of data or a non-representative dataset and is not operating well
in practice, which is common during the initial phases of malware detection pipeline
deployments.

Limitations. We propose a practical solution for explaining drift points. We do not
provide mathematical guarantees of the optimality of the retraining results. Future works
should provide it via additional math formulations on top of our developments.

Future Work. This work is a first step towards explaining drift detection points, but our
work is not exhaustive. Further developments should expand our contribution from the
binary classification domain to the multi-class domain. It is also key to make analysis
more fine-grained and robust. As cases of particular research interest to applying this
approach in real scenarios, we point out the following open research problems and future
research directions:

— Label Delays. In real deployments, the true labels used for drift detection are not
immediately available but arrive delayed, which causes a delay in drift detection.
Whereas here we assumed an ideal scenario, as most of the literature, it is key to
develop strategies to handle drift delays to foster the solution adoption. It is key to
be mindful that, in practice, the explanations provided by our solution would be
delayed by the same amount of time as the label arrival delay.

— Virtual Drifts. In practical scenarios, it is common that the ground truth labels used
for drift detection might flip over time from one class to another. These flips might
cause improper drift detection (virtual drift points). Whereas this work, as most
in the literature, assumed an ideal scenario of no label flips, the case of label flips
should be addressed in real-world deployments. For such, strategies for identifying
false drift reports should be developed.

— Intra-Class Drifts. The Sample’s concept drifts not only across classes but also
inside the same class as they evolve. A single concept approach, as most in the

18 Tripathi et al.

literature, is blind to such modifications. To be able to spot such cases, we should
not only learn a single malware concept but also split the learned malware concept
into multiple ones and temporally evaluate their drift dynamics.

Making retraining as practical as explanation. Our approach makes the explanation
of drift events practical. We consider that requiring additional processing for this task is
acceptable since explanation and validation tasks are usually performed in controlled
environments without processing constraints. In turn, whereas we demonstrated that it
would foster early retraining, further studies are warranted to obtain the best cost-benefit
for its deployment in practice. A lighter version of the approach can be developed, such
as considering only the concept’s centroid as the average confidence.

Expansion for Heterogeneous Architectures. Our experiments considered the first and
second-layer classifiers as having the same classifier. This is an experimental choice to
isolate variables and allows us to claim that any observed effect is due to the concepts, not
due to the architecture. However, it is possible to hypothesize future deployments with
heterogeneous architectures, where the second-layer classifier is even more powerful
than the first layer to better learn the concept from limited data amounts.

The data coupling invariant: Note that although the model can be decoupled in their
architectures, they always should have a strong decoupling in their data, i.e., the first and
second layer models should be trained with the same dataset and present the maximum
performance on them. If the models are decoupled in data, the second layer model might
report a drift point that does not exist in the primary model.

5 Related Works

Proposals for New Drift Detectors are the most common in the literature. They vary
from eliminating the need for labels [30] to new models and architectures [2,24] for
increased detection rates. However, these works do not focus their developments on
explaining their drift results, which is our focus in this work.

Model Monitoring is the MLSecOps task this paper targets. Previous works proposed
architectures to model a given model operation [7,8], but these works only approached the
problem quantitatively, providing a final score of the system operation. In our qualitative
approach, we used scores to explain the model operation at each moment.

Classifying Drift Events is a common contribution in the literature [21]. Previous works
proposed characterizing drift events in multiple dimensions [28], such as the introduction
of a new class, the recurrence of the drift events, the impact extent, and so on. Whereas
characterizing drift in all its dimensions, the malware detection problem offers some
advantages. such as its limitation to a binary classification problem, with no introduction
of new classes, which allows for relaxing some constraints from the general case. In this
case, we adopt a more practical classification [17] that considers real and virtual drift
occurrences. We extend these concepts to drift in the malware detector class or frontier.
The limit of the existing explainable solutions is to only explain parts of the drift
phenomenon, such as only local regions [18], only the wrong features [27], or only
feature-frequency change [20]. We here present explanations that cover all these scenar-
ios. In addition, we present tests with real and not synthetic data [22].

The applications benefiting from drift explanation described in the literature range
from data mining [1] to COVID identification [15]. Whereas drift is a fundamental
phenomenon in malware detection, few drift detection architectures are designed for

6. CONCLUSION 19

the task, and the few existing ones [26] do not explain the phenomenon beyond feature
change. Ideally, we would like to perform forensic procedures of malware detectors [13]
but to explain the binary classification and not how new malware families appear.
Security-focused drift detectors are limited in either providing information only about
the features that changed without explaining the model changes [11] or by determining
model changes without explaining the features used in the models [23]. Conformal evalu-
ation [6], the closest idea to ours, also split detection in two (confidence and credibility),
but unlike our proposal, these information are not used to explain the classifier situation
at each moment, but only to early retrain the classifier. 2-level architectures are becoming
more common over time. A recent proposal also split the problem into two [19] but
adopted a mathematical approach based on the latent space conformity to evaluate drift
points. Our proposal uses ML classifiers to model such deviations to explain the points
in addition to triggering a retrain on them.

Boundary-based vs. Distance-based Explanations. Drift explanations are typically
classified in these two classes, each one presenting pros and cons. Our approach fits
into the first category as it aims to explain frontier-crossing events. An exemplary work
in the second category is CADE [29], which uses contrastive learning to measure the
difference between goodware and malware classes. We consider that boundary-based
approaches are more interesting solutions to the scenario presented here as they allow
explaining every drift point, including false positive drift reports, whereas distance-based
approaches only report true concept changes.

Explaining Detection vs. Explaining Drifts. The explanation of ML-based malware
detection models is a growing topic, but most of the existing solutions focus on explaining
the detection model itself. Popular metrics for it include, for instance, the fidelity of the
model [12], but these metrics do not explain the malware evolution. In this sense, the
here proposed drift explanation is a step ahead to complement (and not replace) previous
explanation initiatives.

6 Conclusion

This work investigated the problem of explaining concept drift detection occurrences
in malware detection pipelines. We proposed the idea of splitting the concept drift
phenomenon into (1) classifier’s frontier changes and (2) concept changes to explain
better the drift causes. We evaluated the viability of our proposal via experiments with
the DREBIN and AndroZoo datasets. We discovered that our approach not only explains
all drift events, identifying true and false drift reports, but also that the reliance on an
explainable method increases the detector performance by allowing the retraining to
occur in the most promising points (true drift events).

Reproducibility. All code developed in this search is available at https://github.
com/Botacin-s-Lab/Concept.Drift.Explanation

Acknowledgments. We thank the anonymous reviewers and shepherd for all the helpful
insights. Marcus Botacin thanks NSF for the support via the CNS 2327427 grant.

References

1. Adams, J.N., van Zelst, S.J., Quack, L., Hausmann, K., van der Aalst, WM., Rose, T.: A
framework for explainable concept drift detection in process mining. In: Business Process
Management: 19th International Conference, BPM 2021, Rome, Italy, September 0610,
2021, Proceedings 19. pp. 400—416. Springer (2021)

20

10.

11.

12.

13.

14.

15.

16.

17.

Tripathi et al.

. Andresini, G., Pendlebury, F., Pierazzi, F., Loglisci, C., Appice, A., Cavallaro, L.: Insomnia:

Towards concept-drift robustness in network intrusion detection. In: Proceedings of the 14th
ACM workshop on artificial intelligence and security. pp. 111-122 (2021)

. Arp, D., Quiring, E., Pendlebury, F., Warnecke, A., Pierazzi, F., Wressnegger, C., Cav-

allaro, L., Rieck, K.: Dos and don’ts of machine learning in computer security. In: 31st
USENIX Security Symposium (USENIX Security 22). pp. 3971-3988. USENIX Association,
Boston, MA (Aug 2022), https://wuw.usenix.org/conference/usenixsecurity22/
presentation/arp

. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: Drebin: Effective and

explainable detection of android malware in your pocket. In: NDSS. The Internet Society
(2014), http://dblp.uni-trier.de/db/conf/ndss/ndss2014.html#ArpSHGR14

. Baena-Garcia, M., del Campo—Avila, J., Fidalgo, R., Bifet, A., Gavalda, R., Morales-Bueno,

R.: Early drift detection method. In: Fourth international workshop on knowledge discovery
from data streams. vol. 6, pp. 77-86. Citeseer (2006)

. Barbero, F., Pendlebury, F., Pierazzi, F., Cavallaro, L.: Transcending transcend: Revisiting

malware classification in the presence of concept drift. In: 2022 IEEE Symposium on Security
and Privacy (SP). pp. 805-823 (2022). https://doi.org/10.1109/SP46214.2022.9833659

. Bhaskhar, N., Rubin, D.L., Lee-Messer, C.: An explainable and actionable mistrust scoring

framework for model monitoring. IEEE Transactions on Artificial Intelligence (2023)

. Bhatt, U., Xiang, A., Sharma, S., Weller, A., Taly, A., Jia, Y., Ghosh, J., Puri, R., Moura,

J.M., Eckersley, P.: Explainable machine learning in deployment. In: Proceedings of the 2020
conference on fairness, accountability, and transparency. pp. 648-657 (2020)

. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In:

Proceedings of the 2007 SIAM international conference on data mining. pp. 443-448. SIAM
(2007)

Ceschin, F., Botacin, M., Bifet, A., Pfahringer, B., Oliveira, L.S., Gomes, H.M., Grégio,
A.: Machine learning (in) security: A stream of problems. Digital Threats 5(1) (mar 2024).
https://doi.org/10.1145/3617897, https://doi.org/10.1145/3617897

Ceschin, F., Botacin, M., Gomes, H.M., Pinagé, F., Oliveira, L.S., Grégio, A.: Fast & furious:
On the modelling of malware detection as an evolving data stream. Expert Systems with
Applications 212, 118590 (2023). https://doi.org/https://doi.org/10.1016/j.eswa.2022.118590,
https://www.sciencedirect.com/science/article/pii/S0957417422016463
Chen, L., Yagemann, C., Downing, E.: To believe or not to believe: Validating explanation
fidelity for dynamic malware analysis. In: CVPR Workshops. pp. 48-52 (2019)

Chow, T., Kan, Z., Linhardt, L., Cavallaro, L., Arp, D., Pierazzi, E.: Drift forensics of malware
classifiers. In: Proceedings of the 16th ACM Workshop on Artificial Intelligence and Security.
pp- 197-207 (2023)

Daoudi, N., Allix, K., Bissyandé, T.F., Klein, J.: A deep dive inside drebin: An explorative
analysis beyond android malware detection scores. ACM Trans. Priv. Secur. 25(2) (may 2022).
https://doi.org/10.1145/3503463, https://doi.org/10.1145/3503463

Duckworth, C., Chmiel, F.P., Burns, D.K., Zlatev, Z.D., White, N.M., Daniels, T.W., Kiuber,
M., Boniface, M.J.: Using explainable machine learning to characterise data drift and detect
emergent health risks for emergency department admissions during covid-19. Scientific reports
11(1), 23017 (2021)

Gama, J., Medas, P, Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan,
A.L.C.,, Labidi, S. (eds.) Advances in Artificial Intelligence — SBIA 2004. pp. 286-295.
Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

Gomes, H.M., Grzenda, M., Mello, R., Read, J., Le Nguyen, M.H., Bifet, A.: A survey on
semi-supervised learning for delayed partially labelled data streams. ACM Comput. Surv.
55(4) (nov 2022). https://doi.org/10.1145/3523055, https://doi.org/10.1145/3523055

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

6. CONCLUSION 21

Haug, J., Braun, A., Ziirn, S., Kasneci, G.: Change detection for local explainability in evolving
data streams. In: Proceedings of the 31st ACM International Conference on Information &
Knowledge Management. pp. 706716 (2022)

He, Y., Lei, J., Qin, Z., Ren, K.: Going proactive and explanatory against malware concept
drift (2024)

Hinder, F., Vaquet, V., Brinkrolf, J., Hammer, B.: Model-based ex-
planations of concept drift. =~ Neurocomputing 555, 126640 (2023).
https://doi.org/https://doi.org/10.1016/j.neucom.2023.126640, https://www.
sciencedirect.com/science/article/pii/S0925231223007634

Hu, H., Kantardzic, M., Sethi, T.S.: No free lunch theorem for concept drift detection in
streaming data classification: A review. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery 10(2), e1327 (2020)

Jacob, V., Song, F., Stiegler, A., Rad, B., Diao, Y., Tatbul, N.: Exathlon: A benchmark for
explainable anomaly detection over time series. arXiv preprint arXiv:2010.05073 (2020)
Jordaney, R., Sharad, K., Dash, S.K., Wang, Z., Papini, D., Nouretdinov, 1., Cavallaro, L.:
Transcend: Detecting concept drift in malware classification models. In: 26th USENIX Secu-
rity Symposium (USENIX Security 17). pp. 625-642. USENIX Association, Vancouver, BC
(Aug 2017), https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/jordaney

Panda, P., Kancheti, S.S., Balasubramanian, V.N., Sinha, G.: Interpretable model drift detec-
tion. In: Proceedings of the 7th Joint International Conference on Data Science & Management
of Data (11th ACM IKDD CODS and 29th COMAD). pp. 1-9 (2024)

Pendlebury, F., Pierazzi, F., Jordaney, R., Kinder, J., Cavallaro, L.: TESSERACT: Eliminat-
ing experimental bias in malware classification across space and time. In: 28th USENIX
Security Symposium (USENIX Security 19). pp. 729-746. USENIX Association, Santa
Clara, CA (Aug 2019), https://www.usenix.org/conference/usenixsecurity19/
presentation/pendlebury

Shaer, I., Shami, A.: Thwarting cybersecurity attacks with explainable concept drift. arXiv
preprint arXiv:2403.13023 (2024)

Vishnampet, R., Shenoy, R., Chen, J., Gupta, A.: Root causing prediction anomalies using
explainable ai. arXiv preprint arXiv:2403.02439 (2024)

Webb, G.I., Hyde, R., Cao, H., Nguyen, H.L., Petitjean, F.: Characterizing concept drift. Data
Mining and Knowledge Discovery 30(4), 964-994 (Apr 2016). https://doi.org/10.1007/s10618-
015-0448-4, http://dx.doi.org/10.1007/s10618-015-0448-4

Yang, L., Guo, W., Hao, Q., Ciptadi, A., Ahmadzadeh, A., Xing, X., Wang, G.:
CADE: Detecting and explaining concept drift samples for security applications. In:
30th USENIX Security Symposium (USENIX Security 21). pp. 2327-2344. USENIX
Association (Aug 2021), https://www.usenix.org/conference/usenixsecurity21/
presentation/yang-limin

Zheng, S., van der Zon, S.B., Pechenizkiy, M., de Campos, C.P., van Ipenburg, W., de Harder,
H., Nederland, R.: Labelless concept drift detection and explanation. In: NeurIPS 2019
Workshop on Robust Al in Financial Services: Data, Fairness, Explainability, Trustworthiness,
and Privacy (2019)

