
HEAVEN: a Hardware-Enhanced AntiVirus ENgine to accelerate real-time,
signature-based malware detection

Marcus Botacin1 Marco Antonio Zanata Alves1 Daniela Oliveira2 André Grégio1

1Federal University of Paraná (UFPR-BR)
{mfbotacin,mazalves,gregio}@inf.ufpr.br

2University of Florida (UF-USA)
daniela@ece.ufl.edu

Abstract
Antiviruses (AVs) are computing-intensive applications that
rely on constant monitoring of OS events and on applying pat-
tern matching procedures on binaries to detect malware. In this
paper, we introduce HEAVEN, a framework for Intel x86/x86-
64 and MS Windows that combines hardware and software to
improve AVs performance. HEAVEN workflow consists of a
hardware-assisted signature matching process as its first step
(triage), which is fast, and only invokes the software-based AV
when the software is suspicious, i.e., with an unknown hardware
signature for malignity. We implement a PoC for HEAVEN by
instrumenting Intel’s x86/x86-64 branch predictor, which al-
lows for the generation of malware signatures based on branch
pattern history. To validate our PoC, we evaluate HEAVEN
with a dataset composed of 10,000 malware and 1,000 benign
software samples from different categories and accomplished
malware detection rates of 100% (no false-positives). The de-
tection occurred before the execution of 10% of the samples’
code. HEAVEN is designed to be memory efficient: it identi-
fied unique 32-bit signatures for each sample at the storage cost
of only 35KB of SRAM. HEAVEN is also designed with process-
ing efficiency in mind: its hardware extensions present negligi-
ble performance overhead and reduces the average workload of
the chosen software AV counterpart (ClamWin)—10% for CPU
usage, 5.61% for memory throughput, 16.22% for disk writes,
and 20.22% for disk reads. With HEAVEN, we may decrease
the number of CPU cycles used for malware scanning by 87.5%,
which is a promising result regarding the feasibility of our pro-
posal: the combination of hardware-/software-based AVs for
practical and effective malware detection that flags suspicious
software while posing negligible performance overhead.

1 Introduction
Signature-based antiviruses (AVs) have historically been one
of the main lines of defense against malware. Although mod-
ern AVs cover broader threat models (e.g., browser protection,
key management, and sandboxing), their key capability is still
based on signature matching [69], since this is the fastest way
to respond to incidents related to newly-discovered samples
(from 0-days to 1-days). In the signature matching paradigm, a
signature—typically byte sequences—is usually produced when
human analysts (and their developed procedures) identify a bi-
nary file as malicious. Then, the new signature is distributed
to AV clients over the Internet as an update for their viruses

database. Despite being a very popular and effective method
to detect known malware, signature-based detection has many
drawbacks, such as per-file-based operation, signature evasion
by malware variants, and an exponential increase in the num-
ber of signatures (due to the need of keeping previous, recent,
and polymorphic signatures). In addition, there is the perfor-
mance overhead, caused by the need of the AV to continuously
perform pattern matching operations on targeted binaries until
a signature matches or to continuously monitor overall soft-
ware execution. The performance penalties incurred by these
activities (e.g., binary’s executed instructions polling, regular
snapshots of binary’s memory, system calls hooking) may be as
high as 400% [67] (worst-case scenario), and most of them are
caused due to the high frequency of memory checks.

Current AVs may experience up to 61% performance over-
head while monitoring application installations [37], and up to
7% overhead when running benchmarks [7] (some AVs are more
affected than others [6]). Therefore, this computing-intensive
AV modus operandi can cause severe degradation to system
performance, which makes AVs prohibitive for usability, for in-
stance, opening Web sites may pose 20% performance over-
head [8]. In such cases, users might prefer to turn off the AV
to have a responsive application at the cost of letting their sys-
tems vulnerable to all sorts of attacks. Modern malware makes
the performance challenge even worse: recently observed sam-
ples may be composed of multiple modules, each one responsi-
ble for performing different tasks (e.g., one program or module
might drop malicious files whereas another one produces code
at runtime). Due to that, current AVs must monitor software
execution (including threads and modules) until a signature is
matched. In many cases, the AV also needs to wait for the un-
packing of software to scan the embedded payload. To mitigate
performance degradation, some AVs turn off real-time checking
options [64], thus decreasing the checking frequency. In doing
so, it might lead to another problem for AV users: the missing
of attack detection between checkpoint intervals [55].

Ideally, the two key AV operations, i.e., software execution
monitoring and pattern matching, should be decoupled. This
way, the detection accuracy could be improved, since AVs would
only act on suspicious execution checkpoints, as well as inspect
malware when they are “ready” for detection (e.g., unpacked).
In this work, we propose to leverage the collaboration of hard-
ware and software for efficient and effective signature-based
malware detection. Our main insight is that branch pattern
history used by many branch predictors [72] can also serve
as malware signatures. While previous approaches have al-

1

ready proposed the mitigation of AV overhead with hardware
checks [58, 27], these approaches require substantial hardware
changes and add difficulties for AV signature updates, which
would need to be encoded in hardware.

To address the performance overhead of software-based AVs
and the feasibility challenges of hardware-based AVs, we in-
troduce HEAVEN (Hardware-Enhanced AntiVirus ENgine), a
hardware-software framework that causes software-based AV
inspections to occur only on suspicious checkpoints specified by
the AV companies, i.e., on detected branch-pattern-based signa-
tures that are matched before the malware sample presents its
malicious behavior. Thus, it is possible to decrease the most sig-
nificant cost of AV operation—the constant monitoring of soft-
ware execution. HEAVEN’s triage for AV checkpoints is based
on branch pattern history via the instrumentation of the Global
History Register (GHR), a component of existing x86/x86-64-
CPU branch predictors. HEAVEN complements and enhances
existing AVs by taking advantage of the benefits gathered from
years of advances made by the AV industry research and devel-
opment, also reducing the performance overhead caused by AVs
on target systems. HEAVEN is composed of three main compo-
nents: (i) the Signature Matcher, which resides in hardware
and is responsible for pattern matching and for raising an in-
terrupt when a pattern is found; (ii) the HEAVEN Manager, a
Windows kernel driver that handles HEAVEN’s interrupts and
invokes the (iii) Threat Intelligence Manager, a component
at userland whose goal is to disambiguate false positives (FPs)
by requesting memory scans to the software-based AV.

We implemented HEAVEN as a proof-of-concept prototype
on Intel PIN [48] and evaluated it on MSWindows 7 with 10,000
real-world malware and 1,000 benign applications from several
categories. HEAVEN detected all malware samples before each
of them reached 10% of execution (in terms of the call trace),
without false-positives (FPs). HEAVEN identified unique 32-
bit signatures for each sample and required only 35KB of SRAM
memory for signature storage. HEAVEN hardware extensions
incurred negligible performance overhead to the system’s op-
eration. HEAVEN was able to reduce the software-based AV
(we used ClamWin for testing purposes) workload on average
in 10% for CPU usage, 5.61% for memory throughput, 16.22%
for disk writes, and 20.22% for disk reads. HEAVEN also de-
creased the number of CPU cycles used for malware scanning
by 87.5%, which shows its potential for practical and effective
malware detection. The paper contributions are as follows:

1. We propose (and show) that branch signatures can be suc-
cessfully used to fingerprint software and detect malware;

2. We introduce HEAVEN, a hardware-software framework
that leverages branch signatures to detect malware and
outsources part of signature matching operations to hard-
ware for performance gains. We present HEAVEN’s design,
implementation, and evaluation of its PoC;

3. We discuss how hardware-based signatures can be created,
as well as the evaluation of the effectiveness of our proposed
signature generation procedure.

This paper is organized as follows: in Section 2, we provide
the background information required for understanding AV op-
eration and branch prediction; in Section 3, we present the
threat model and assumptions for HEAVEN, and provide the
details of its design and implementation; in Section 4, we show

the evaluation methodology for HEAVEN and the obtained re-
sults; in Section 5, we discuss the applicability of HEAVEN in
actual scenarios, and its limitations; in Section 6, we present
the related work and, in Section 7, our concluding remarks.

2 Background

In this section, we review the concepts about technologies that
inspired our approach for the design and implementation of
HEAVEN, i.e., the antiviruses and branch predictors.

2.1 Antivirus Operation

Understanding AV internals is often a blurry process even to
security experts since commercial AVs are not open source.
AV detection procedures may be categorized into three main
types: (i) signature matching, (ii) dynamic behavior match-
ing, or heuristics, and (iii) machine learning (ML) classifica-
tion. AVs that employ signature matching as their main form
of detection act by inspecting binaries for byte patterns that
are compatible with previously identified signatures. AVs whose
detection is based on exhibited dynamic behaviors monitor soft-
ware execution until it triggers some heuristic (e.g., download
of specific files). AVs powered by ML techniques observe soft-
ware execution to classify it as malicious or benign based on
a previously trained model. Current AVs implement all these
operation modes, but they choose the most suited engine ac-
cording to each detection task and/or scenario at hand. For
instance, on the one hand, well-known malware families may be
clustered and detected with the aid of features modeled with
ML. On the other hand, 0-day to 1-day malware is often de-
tected through signatures, since these provide faster responses
for new threats; meanwhile, human analysts have the time to
develop new heuristics, ML models, and automation procedures
to detect the 0-day, now known malware family in more effective
ways.

For all types of operation modes, some type of knowledge
database is required: (i) a byte pattern database, for signa-
ture matching; (ii) a suspicious name/directory database, for
heuristic-based detection; and (iii) a trained model, for ML
classification. AV companies produce and distribute those
databases to their clients via the Internet. Database creation
requires the capture of in-the-wild malware samples, their in-
house analysis (including sandboxing), and the generation of
byte signatures for updating AV’s heuristics rule set or ML
model. As AV solutions should produce low FP rates, compa-
nies tend to generate signatures and/or heuristics that avoid
the wrong detection of common benign applications [5] as mali-
cious. This is accomplished with the use of whitelists composed
of benign applications [45, 26, 9]. The main challenges of main-
taining these knowledge databases up to date revolve around
the amount of data that must be kept inside them (e.g., a TB
of database size for Symantec [36]), as well as the time required
to filter out candidate signatures against benign binaries (e.g.,
more than 30 minutes for Ikarus [5]).

The AV also needs to download the knowledge database and
match running binaries against it. Regardless of the detection
mode (signature matching, heuristic, or ML), the AV must con-
tinuously monitor binaries execution to perform the necessary
checks. For example, a signature-based AV checking a packed

2

binary has to wait for the binary to unpack to scan the embed-
ded payload. As the AV does not know when the unpacking
routine will happen, it needs to perform the scan periodically.
Similarly, ML-based AVs might need to monitor the execution of
many windows of events before adequate classification. There-
fore, current AVs are complex, performance-intensive applica-
tions, which perform many different operations besides their
primary task of matching signatures and behavior.

2.2 Branch Prediction

The main idea behind branch prediction is that a branch will
take the same direction it took in a previous moment of the
same run at any given moment. Therefore, the basis for build-
ing branch predictors is to keep the state from the last taken
branches (branch pattern history) and let the branch unit re-
peat them. Currently, most branch predictors structures con-
tain two levels: on the first level, they rely on a Global History
Register (GHR) to store bit patterns of taken branches (1 means
branch taken, 0 means branch not taken); then the GHR-stored
pattern indexes a table that holds multiple simpler predictors,
the Pattern History Table (PHT). Since GHR indexes the PHT,
the size of GHR determines the required space to store all PHT
entries (e.g., a typical GHR size for Pentium 4 processors is 16
bits [34], which represents the last 16 branches).

In Figure 1, we illustrate the two-level branch prediction op-
eration. Upon booting, the GHR is zeroed. When the first
branch (JNE) is taken (3), the GHR is set to one. When the
second branch (JE) is taken (3), the GHR content is shifted
left and another bit one is set on the right. As the third branch
(JG) was not taken (7), the GHR is shifted left but a zero bit
is set instead. This process is repeated for all branches.

Figure 1: Two-level branch predictor. A sequence window
of taken (1) and not-taken (0) branches is stored in the Global
History Register (GHR).

The reasoning behind the two-level construction is that the
same GHR values/patterns will reappear while executing the
same code regions (region fingerprinting), which indicates ex-
ecution predictability. Therefore, the GHR is responsible for
isolating predictions for each code portion (i.e., the pattern of
branches within a loop), whereas the PHT is responsible for
keeping the prediction state for each region. Branch predictors
are not process-aware, so context switches overwrite their tables
(GHR and PHT).

The Branch Prediction Unit (BPU) operation presents two
features that can be explored for security purposes: continuous
operation and the fingerprinting nature of branch patterns. As
the BPU is continuously collecting branch addresses, one can
instrument it as a real-time security monitor. Furthermore,

the BPU also performs real-time table matching, meaning that
additional, parallel table checks would not impact the criti-
cal path (i.e., prevent circuit slowdown) and therefore enabling
the implementation of inexpensive signature matching. Finally,
branch patterns’ histories already serve as local region signa-
tures for branch prediction. If we could identify branch patterns
unique to a certain piece of software, the BPU would be able
to fingerprint malware the same way an AV does. HEAVEN,
described in the next two sections, explores these BPU charac-
teristics to flag suspicious software with negligible performance
overhead.

3 Entering in HEAVEN...

In this section, we provide the threat model, initial assump-
tions, proposed architecture, and implementation details of
HEAVEN, our hardware-software AV framework.

3.1 Threat Model and Assumptions

HEAVEN’s main goal and motivation is to complement AV so-
lutions with fast signature matching in hardware to decrease
AVs workload by only invoking it when a potentially malicious
behavior is detected. At this point, the AV can scan the sus-
picious software image in memory when the image is in a state
most conducive for detection. For example, the AV may be
called by HEAVEN to inspect a packed sample right after its
unpacking routine. In this example, without HEAVEN, the AV
would have to periodically monitor the process execution and
perform many pattern matching attempts until the unpacking
routine takes place, thus incurring in a significant performance
overheads. As a hardware extension, we expect HEAVEN com-
ponents to be implemented within the CPU by the processor
vendor.

HEAVEN was designed to speed up the signature match-
ing step of AVs, with no negative impact on other AV engines
(e.g., browser protection). We consider that accelerating AV’s
signature matching procedures as a key contribution for AV’s
improvement since pattern matching is still the fastest way for
an AV to react to a new threat, such as a so-far 0-day, while
analysts have not yet studied the sample in details for heuristics
development.

HEAVEN is subjected to current AVs’ capabilities, especially
with respect to detection of polymorphic and/or obfuscated
malware and zero-day attacks. HEAVEN, as most AVs, is
designed to handle user-land malware and, therefore, cannot
thwart kernel-level threats (although the branch signature con-
cept may also apply to the kernel) and depends on OS integrity
for correct operation.

HEAVEN assumes that the branch pattern signatures will be
generated by AV companies and distributed through the Inter-
net, as done today for standard AVs. Further, HEAVEN relies
on a procedure similar to that currently done by AV companies;
(i) malicious samples will be identified through dynamic anal-
ysis, in a procedure ensuring proper input/interaction stimula-
tion and collection of branch information; (ii) common, benign
applications will be whitelisted; and (iii) AV companies will
deliver good signatures, i.e. without conflicting with patterns
found in known benign applications.

3

3.2 HEAVEN and AV companies

It is hard to say that a software entity is malicious per na-
ture. In most cases, malware is just a label assigned by an AV
company to identify the actions performed by the sample as
undesired by its users. This is made clearer when we remind
that distinct AV vendors flag distinct samples as malware, with
no clear agreement among them.

AV analysts typically detect new malware samples by captur-
ing unknown binaries via multiple sources and tracing them in
sandbox solutions. When traced, the malware samples behave
in a way that is judged malicious by the analysts, which asso-
ciate the samples exhibiting those behaviors with the concept of
malware. This association can occur via multiple ways, ranging
from a static hash (e.g., md5, sha1) to machine learning models
that label a set of features presented by the malware sample.

In this paper, we propose this association to be performed
via unique branch patterns exhibited during the software ex-
ecution. We believe that this approach is interesting because
when traced in sandboxes, malware samples reveal both ma-
licious behaviors at high-level (API calls) as well as low-level
branch patterns that can likely be associated with the exhib-
ited behaviors if the patterns are unique (see confirmation of
this hypothesis in Section 4).

It is important to notice that we do not claim that a specific
branch pattern is malicious per nature, but that it represents
and/or identifies one or more malware samples, in the same
way as a hash represents and/or would identify it/them. In
this sense, Figure 2 illustrates a policy that we believe is more
likely to be adopted by the AV companies: (i) The AV company
discovers a given code region (Figure 2a) that is only revealed
in runtime and that can be used to flag this sample as malicious
according to their criteria; (ii) The AV company identifies that
the execution of this code region is part of a given execution
flow (Figure 2b); and (iii) The AV company considers that this
branch pattern is unique and thus it can be used as a branch
signature for HEAVEN triggering the second-level scanner at
this point (Figure 2c).

3.3 HEAVEN’s Design

HEAVEN’s architecture is composed by three main components
(Figure 3): the Signature Matcher; the HEAVEN Manager; and
the Threat Intelligence Manager (TIM).

HEAVEN can be initialized at any time, including at OS
boot time, which is the most recommended configuration since
it allows the detection of early-launch threats. Upon initial-
ization, the TIM updates the branch signatures from the In-
ternet both in hardware (1) and for the AV (2) and requests
(3) the HEAVEN Manager (a Windows 7 kernel driver) to load
these signatures in hardware (4). The TIM also keeps a list
of processes to be monitored and requests the HEAVEN Man-
ager to set the monitored flag in the OS context structure for
each process in the list (5). This list can be generated via
a whitelist/blacklist or, by default, including all processes in
the system. The TIM then waits for notifications from the
HEAVEN Manager about the detection of suspicious processes
in hardware. Once notified (9), the TIM invokes the software-
based AV installed in the system for a memory scan on the
suspicious process’ memory.

The HEAVEN Manager is responsible for implementing
HEAVEN’s software-hardware collaboration by (i) updating the

hardware signatures downloaded by the TIM into a register-
encoded, hardware signature database (Malicious Bit Vector -
MBV) (4); (ii) enabling/disabling signature matching by writ-
ing into HEAVEN control registers; (iii) setting the monitored
flag on processes OS context structures (6); and (iv) handling
interrupts raised by HEAVEN’s Signature Matcher (8). The
latter resides in hardware and is responsible for (i) matching
GHR values to a signature database stored in special HEAVEN
CPU registers, and (ii) raising an interrupt (8) when a pat-
tern of taken branches (which might correspond to a mali-
cious path) is found. Upon receiving this interrupt (8), the
HEAVEN Manager immediately notifies the TIM (9) about
the suspicious software execution. This procedure is similar
to the interrupts raised when the existing hardware perfor-
mance counters—Branch Trace Store (BTS) and/or Precise
Event-Based Sampling (PEBS) [40]—overflow after reaching
their storage thresholds.

As the signature matching is performed via branch patterns,
stored at the architectural level for usage by the Branch Pre-
diction Unit (BPU), HEAVEN does not need to introduce any
data collection mechanism. Unlike previous hardware malware
detection solutions requiring extensive hardware modifications,
the Signature Matcher only requires a signature database in
hardware and a monitored bit flag in the OS process structure
to identify whether or not the currently running process should
be monitored. The monitored bit flag is loaded, saved and re-
stored by the OS process scheduler at each context switch, thus
allowing the Signature Matcher to be enabled or disabled (e.g.,
whitelisted) on a per-process basis.

3.4 Implementation

The TIM, as a user-land application, is implemented using stan-
dard user-level APIs. Therefore, in this section, we discuss the
implementation details of the HEAVENManager, the Signature
Matcher, and HEAVEN’s signature generation procedure.

HEAVEN’s prototype leverages the Intel PIN tool [48], a dy-
namic binary translator, to model the Branch Prediction Unit
(BPU) and the Global History Register (GHR). We developed a
PIN-based DLL that was injected into each running process, so
that the branches of each application were stored in the GHR.
The targeted OS was Windows 7 64 bits because of its popular-
ity among malware writers [3]. All OS modifications (e.g., the
introduction of a monitoring flag in the process context struct)
and hardware extensions were implemented via PIN.
Hardware-Software Collaboration. The HEAVEN

Manager is responsible for storing HEAVEN’s configurations
(including the MBV) into the new registers HEAVEN added
to the CPU. These registers are Model Specific Registers
(MSRs)—vendor-defined registers used to control certain CPU
features, which have distinct sizes and access permissions. The
permission flags are set to enable writes only at the kernel level,
thus preventing any type of user-land tampering. HEAVEN’s
MSRs are written using the x86/x86-64-native writemsr in-
struction. The HEAVENManager is also responsible for setting
a monitored flag on processes structures at the OS level. Via
PIN, we added a bit flag to the OS process context structure
definition. This allowed the process scheduler to automatically
load the monitored flag into the HEAVEN control register at
each context switch, thus allowing the Signature Matcher to
raise interrupts on a per-process basis. As the flag corresponds

4

(a) Code. (b) Flow. (c) Signature

Figure 2: Signature Generation Policy. Associating high-level code constructs with their occurrence in the execution flow.

Figure 3: HEAVEN Architecture’s design: modules in userland,
kernel and hardware levels.

to a single bit to be loaded into a Signature Matcher register,
the additional cost imposed to context switches is negligible.
In addition to saving and restoring the monitored bit flag, we
instrumented (also via PIN) the process scheduler to save the
current GHR value. HEAVEN needs to save the GHR because
the branch predictor is overwritten at each context switch and
this might lead to false positives, since part of the signature of
a previously-scheduled process would be matched to the cur-
rently executing process. By adding the GHR value to the
process context structure, HEAVEN avoids this overwriting ef-
fect, as the process scheduler will also save and restore the GHR
values at each context switch. Adding the GHR to the process
context structure also introduced negligible performance over-
head because the GHR is very small (less than 64 bits)—this
addition has the same impact as saving an additional general-
purpose register. The MBV database is global to the whole
system and does not need to be saved/restored during context
switches, thus not imposing performance penalties at the OS
level. HEAVEN included the monitored bit flag and the GHR
value to the Process Environment Block (PEB) where process
information is stored in Windows [52].

Real Time Notification. To provide a real-time response,
HEAVEN must ensure interrupts are promptly delivered from
hardware to the TIM, which runs at userland. HEAVEN im-
plements its interrupts as Non-Maskable-Interrupt (NMI)—a
high-priority, synchronous interrupt that can be leveraged for
security notifications [4]. Upon receiving the interrupt request,
the HEAVEN Manager must immediately notify the user-land
TIM, otherwise, the AV check might occur after the checkpoint.
Standard I/O calls are invoked by applications and block both
the associated process and the corresponding driver’s I/O rou-
tine until the request is handled. To avoid blocking, many ap-
plications perform polling, which is not suitable for HEAVEN’s
operation because of the significant performance overhead in-
curred by multiple I/O calls. Therefore, HEAVEN leveraged
an inverted I/O call [14]: when the TIM makes an I/O request
to the HEAVEN Manager, it caches the request and immedi-
ately returns—with no data being returned. Further, when
the kernel driver handles a HEAVEN interrupt, the cached

5

I/O request is fired, thus providing the TIM with the collected
data (the suspicious branch pattern and the associated PID).
In other words, the cached I/O request from the TIM signals
the HEAVEN Manager to enable signature matching for the se-
lected processes. The inverted I/O notifies the TIM about the
identified branch pattern and the process (PID) that presented
such pattern. The branch pattern is retrieved by the HEAVEN
Manager by reading the GHR register as an MSR. The detected
pattern can be used by the AV, for statistical or forensic anal-
ysis. HEAVEN Manager performs PID retrieval by calling the
GetCurrentProcessId function [51].

The Malicious Bit Vector (MBV). The Malicious Bit
Vector (MBV) is the branch pattern database queried to de-
tect malware. The MBV implementation is a key project deci-
sion as it implies on distinct storage space requirements, energy
costs, chip areas, and may even affect the FP rate (in case of
probabilistic and/or compressed representation of signatures).
A look-up table is the usual way of implementing a matching
database. However, a table to store a large number of non-
compressed signatures would require several MBs. Therefore,
in HEAVEN, we implemented the MBV as a bloom filter, a
probabilistic data structure that performs fast matching op-
erations with no false negatives at the cost of some FPs. In
practice, bloom filters are popular solutions in the context of
detecting malicious activities [21, 46, 44, 70, 61]. They reduce
the required storage space to represent an arbitrary-long bit
pattern by probabilistic mapping them into few bits through a
series of hash functions implemented in hardware as logic gates
and wires, thus not demanding significant space nor impacting
performance. We consider a bloom filter implementation vi-
able because it has been previously implemented inside Intel’s
processors (e.g., for the sake of memory address disambigua-
tion [61]). On the other hand, hashing long values into few
bits as the bloom filter does may lead to collisions—i.e. the
bloom filter reporting an element it does not actually contain—,
leading to FPs. However, the more bits are used for represent-
ing values, the smaller the collision rate. Bloom filter capacity
grows logarithmic and can be modeled mathematically [65], al-
lowing us to determine the number of representing bits and
hash functions in advance. Therefore, we can determine a rea-
sonable trade-off between the total storage space required and
the expected FP rate. HEAVEN bloom filter parameters were
configured to produce FP rates smaller than 1%. Moreover,
HEAVEN already handles FP as part of its design: the AV al-
ways disambiguates suspicious software detected in hardware.
Thus, this “second opinion” by the software-AV allows identifi-
cations of FP regardless of the cause (bad signature or bloom
filter). To store the bloom filter, HEAVEN should implement
the MBV as a scratchpad SRAM memory updated by consec-
utive MSR writes. For the sake of prototyping and evaluation,
HEAVEN was simulated with the MBV stored in a memory
region allocated within the PIN framework.

Signature Generation. In HEAVEN, all branch pat-
tern signatures were extracted from the PIN-modeled GHR.
In practice, the candidate signatures may be retrieved from
existing dynamic malware analysis systems already used by
AV companies (see Appendix A). The signatures should be
branch patterns unique to a malware sample, However, these
patterns should not be found in known, benign applications.
In HEAVEN, we addressed this challenge via a branch pattern
whitelist mechanism, compatible with the approach already em-

Figure 4: Malware-Goodware Disambiguation. Shared
patterns are ignored and unique patterns are selected to finger-
print samples.

ployed by AV companies (see Section 2). In this case, even
though a malware and a goodware application share a common
branch pattern (blue one in Figure 4), the malware sample can
still be fingerprinted by another pattern unique to it (red one
in Figure 4).

Another challenge for signature generation is to ensure that
the selected branch pattern will be exhibited in future execu-
tions. Some malware samples might present code structures
that are probabilistically executed (e.g., tied to specific envi-
ronment variables). To overcome limitations derived from this
possibility, we considered multiple executions of the same sam-
ple (as already done by AV companies to overcome evasion at-
tempts) to select signatures. Only the signatures that appear in
all executions were considered as good candidates. Therefore,
even though a malware sample presents a branch pattern that
is not unique among executions (blue ones in Figure 5), we can
still generate signatures by looking to its common patterns (red
ones in Figure 5).

After a set of unique branch patterns are identified for a
sample, the next step is deciding which signature(s) to adopt.
Although all signatures are unique, AVs might want to consider
other qualitative aspects in the signature selection process, such
as the region during the sample execution the branch signature
appears. For instance, one interesting code region is that right
after an unpacking routine, thus causing HEAVEN to trigger
the AV to scan an already unpacked embedded payload. In
the next section, we discuss how we evaluated our signature
generation procedure both in terms of signature uniqueness and
association to code regions typical of malware actions.

4 Evaluation

In this section, we present HEAVEN’s experimental evaluation.
To do so, we focus on the following metrics: (i) signature gen-
eration feasibility; (ii) malware detection effectiveness; and (iii)
performance overhead. Initially, we cover the cases in which

6

Figure 5: Probabilistic Malware Execution. The best sig-
natures are the ones that are common to all sample’s executions.

AV companies were able to generate perfect signatures and no
False Positive (FP) is observed. Further, we discuss HEAVEN
operation in scenarios with FPs.

4.1 Dataset Choice & Representativeness

Establishing an adequate dataset to evaluate malware research
is extremely challenging, since there are no standardized guide-
lines for this task. For example, it is not clear how malicious
families should be balanced or what proportion of benign and
malware samples should be considered. We propose that a good
dataset for malware research is one that reflects the context
in which the solution will be deployed. Therefore, as we are
proposing a collaboration with an AV solution, we established
a dataset that represents what an AV company observes in the
wild (respecting the limits of scale between academic research
and the potentially massive amount of data collected by a large,
worldwide company) in the most recent time. To that end, we
collected daily samples from the VirusTotal malware submission
feed for three consecutive months (March to May) of 2018, bal-
anced the malware families in our dataset according to that feed
to reflect malware families prevalence as they are seen in-the-
wild, and selected 10 times more malware samples than benign
apps, as AV companies often collect more malicious samples
than benign software [66]. Hence, our experiments considered
a total set of 10,000 unique malware samples that successfully
executed in our sandboxed environment without errors (i.e., un-
til the end of its execution and/or without crashing until the
sandbox timeout). We labeled all of those samples with AV-
Class, which resulted in the family distribution illustrated in
Figure 6.

Our set of 1,000 benign software was collected from three dis-

 0%

 5%

10%

15%

20%

25%

B
a

c
k
d

o
o

r

D
ro

p
p

e
r

D
o

w
n

lo
a

d
e

r

H
e

u
r

R
is

k
w

a
re

G
e

n
e

ri
c

W
in

3
2

/A
p

p

P
U

P
/P

U
A

A
d

w
a

re

T
ro

ja
n

F
re

q
u

e
n

c
y
 (

%
)

Family

Sample’s families distribution

Figure 6: Sample’s families distribution. Malware dataset
balanced according VirusTotal statistics and labeled with AV-
Class.

tinct sources: (i) applications from the SPEC-CPU 2006 bench-
mark [38]; (ii) Internet browsers (Internet Explorer, Firefox and
Chrome); and (iii) popular applications crawled from popular
Internet repositories [25, 63]. For the latter, we considered only
the applications appearing in the first 20 most downloaded apps
pages (representing more than 900 distinct apps), thus reflect-
ing the most popular software downloaded by the users.

We tested all SPEC applications with the reference input un-
til their termination. We tested the crawled goodware applica-
tions by stimulating them with an automated GUI clicker [12].
We evaluate the browser during its loading and while open-
ing URLs from the Alexa top50 [1] most accessed websites in
May/2018 in a loop.

We ran all malware samples for three minutes in a sand-
boxed environment (which usually suffices [47]). We recorded
the branch patterns generated from the execution of all good-
ware and malware samples considering all runs and all distinct
inputs per sample.

4.2 Branch Pattern Signatures

First, we test our hypothesis that for a given piece of software
there will be unique GHR values produced during its execu-
tion, which can be used as a software signature. Second, we
investigated which software code regions tend to generate good
signatures. Finally, we discuss the length (in bits) the branch
pattern history should be to significantly distinguish one piece
of software from another.

Signature Generation Feasibility. To evaluate signature
uniqueness, we retrieved all 32-bit branch signatures1 produced
during benign samples’ execution. Figure 7 shows the percent-
age of patterns that uniquely appeared in some2 applications
evaluation (multiple runs under different inputs) and the per-
centage of patterns that appeared in at least another applica-
tion evaluation. For example, for all possible windows of 32-bit

1Signature length selected according to the experiment presented in the
next paragraph.

2Few examples were selected for presentation for the sake of paper read-
ability

7

patterns encountered during the executions of Firefox, approx-
imately 60% of them were unique. We highlight that we are
not here claiming these applications as malicious nor that the
identified branch patterns correspond to a malicious applica-
tion. Instead, we are claiming that these applications present
branch patterns unique to them in comparison to the set of
tested applications and whose occurrence in runtime might be
used to identify these app’s execution.

 0%

20%

40%

60%

80%

100%

perl bzip2 gcc IE ChromeFirefox

P
a

tt
e

rn
s
 (

%
)

Applications

Branch Patterns as Application Signature

Shared
Unique

Figure 7: Branch patterns as signatures. All applications
presented at least one unique branch pattern.

Most of the patterns identified during the evaluation of a
given application randomly collided with at least one pattern
from another application. However, corroborating our hypothe-
sis, all analyzed applications presented a great number of unique
branch patterns. Even though we limited the number of appli-
cations presented in the graph due to space constraints, these
results held true for all samples (malware and benign) consid-
ered in our evaluation.

The number of unique signatures identified varies among ap-
plications. For example, browsers (I/O-bound) present more di-
verse behavior, thus generating more distinct branch patterns.
Bzip2 (CPU-bound) focuses on the same decompression loops,
always taking the same branches, thus presenting lower pattern
diversity. The more diverse the application functionality, the
more branch patterns it generates.

A plausible explanation for the high collision rate found in
Figure 7 is the use of shared libraries. As the same library
runs on all linked processes, the execution of library code will
present similar branch patterns. To test this hypothesis, we
checked, for each application, where the conflicting patterns
were located (Figure 8). Corroborating our hypothesis, the code
regions with the highest collision rate were those associated with
shared libraries. Therefore, branch pattern signatures should
be extracted from the software’s own executable binary regions
(e.g., main binary’s .text section) only.

The need to distinguish software instructions from shared
library code poses new questions: where and when we need
to isolate these regions during malware detection? There are
two options: (i) during the signature generation procedure
(AV site) or (ii) during the signature matching in hardware.
This isolation requires, therefore, the addition of logic either
to the AV site or hardware. Adding more logic to hardware
streamlines signature generation for AV companies. However,

 0%

20%

40%

60%

80%

100%

perl bzip2 gcc IE ChromeFirefox

C
o

lli
d

in
g

 b
ra

n
c
h

 p
a

tt
e

rn
s
 (

%
)

Applications

Colliding Patterns per Code Region

Libraries
Binary

Figure 8: Colliding branch patterns per code region.
Collisions on branch pattern originated on libraries are more
prevalent than collisions on branch patterns originated on the
application .text section.

the hardware pattern matching mechanism would need to
know whether or not the currently running code region is part
of a shared library. This is challenging because some malware
samples (e.g., Self Modifying Code) can change their page
permission attributes, thus turning originally non-executable
binary sections into executable ones. To handle such cases,
the hardware mechanism would require knowledge about OS
abstractions, such as binary sections, which further complicates
hardware design. Adding logic to the signature generation
procedure at the AV company keeps the hardware mechanism
simple. Further, AV companies already need to handle many
peculiarities in the signature generation procedure [60, 30, 62].
Therefore, we propose that this extra logic should be added by
the AV company.

Signature length. Another important factor in the signa-
ture generation process is to determine how long the branch
pattern signatures need to be to fingerprint malware. A k-bit
branch GHR spans a 2k branch pattern space, which determines
the potential for extracting unique signatures and the signature
database storage requirements. The shorter (in the number of
bits) the signature is, the less space is required to store the
signature database in hardware. However, the shorter the sig-
nature, the higher the probability of branch pattern collisions.
To identify an optimum signature length, we ran all software
samples using distinct GHR sizes (in k bits) and evaluated the
branch pattern coverage, i.e., the portion of the spanned 2k

space they cover (Figure 9).
We observe that branch-patterns with fewer than 16 bits can-

not be used as process signatures because all analyzed software
presented the same 16-bits branch patterns at some point dur-
ing their execution. In other words, the branch patterns gen-
erated during the execution of the applications considered in
our evaluation spanned all the 216 space, making it impossible
to generate unique malware signatures. As the branch pattern
length increases in bits, the percentage of collisions decreases
exponentially. For example, with 24-bit signatures, less than
10% of the branch patterns generated collide (e.g., the colliding
branch patterns covered less than 10% of the 224 space), thus

8

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 8 16 24 32 40P
e

rc
e

n
ta

g
e

 o
f

s
ig

n
a

tu
re

 c
o

lli
s
io

n
 i
n

 t
h

e
 k

−
b

it
 s

p
a

c
e

Branch pattern length (in k bits)

Percentage of signature collision per branch−pattern length (in bits)

Patterns

Figure 9: Branch patterns coverage. Signatures spanning
less than 16 bits are not ideal because of the high collision rate.
With 24-bit signatures, less than 10% of the branch patterns
collide.

allowing for malware fingerprinting. In other words, approxi-
mately 90% of the 224 space can be used to generate unique
malware signatures. In HEAVEN’s design, we opted for 32-bit
signatures, given the almost negligible percentage of collisions
for the 232 space. Moreover, adopting a power of two represen-
tation tends to ease development.

4.3 Malware Detection

We generated signatures for all samples and evaluated the bit
space coverage as a function of the number of applications
traced (Figure 10). As the number of samples increases, the
branch pattern coverage of the 32-bit space also increases (both
for malware and benign software). After approximately 100
malware, the coverage percentage saturates at less than 2% of
the 32-bit space, i.e. adding new samples does not significantly
affect the overall coverage of the 32-bit space as very few addi-
tional distinct patterns are observed.

We also observed that malware samples generate fewer sig-
natures than benign software. A plausible explanation is that
benign software is more diverse than malware, thus executing
more distinct code regions. Further, contrary to benign soft-
ware, the malware analyzed in our experiments did not include
error checking and exception handling procedures, thus trig-
gering fewer branches. Moreover, malware is usually smaller
than benign software, thus naturally limits the number of pos-
sible signatures. Even when malware and benign software are
equivalent in size, malware still produces fewer unique signa-
tures because they are filled with dead-code [73]. Although
these conclusions might not hold for all types of malware, such
as specially-crafted, modern malware samples [19], these ob-
served characteristics can be generalized for non-sophisticated
malware.

Malware signatures covered less than 1% of the 32-bit branch
pattern space. On average, each malware sample produced
approximately 15,000 distinct signatures. For HEAVEN
detection evaluation, we selected one signature per sample.

Signature storage requirement. We also evaluated the

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

2.0%

 0 50 100 150 200 250 300 350 400 450 500

P
e

rc
e

n
ta

g
e

 o
f

th
e

 3
2

−
b

it
 b

ra
n

c
h

 p
a

tt
e

rn
 s

p
a

c
e

 c
o

v
e

re
d

Applications (#)

32−bit Branch Pattern Space Cover with Number of Applications

Benign
Malware

Figure 10: Pattern Coverage. Unique patterns are identified
for all samples but coverage saturates after approximately 100
samples. Omitting data for the remaining samples due to the
lack of variation.

space requirement to store signatures for the malware samples
analyzed in this paper. With bloom filters, the storage require-
ment for 10,000 32-bit signatures is 35KB. As a comparison,
this storage requirement is of the same magnitude (KB) as the
requirements imposed by Intel AVX2 (vector extensions for
massively parallel processing) 512-bit-long vector registers [39],
recently added to newer processors, thus indicating feasibility.
An AV company might want to add a considerably higher
number of signatures to the MBV (see Section 5). The
bloom filter (which can also be used in the actual hardware
implementation of HEAVEN) capacity may be increased up
to the limits imposed by processor vendors. The current limit
(approximately the cache size—2-8 MBs) is enough to allow
the storage of millions of signatures in the MBV, as the bloom
filter capacity grows logarithmic.

Signature Generation Policy. To evaluate the signature se-
lection procedure, we considered where in the code the branch
pattern signature occurs (e.g., beginning or end of an execution
trace) and whether the code region is relevant for malware exe-
cution with the goal to use code region as a signature generation
policy. The goal is to choose signature branch patterns corre-
sponding to code regions relevant to malware and occurring
before the malware sample exhibits their malicious behaviors.

In our sandboxed environment, for each signature, we
recorded the instruction pointer associated with the last branch
of the signature and identified their first occurrence within the
respective malware execution trace, as presented in Table 1.
Column “Code region” indicates where the signature occurs
within the malware execution (0% meaning at the beginning of
the execution and 100% at the end of the execution). Column
“Signatures” presents the percentage of all signatures (unique)
occurring on that particular code region. Column “Samples”
shows the percentage of malware samples for which at least one
signature could be generated for that particular code region.
For instance, the first line of Table 1 shows that it was possible
to generate signatures for all malware samples analyzed corre-
sponding to the beginning of the execution (0%-10%) and that,
on average, 6% of all signatures generated were associated with

9

this code region.

Table 1: Signature distribution along code region in the mal-
ware samples evaluated. Percentage of good signatures per code
region and percentage of malware samples allowing generation
of at least one signature for the given code region. A code region
[0%-10%] corresponds to the first 10% of the malware trace.

Code region Signatures Samples
0%-10% 6% 100%
10%-50% 10% 54%
50%-70% 19% 98%
70%-80% 28% 78%
80%-90% 24% 90%
90%-100% 13% 100%

The majority of the samples generated signatures in all code
regions. All samples produced signatures located in the ini-
tial (0%-10%) and final regions (90%-100%) of code, indicat-
ing that these regions might be relevant to malware execution
and might be successfully used to fingerprint them. No case of
stalling code was observed in the considered samples. Signature
diversity varied per code region, with the beginning and end of
the trace with the lowest diversities. This might indicate that
malware behavior at the beginning and end of its execution is
more predictable than in other instants.

To understand the malware behavior associated with the sig-
natures and, thus, evaluate possible interesting code regions,
we traced all samples and retrieved all function calls they in-
voked. We implemented this tracing by injecting into all sam-
ples a modified version of Cuckoo’s DLL [59], which allowed
the association of function calls to instruction pointers and,
consequently, to the retrieved branches (Table 2). Column “Be-
havior” indicates the observed malware behavior; column “Sig-
nature prevalence” shows the percentage of all the signatures
associated with the malware behavior occurring for the given
code region (column “Code region”); column “Samples” shows
the percentage of malware samples that presented the given be-
havior on the given region. For example, the first line of the
table shows that for all signatures generated by all malware
samples that were associated with “Image Load”, 18% of them
occurred at the beginning of the execution (code regions 0-10%)
and for all samples.

Table 2: Malware behaviors associated with HEAVEN pro-
duced signatures and the code region in which they are matched
(percentage of sample’s execution).

Behavior Signature Code Samplesprevalence region
Image Load 18% 0%-10% 100%

Image Launch 45% 0%-10% 100%
File Deletion 81% 80%-90% 100%
Connection 100% 0%-10% 100%
Exfiltration 67% 80%-90% 100%

The Image load behavior refers to samples loading third-
party libraries at runtime. As libraries are required for the ex-
ecution of many applications, this behavior tends to appear at
binary startup, as corroborated by our findings. As all samples
generated at least one signature associated with that behav-
ior at the beginning of the execution, at least one AV check-

point would be reached before all library images are loaded.
Similarly, Image launch actions, such as creating process and
threads, tended to happen at beginning of the execution (almost
45% of all signatures associated with that action). Contrary, as
File deletion actions are associated with evidence removal [35],
they are usually performed towards the end of execution (81%
of signatures associated with this action). Although infection
would have already happened, this late detection can streamline
forensic analyses.

All signatures related to connection handshakes occurred
for all samples at the beginning of the execution (code region
0%-10%). We also observe that the majority of signatures
associated with data exfiltration (67%) occurred at the end of
execution (region 90%-100%) [35]. Thus, HEAVEN’s deploy-
ment in actual scenarios could result in it flagging malware
before they reached 10% of their execution—the Image and
Connection behaviors account for the 10,000 samples (100%)
and we generate signatures in the 0%-10% code region for all
samples in those classes of actions.

False positive disambiguation. A key point of HEAVEN’s
operation is to outsource the final detection decision to a third-
party AV, thus allowing for disambiguation of FPs. To evaluate
this process, we considered a randomly chosen set of 250 mal-
ware and 250 benign software and selected a branch pattern
occurring in all 500 samples. This configuration simulated a
scenario where HEAVEN would generate FPs for all benign
samples and would notify the AV in all cases. We packed all
samples with the popular UPX [68], thus presenting a more
realistic scenario of applications distribution.

We evaluated HEAVEN with two AVs: (i) Clamwin [24], a
Windows version for the open-source ClamAV with memory
scan and real-time [23] support, and (ii) the most downloaded
free AV in the Softonic’s list [63]. Table 3 shows detection
results for both AVs when performing checks during process
loading and for ClamWin when operating with HEAVEN. We
did not evaluate the commercial AV with HEAVEN because
this AV does not support memory scanning (pattern matching)
and would not benefit from HEAVEN’s notifications. We en-
sured that both AVs had signatures for detecting all evaluated
malware samples before packing the samples with UPX, thus
focusing detection results on HEAVEN’s impact and not on the
external AV effectiveness.

Table 3: UPX packed samples detection. HEAVEN
enhances benign software identification with after-unpacking
checks.

AV Load Time HEAVEN
Malicious Benign Malicious Benign

Commercial 500 0 N/A N/A
ClamWin 0 500 250 250

The commercial AV (“Commercial”) flagged all samples
(including benign software) as malicious (100% FP) as soon
as the processes were loaded. We believe this happened
because of common malware-detecting heuristics focused on
flagging UPX binaries as suspicious despite their content.
ClamWin, operating without HEAVEN, flagged all samples
as benign (100% FN) during loading time, thus indicating
UPX succeeded in obfuscating the embedded content. When
running with HEAVEN, however, ClamWin was triggered to

10

inspect processes’ memories in an already unpacked state,
thus, correctly detecting all malware with no FP.

4.4 Performance
To evaluate the performance overhead imposed by the multi-
ple checks performed by standard AVs, we leveraged the Nov-
abench benchmark [56] in the same system under three different
configurations: (i) clean state (no AV); (ii) ClamWin (during
real-time scanning); and (iii) HEAVEN+ClamWin (during on-
demand memory scanning). All tests were performed in an Intel
i7-7700, 16GB computer.

HEAVEN operates in two phases: (i) monitoring, when
branch pattern signatures are matched in hardware; and (ii)
inspection, when HEAVEN requests a memory scan to the
AV. Figure 11 illustrates this two-phase behavior.

When in the monitoring phase, HEAVEN adds negligible
performance overhead to the baseline case (no-AV), while the
AV operating alone incurs on approximately 10% CPU usage
increase. When a HEAVEN detection routine is triggered,
its CPU usage grows substantially (80% on average) for a
short peak because of the required ClamWin’s scan in mem-
ory. HEAVEN improves overall system performance because
it operates most of the time in the monitoring phase (negligi-
ble performance overhead) with detection routines occasionally
triggered.

 0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 5 10 15 20 25 30 35 40

C
P

U
 (

%
)

Time (s)

AV Monitoring Overhead

HEAVEN+AV
AV

No−AV

Figure 11: HEAVEN CPU performance overhead for
monitoring and inspection phases. The inspection phase
causes occasional, and quick bursts of CPU usage. The AV op-
erating alone incurs a continuous 10% performance overhead.

Figure 12 shows the overall system performance overhead for
various metrics (not only CPU usage) of leveraging ClamWin
alone (AV) vs. ClamWin integrated with HEAVEN to detect
all malware samples considered in our evaluation in comparison
to the baseline case (no-AV). Overall, HEAVEN decreases
ClamAv performance overhead by 10% for CPU usage, 5.6%
for memory throughput, 20.22% for disk reads, and 16.22% for
disk writes.

AV Checks. HEAVEN is a security mechanism to support the
matching of signature in runtime, thus HEAVEN is often com-
pared to other real-time approaches, such as event-based mon-

 0%

 5%

10%

15%

20%

25%

CPU Memory Disk Read Disk Write

O
v
e

rh
e

a
d

 (
%

)

Metrics

AV Overhead

AV
HEAVEN+AV

Figure 12: HEAVEN performance overhead improve-
ments compared to the AV alone. All numbers are nor-
malized for a system operating with no AV.

itors. These mechanisms are often claimed to be more flexible
than HEAVEN since they are not limited to signature match-
ing, however it is not often discussed that this flexibility comes
at the performance cost, which is not often understood and
might be even not required, since for many cases signatures are
enough. We here streamline this by comparing the performance
of an AV operating under the paradigm of OS-event checks and
HEAVEN, performing signature matching in hardware and col-
laborating with a memory scan-based AV. The goal of this eval-
uation is to compare the number of checks performed by an
OS-event-check-based AV vs. HEAVEN during malware detec-
tion. Ideally, we should compare the operation of the same AV
with and without HEAVEN. However, as commercial AVs are
closed-source, we cannot instrument them to collect the num-
ber of AV checks. Therefore, we developed our own Real-Time
AV (RTAV) to have a basis for comparison of how many checks
the AVs must perform before detecting a given malware sam-
ple. We acknowledge that this comparison presents limitations
compared to an actual AV implementation, but we propose that
these results (albeit exploratory) provide insights regarding AV
operations and HEAVEN’s contribution.

RTAV is a kernel driver implementing a file-system filter [50]
and registry [49] and process [53] callbacks (These are the data
collection mechanisms recommended by Microsoft [54] for AVs
development after the adoption of the Kernel Patching Protec-
tion mechanism in modern Windows kernels [17]). When an
event on these subsystems happens, the OS invokes the associ-
ated callback with the respective event argument (e.g., the path
of a file being written). We developed regular-expression-based
rules using the YARA tool [71] to match callback arguments
(accessed files, registry keys, and created processes) against
known malware behavior, thus building our own malicious sig-
nature database for all samples considered in our evaluation.
We leveraged RTAV to monitor the execution of all malware
samples, which were also analyzed by HEAVEN.

We compared the obtained results for RTAV with the impact
of leveraging HEAVEN integrated with ClamWin performing
memory scans on demand. When matching a signature in hard-
ware, HEAVEN invoked ClamWin to scan the process memory
region of the suspicious process. We did not compare RTAV

11

collaborating with HEAVEN because an event-driven AV does
not benefit from HEAVEN checkpoints for memory scan opera-
tions on demand. For each callback invocation, RTAV matches
all malicious signatures for the given action. For each HEAVEN
invocation, ClamWin matches all malware signatures against
the suspicious process memory. During each sample execution,
we collected the number of checks (i.e., the number of call-
back invocations by the OS) RTAV performed until detecting
the sample among all running processes in the system. We
also collected the number of checks (the number of raised inter-
rupts) HEAVEN performed until detecting the malware sam-
ple. Table 4 shows the average number of performed checks
and the number of CPU cycles for each condition (RTAV vs.
HEAVEN+ClamWin) for the analysis of all samples.

Table 4: Required number of CPU cycles and AV checks
to detect malware. HEAVEN requires fewer CPU cycles
to detect malware despite its memory scan being more costly
than callback checks because it performs fewer and more precise
checks than RTAV.

Action RTAV HEAVEN
Checks Cycles Checks Cycles

Image Load 4K 2G 1 1G
Deletion 15K 7G 1 1G
AutoRun 170 81M 1 1G
Proxy 70 33M 1 1G

Image Creation 1 5K 1 1G
Total 16K 8G 1 1G

Before the RTAV detects a malicious pattern, many callbacks
are invoked for legitimate actions (e.g. opening a user file), thus
increasing performance penalties. This overhead is particularly
relevant for filesystem checks, as many file operations are per-
formed during a typical run (e.g., storing browsers’ cookies).
HEAVEN, on the other hand, only triggers interrupts for sus-
picious actions. For example, HEAVEN does not require inspec-
tion of the sample’s deobfuscation routines execution until the
malicious behavior is identified. It calls ClamWin on-demand
when a signature for the deobfuscated payload is identified.
Therefore, although the cost (in CPU cycles) of performing a
HEAVEN-triggered memory check is greater than the cycles
needed to perform one callback (a few instructions), the number
of times the callbacks are invoked dominates the total perfor-
mance impact. HEAVEN decreased the number of CPU cycles
used for malware scanning by 87.5%.

4.5 The Case of Bad Signatures
So far, we have evaluated HEAVEN in the ideal scenario, where
AV companies are able to distribute the best signatures possi-
ble, i.e., signatures that uniquely identify a known software ex-
ecution and that also do not detect any other software (FPs).
However, in practice, this scenario might not happen due to
multiple reasons, from the AV company lacking the user’s good-
ware samples to test, to limited stimulation leading to a covered
path, or even due to spurious coincides. Thus, it is important
to understand the consequences of improper signature choices
for HEAVEN operation.

In HEAVEN’s model, the occurrence of FPs is not supposed
to impact software usability. Due to the second-level disam-
biguation procedure, FP cases will be mitigated and eventually

whitelisted. However, FPs might eliminate HEAVEN’s perfor-
mance overhead mitigation capabilities. A fair comparison of
HEAVEN’s performance gains should consider its similarities
and differences for snapshot-based inspection approaches, since
the impact of a FP in HEAVEN is to trigger software AV scans
in unsuitable execution stages, as a periodic, snapshot-based
checker does in most times.

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

C
P

U
 C

y
c
le

s
 (

G
)

Checks (#)

Cost of Triggering False Positive Checks

Snapshot
0−FP

1−FP
2−FP

Figure 13: The impact of FPs on HEAVEN perfor-
mance. The more FPs, the more HEAVEN approximates from
a snapshot-based solution.

Figure 13 exemplifies what happens with HEAVEN’s per-
formance in case of FPs occurrence for several snapshots and
HEAVEN checks. Every time a memory scan is triggered, ap-
proximately 1G cycles are taken by the AV. Since snapshot-
based checks keep being triggered periodically, its cost grows
linearly. Thus, the advantage of HEAVEN is to limit this cost
by requiring fewer (non-periodic) checks. Ideally, HEAVEN
should allow detecting samples with a single check (0 FPs),
thus clearly mitigating the overhead of snapshot-based checks.
However, every time a FP occurs, HEAVEN becomes closer to
the snapshot approach, as multiple checks are required to detect
a sample.

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5 6 7 8 9 10+

S
ig

n
a

tu
re

s
 (

%
)

Occurrences

Signatures Occurrence Distribution

Figure 14: Average FP impact. Most branch patterns are
unique or repeats few times, limiting the impact of FPs.

12

Once we understand the implications of an FP, it is impor-
tant to understand how often it might happen. In other words,
if we consider a randomly-chosen signature, what is the chance
of it causing a given number of FPs? To answer this question,
we investigated the branch patterns associated with all samples.
Figure 14 shows the branch patterns distribution for the mal-
ware sample closest to the average distribution for all samples.
We notice that more than half (58%) of all the patterns are
unique; and more than 90% cause less than 10 checks, which
shows limited potential for causing FPs due to branch diversity.
The real problem observed with FPs relates to the remaining
10% patterns, because they cause a significant number of checks
to occur. In the worst case, we identified 89K occurrences of the
same pattern in a given sample, thus resulting in several checks
which would significantly affect the execution performance of
the monitored software. We notice, however, that most of these
very repetitive patterns carry little information, corresponding,
for instance, to the execution warm-up (000...000 GHR) or to
very long loops (111...111 GHR), and thus they should not be
considered by the AV companies by default. By removing these
patterns, the most repetitive pattern occurs only 1K times, sig-
nificantly less than the 89K times case previously discussed.
Thus, we believe that a great whitelisting mechanism, as pre-
viously proposed and described, can fully mitigate the impact
caused by those boundary cases.

To clarify the FP impact in practice, we selected random
signatures associated with all samples in the malware dataset
and compared them to the ones associated with all goodware
samples. Table 5 shows results for the applications that exhib-
ited the greatest and the smallest success rate–i.e., a successful
selection does not cause a FP. Overall, few cases of FPs are ran-
domly caused. Some applications part of the SPEC benchmark,
such as MFC, were almost not affected, since their execution
is reasonably small and produces few patterns (and thus col-
lisions). Chrome was the most affected application, since its
execution is more diverse and it produces more branches, thus
increasing the collision chance.

Table 5: Random Signature Selection. In most cases,
unique signatures are selected.

Benchmark Chrome Perl Xalanc Namd Mcf
Successful (%) 90 93 95 97 99

Based on these results, we believe that if signatures are going
to be selected randomly by the AV company (or for experimen-
tal evaluations), multiple signatures per sample (at least two)
should be considered, thus decreasing the probability of all of
them reaching a boundary case.

Whereas the individual impact of an FP might be not signif-
icant, as previously shown, problems might still appear if mul-
tiple signatures (designed for distinct malware samples) collide
at the same time. To evaluate that in practice, we repeated
our previously presented experiment, with 10K malware sam-
ples and 1K goodware samples, now considering the occurrence
of FPs. Figure 15 shows the possible scenarios according to the
number of distinct signatures that cause FPs (from none to all).
When no FP is observed, HEAVEN is fully operating, thus re-
sulting in a 100% performance overhead mitigation. With the
occurrence of FPs. in the best case, the 10K FPs are perfectly
distributed as 1 occurrence per malware sample and no conflict
with other sample. In this case, each malware sample requires

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 1 1000 5000 10000

P
e

rf
o

rm
a

n
c
e

 O
v
e

rh
e

a
d

 M
it
ig

a
ti
o

n
 (

%
)

False Positive Signatures (#)

Performance Overhead Mitigation vs. False Positives

Best−Case Worst−Case Average

Figure 15: Multiple FPs scenario. Most part of the perfor-
mance degradation comes from the repetition of the colliding
patterns rather than from the number of distinct colliding pat-
terns.

two checks to be detected, thus the HEAVEN’s performance
overhead mitigation capability is decreased by half (50%). Even
though, this scenario already presents performance advantages
over a traditional snapshot-based checker. In the average case,
when conflicts are allowed and some samples might present mul-
tiple FPs, the performance degradation is greater, but it never
completely eliminates HEAVEN’s gains. In the worst case, the
conflicting signature is the one that is executed a thousand
times, as previously discussed. In this case, a single FP might
be enough to completely degrade HEAVEN’s performance, as
multiple checks will be triggered due to a single FP signature.
This experiment shows that the most important factor for per-
formance degradation is how many times a FP signature re-
peats and not how many FPs are observed. This reinforces the
need for a good signature generation procedure, as previously
proposed.

5 Discussion

In this section, we revisit our proposal to discuss our contribu-
tions and still existing limitations.
HEAVEN Advances. HEAVEN showcased a novel paradigm
for signature-based malware detection. With this paradigm, we
make hardware and software collaborate in an effective triage
system, in which only software identified as suspicious at the
hardware level (by means of branch pattern signatures) goes
to userland to be scanned by an AV. The effectiveness comes
from the fast signature matching in hardware and the AV scan
performed at a conducive moment for detection (e.g., unpacked
sample).

HEAVEN’s 32-bit branch pattern signatures were able to flag
all malware samples in our evaluation without FPs and before
the sample reached 10% of its execution trace. In comparison
with a standalone software-based AV, HEAVEN decreased the
CPU usage by 10%, memory throughput by 5.6%, disk reads by
20.22%, and disk writes by 16.22%. HEAVEN also decreased
the number of CPU cycles used for malware scanning in 87.5%.
Despite allowing application fingerprinting, HEAVEN neither

13

discloses context information about running processes nor
leaks process data in case of malicious GHR accesses. On the
contrary, HEAVEN exposes a smaller processor surface than
the exposed by already existing hardware features, such as Intel
Last Branch Record (LBR) [40], which provides information
about individual branch addresses.

Are branches malicious? Once we showed experiments that
confirmed the possibility of unique branches identifying mal-
ware samples, it is important to recap that we are not claiming
the branches malicious by themselves, but we are exploiting
their uniqueness to make them work as a fingerprint of a mal-
ware sample as classified by an external agent (the AV company,
in this case). In this sense, the difference between a malware
sample and a goodware sample is not defined by the branch pat-
tern’s nature, but by an AV company assigning to an specific
unique branch pattern the meaning of representing a sample
known to be malicious according to its understanding.
Back to the hash analogy. The above recap might be un-
derstood via the analogy with the hash functions presented in
Section 3.2. Neither the branch patterns nor the hashes are
malicious per se, but they represent and/or identify a sample
known to be malicious. There is not particular security mean-
ing in an specific byte affecting a hash as well as there is no
maliciousness meanining in an specific branch. Despite that,
representations are very useful as proxy to identify the objects.
In this paper, we claim that the branch signatures are better
representations than static hashes, since branch patterns can
be dynamically matched without performance overhead, which
is not possible for other types of representations. The repre-
sentation problem is present in all attempts to detect malware,
but it is more developed in some scenarios (e.g., software) than
in the others (e.g., hardware). Currently, a large discussion on
the representativity of low-level features has been conducted in
the field of hardware-assisted malware detection [77, 28].
Transition to practice. HEAVEN can be implemented in ac-
tual processors without significant impact on hardware design.
Since HEAVEN relies on the GHR register, it does not require
additional hardware for data collection. Although HEAVEN
requires that GHR be extended from 16 to 32 bits, the branch
prediction unit can still use the first half of the GHR to index
the Pattern History Table (PHT), thus not interfering in the
operation of current branch predictors. HEAVEN also requires
that GHR be populated only by effectively executed branch
instructions, and not by mispredicted branches resulting from
speculative execution, as it could affect detection accuracy by
introducing spurious bits in the GHR. Further, HEAVEN re-
quires OS cooperation for saving the GHR value and the moni-
tored bit flag in the process context structure and in the process
scheduler. We consider this OS modification feasible because it
only requires the addition of code to save the value of an extra
register. HEAVEN’s signatures can be selected in many ways.
While HEAVEN selected branch patterns in code regions as-
sociated with typical malware behaviors, other policies can be
applied, such as using multiple signatures for the same sam-
ple. This would lead to the triggering of consecutive HEAVEN
interrupts, enabling the AV to scan the sample multiple times.

Whereas we have no guarantees that HEAVEN will be
adopted by industry (as proposed or modified) at any time,
the development of new hardware-assisted malware detectors is
certainly of industry interest. For instance, Intel has recently

proposed a patent on a branch-based malware detector [42]. In
this sense, we believe that HEAVEN might certainly help to
advance the discussion on the field.

Storage Limitations. The main challenge for HEAVEN’s
deployment is storage, i.e. the number of signatures required
to operate under the threat model defined by the AV company
that will provide HEAVEN signatures. We propose using
HEAVEN MBV to store only signatures for samples whose
detection requirer real-time monitoring, thus leaving AVs free
to implement additional signatures (e.g. URL-based ones)
in software. However, if an AV company wants to convert
all of its signatures to branch-based versions, HEAVEN’s
storage requirements will significantly grow up. The bloom
filter capacity may be increased up to the limits imposed by
processor vendors. The current limit for SRAM memories
(a cache size of about 2 to 8 MBs) is enough to enable the
storage of millions of signatures in MBV, as the bloom filter
capacity grows logarithmically. However, we consider very
unlikely that AV companies will port all their signatures
to HEAVEN, since their current signature scheme already
presents drawbacks when reaching a million samples [22, 33, 32].

Detection Limitations. Malware variants have been a
challenge for today’s AVs and also for HEAVEN, given its
cooperation with a userland AV. We do not consider
malware variants as a specific limitation of HEAVEN,
since every signature-based detection approach will
always present this very same limitation, and in spite of
that, the AV industry still relies on signature-based solutions
for malware detection. Adversaries might attempt to create
samples in which the branch patterns are purposely inverted
to evade detection. While we are not aware of any automatic
procedure in the context of malware detection, this strategy
has been applied for basic blocks reordering [18]. Malware
authors may also attempt to mimic a benign application
branch pattern, thus making signature generation harder.
To be successful and completely prevent the creation of a
signature, the malware author would need to ensure that the
benign branch patterns are the only patterns produced during
malware execution. Although the use of branch patterns as
signatures for screening malicious software from benign has
been proven feasible (and completely successful when applied
to the dataset used in this work), we sure need to conduct
additional research on the subject, including larger and more
diverse malware databases, the presence of rare/sophisticated
samples such as APTs, and extensive types of benign software.

Future Work. HEAVEN is a Proof-of-Concept (PoC) whose
intent is to show that our proposal of leveraging branch-based
signatures for the detection of in-the-wild malware can be done
in an effective, efficient way. That said, it opens a myriad of
options for further research to fill the encountered development
gaps. For instance, we plan to evaluate how HEAVEN will
work if we apply it in scenarios composed of low-level features,
such as malware detection based on monitoring memory access
patterns.

14

6 Related Work

John Aycock stated in his book [10] that there are 4 strategies
for accelerating an AV scan: (i) reducing the amount scanned;
(ii) reducing the amount of scans; (iii) lowering resource re-
quirements; and (iv) changing the algorithm. Many of these
strategies are associated with hardware proposals. Therefore,
these are below discussed to better position our contributions.

Many previous works in hardware-assisted security focused
on reducing the processing cost of security monitoring by adding
additional hardware components. Arora et al. [4] proposed to
detect flow violations using a static call graph model. When a
violation was detected, a Non-Maskable Interrupt (NMI), as
used in HEAVEN, was raised. The solution uses a 5-stage
pipeline processor, which was stalled when the flow was running
faster than the monitoring module. Zhang et al. [74] also pro-
posed to detect flow violations but from an established baseline
via the introduction of an eXecution Only Memory (XOM) pro-
cessor. Compared to HEAVEN, these proposals cannot detect
standalone malware and either use blocking interrupts, which
cause performance slowdown, or requires substantial processor
modifications.

Most work on hardware-assisted malware detection focus
on profiling relying on performance counters [31]. These ap-
proaches present multiple drawbacks [28], with the two biggest
ones being: (i) they require an a priori training phase that has
to be performed locally to fit the system’s operation character-
istics. Currently, a few works propose models to be downloaded
from the Internet [13]; and (ii) they transfer a significant por-
tion of the execution costs (e.g., hardware, energy, so on) to
end-users, who are required to run classification modules on
their own machines rather than on the AV company’s servers.

In terms of concepts, the HEAVEN’s idea of associating
branches with specific software constructions can be related
with the overall idea of creating signatures from control flow
paths for error detection [76]. However, the two approaches
are distinct not only in their goals but also in the implemen-
tation challenges, which are greater for malware detection, as
following discussed.

The malware-aware processor [57] implemented a hardware-
assisted time-series classifier based on features such as branches
and opcodes frequency. The detector was implemented on a
two-level software-hardware architecture, as in HEAVEN. Sim-
ilarly, in the work of Bahador et al. [11], data from Hardware
Performance Counters registers are used to classify an execu-
tion into legitimate or abnormal. With HEAVEN, we propose
the use of the GHR register as the source of information for a
security decision process. As an advantage from both works,
HEAVEN does not require continuous system monitoring for
ML classification, leveraging the software component (AV) only
on occasional suspicious cases.

Das et al. [29] proposed to model software behavior as a De-
terministic Finite Automaton (DFA) for malware detection. A
malicious behavior was detected when the automaton is fully
traversed according to the identified patterns during execution.
When the detection occurs, the CR3 register associated with the
suspicious process is provided to an upper detection instance.
HEAVEN also performs per-process malware detection, but,
contrary to this proposal, relies on an easily updatable signa-
ture database distributed via the Internet, instead of requiring
behavioral patterns to be hardcoded in hardware. Other ap-

proaches modeled malware as system call sequences, as in the
SPARC V8 FPGA by Rahmatian et al. [58] and the approach
proposed by Das et al. [27], which compresses signatures as
n-grams. The drawback of such approaches is the reliance on
static-modeled patterns that are not easily updatable in hard-
ware.

Another closely related work is the anomalous path detec-
tion [75], which advocates branch signatures as features for in-
trusion detection, with branch sequences are inputs to a learn-
ing model. Contrary to HEAVEN, this approach requires sub-
stantial hardware changes, such as the inclusion of a new se-
cure processor to a system, with its own pipeline and secure
memory access capabilities. Overall, HEAVEN contributes to
the scientific advancement of malware detection by proposing
a novel paradigm for hardware and software collaboration for
malware detection, which contrary to prior attempts at solving
the problem at the hardware level: (i) requires minimum and
feasible hardware modifications, allowing signature updates to
still occur in software and (ii) combines the best of software and
hardware capabilities in an effective framework for malware de-
tection.

Therefore, in terms of the used feature, HEAVEN can be
more associated with the proposal of probabilistic path de-
tection [20], which also establishes a separated training phase
(analogous to HEAVEN’s signature generation procedure) to
be used by a hardware component. However, in terms of imple-
mentation, HEAVEN can be more associated with the idea of
an event-aware processor, such as an SMC-aware processor [16]
that generates interrupts when violations of a given security
policy are identified (in HEAVEN’s case, malware execution
detection).

7 Conclusions
In this paper, we introduced HEAVEN, a hardware-software
collaborative framework for Intel x86/x86-64 and MS Windows
whose aim is to improve the performance and effectiveness of
standard software-based AVs. HEAVEN innovated by applying
branch pattern sequences as malware signatures, which allowed
for major performance gains that relied first on the triage of
malicious software (in hardware), and then in the invocation of
a userland AV only on borderline cases, i.e., when the moni-
tored software was not considered malicious nor benign in the
hardware detection step. We tested HEAVEN with a dataset
of 10,000 malicious and 1,000 benign software, and its 32-bit
branch pattern signatures were able to flag all evaluated mal-
ware samples before the sample executed 10% of its trace with-
out incurring in false-positives. In addition, HEAVEN required
only a few MBs to store millions of signatures at the archi-
tecture level (the size of caches in modern computers). When
compared to a standalone software AV, HEAVEN reduced av-
erage CPU usage by 10%, memory throughput in 5.6%, disk
writes in 16.22%, and disk reads in 20.22%. HEAVEN also de-
creased the number of CPU cycles used for malware scanning
by 87.5%. To be deployed, HEAVEN requires minimal modifi-
cations to OS and hardware. Hence, the accomplished results of
our PoC that implemented the proposed paradigm of combining
hardware and software-based AVs showed potential to signifi-
cantly improve the current state-of-the-art in signature-based
malware detection.
Reproducibility note. All developed code (proto-

15

types and samples) are available at https://github.com/
marcusbotacin/Hardware-Assisted-AV.
Acknowledgements. Marcus thanks the Brazilian National
Counsel of Technological and Scientific Development (CNPq)
for the PhD Scholarship 164745/2017-3. Daniela on behalf of
all authors thanks the National Science Foundation (NSF) by
the project grant CNS-1552059. Marco Zanata on behalf of all
authors thanks the Serrapilheira Institute (grant number Serra-
1709-16621).

References

[1] Alexa. Alexa top 500 global sites. https://www.alexa.
com/topsites, 2018.

[2] Andikleen. Simple-pt. https://github.com/andikleen/
simple-pt, 2018.

[3] I. Arghire. Windows 7 most hit by wannacry
ransomware. http://www.securityweek.com/
windows-7-most-hit-wannacry-ransomware, 2017.

[4] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha. Secure
embedded processing through hardware-assisted run-time
monitoring. In Design, Automation and Test in Europe,
pages 178–183 Vol. 1, GER, March 2005. ACM.

[5] K. Ask. Automatic malware signature generation.
http://www.gecode.org/~schulte/teaching/theses/
ICT-ECS-2006-122.pdf, 2006.

[6] AV-Comparatives. Business security test.
https://www.av-comparatives.org/tests/
business-security-test-2020-august-november/,
2020.

[7] av comparatives.org. Impact of security software on
system performance. https://www.av-comparatives.
org/wp-content/uploads/2017/10/avc_per_201710_
en.pdf, 2017.

[8] AV-Test. Endurance test: Does antivirus
software slow down pcs? https://www.
av-test.org/en/news/news-single-view/
endurance-test-does-antivirus-software-slow-down-pcs/,
2015.

[9] Avast. Avast threat lab - file whitelisting.
https://support.avast.com/en-ww/article/
Threat-Lab-file-whitelist, 2018.

[10] J. Aycock. Computer Viruses and Malware. Springer, 2006.

[11] M. B. Bahador, M. Abadi, and A. Tajoddin. Hlmd:
a signature-based approach to hardware-level behavioral
malware detection and classification. The Journal of Su-
percomputing, 75(8):5551–5582, Aug 2019.

[12] M. Botacin, G. Bertão, P. de Geus, A. Grégio, C. Kruegel,
and G. Vigna. On the security of application installers
and online software repositories. In C. Maurice, L. Bilge,
G. Stringhini, and N. Neves, editors, Detection of Intru-
sions and Malware, and Vulnerability Assessment, pages
192–214, Cham, 2020. Springer International Publishing.

[13] M. Botacin, L. Galante, F. Ceschin, L. C. P. C. Santos,
P. L. de Geus, A. Gregio, and M. Zanata. The av says:
Your hardware definitions were updated! In 14th In-
ternational Symposium on Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC 2019), page 1. IEEE,
2019.

[14] M. Botacin, P. L. D. Geus, and A. Grégio. Enhancing
branch monitoring for security purposes: From control flow
integrity to malware analysis and debugging. ACM Trans-
actions on Privacy and Security, 21(1):4:1–4:30, Jan. 2018.

[15] M. Botacin, P. L. D. Geus, and A. grégio. Who watches
the watchmen: A security-focused review on current state-
of-the-art techniques, tools, and methods for systems and
binary analysis on modern platforms. ACM Comput. Surv.,
51(4):69:1–69:34, July 2018.

[16] M. Botacin, M. Zanata, and A. Grégio. The self modifying
code (smc)-aware processor (sap): a security look on ar-
chitectural impact and support. Journal of Computer Vi-
rology and Hacking Techniques, 16(3):185–196, Sep 2020.

[17] M. F. Botacin, P. L. de Geus, and A. R. A. Grégio. The
other guys: automated analysis of marginalized malware.
Journal of Computer Virology and Hacking Techniques,
14(1):87–98, Feb 2018.

[18] B. Calder and D. Grunwald. Reducing branch costs via
branch alignment. SIGOPS Oper. Syst. Rev., 28(5):242–
251, Nov. 1994.

[19] A. Calleja, J. Tapiador, and J. Caballero. A look into
30 years of malware development from a software metrics
perspective, 09 2016.

[20] N. A. Carreon, S. Lu, and R. Lysecky. Hardware-based
probabilistic threat detection and estimation for embed-
ded systems. In 2018 IEEE 36th International Conference
on Computer Design (ICCD), pages 522–529, USA, 2018.
IEEE.

[21] S. K. Cha, I. Moraru, J. Jang, J. Truelove, D. Brum-
ley, and D. G. Andersen. Splitscreen: Enabling effi-
cient, distributed malware detection. In Proceedings of
the 7th USENIX Conference on Networked Systems De-
sign and Implementation, NSDI’10, pages 25–25, Berkeley,
CA, USA, 2010. USENIX Association.

[22] Clamav. Clamav. https://www.clamav.net/downloads\
#collapseCVD, 2018.

[23] ClamSentinel. Clamsentinel. https://sourceforge.net/
projects/clamsentinel/, 2018.

[24] ClamWin. Free antivirus for windows. http://www.
clamwin.com/, 2018.

[25] cnet. Cnet: Product reviews, how-tos, deals and the latest
tech news. cnet.com, 2018.

[26] Comodo. Antivirus whitelist. https://securebox.
comodo.com/antivirus-whitelist/, 2018.

16

[27] S. Das, Y. Liu, W. Zhang, and M. Chandramohan.
Semantics-based online malware detection: Towards effi-
cient real-time protection against malware. IEEE Trans-
actions on Information Forensics and Security, 11(2):289–
302, Feb 2016.

[28] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and
F. Monrose. Sok: The challenges, pitfalls, and perils of
using hardware performance counters for security. In 2019
IEEE Symposium on Security and Privacy (SP), pages 20–
38, 2019.

[29] S. Das, H. Xiao, Y. Liu, and W. Zhang. Online malware
defense using attack behavior model. In 2016 IEEE In-
ternational Symposium on Circuits and Systems (ISCAS),
pages 1322–1325, CA, May 2016. IEEE.

[30] O. E. David and N. S. Netanyahu. Deepsign: Deep learning
for automatic malware signature generation and classifica-
tion. In 2015 International Joint Conference on Neural
Networks (IJCNN), pages 1–8, Ireland, July 2015. INNS.

[31] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waks-
man, S. Sethumadhavan, and S. Stolfo. On the feasibility
of online malware detection with performance counters. In
Proceedings of the 40th Annual International Symposium
on Computer Architecture, ISCA ’13, pages 559–570, New
York, NY, USA, 2013. ACM.

[32] EMSISOFT. Why antivirus uses so much
ram – and why that is actually a good
thing! https://blog.emsisoft.com/2016/04/13/
why-antivirus-uses-so-much-ram-and-why-that-is-actually-a-good-thing/,
2015.

[33] ESET. Types of updates. http://support.eset.com/
kb309/?viewlocale=en_US, 2018.

[34] A. Fog. The microarchitecture of intel, amd and
via cpus. http://www.cs.utexas.edu/~hunt/
class/2018-spring/cs340d/documents/Agner-Fog/
microarchitecture.pdf, 2018.

[35] A. Grégio, V. Afonso, D. Simões Fernandes Filho,
P. De Geus, and M. Jino. Toward a taxonomy of mal-
ware behaviors. The Computer Journal, 58:2758–2777, 07
2015.

[36] K. Griffin, S. Schneider, X. Hu, and T.-c. Chiueh. Auto-
matic Generation of String Signatures for Malware Detec-
tion, pages 101–120. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009.

[37] T. hardware. Do antivirus suites impact your pc’s
performance? http://www.tomshardware.co.uk/
antivirus-performance-benchmark,review-32294.
html, 2011.

[38] J. L. Henning. Spec cpu2006 benchmark descriptions.
ACM SIGARCH Computer Architecture News, 34(4):1–17,
2006.

[39] Intel. Intel(R) Advanced Vector Extensions Programming
Reference. Intel, 2011.

[40] Intel. Manual. https://www.intel.com/content/
dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-system-programming-manual-325384.
pdf, 2016.

[41] Intel. Intelpt. https://github.com/intelpt/
WindowsIntelPT, 2018.

[42] Intel. Technologies for hardware assisted na-
tive malware detection. https://patentimages.
storage.googleapis.com/fb/23/ff/9d11b27884f050/
US10540498.pdf, 2020.

[43] R. Intel. Architecture instruction set extensions program-
ming reference. Intel, March, 1(1), 2014.

[44] B. Kang, H. Kim, T. Kim, H. Kwon, and E. Im. Fast mal-
ware classification using counting bloom filter. Information
(Japan), 15(7):2879–2892, July 2012.

[45] Kaspersky. Whitelist program. https://usa.kaspersky.
com/partners/whitelist-program, 2018.

[46] J. Koret and E. Bachaalany. The Antivirus Hacker’s Hand-
book. Wiley Publishing, US, 1st edition, 2015.

[47] A. Küchler, A. Mantovani, Y. Han, L. Bilge, and
D. Balzarotti. Does every second count?time-based evo-
lution of malware behavior in sandboxes. http://s3.
eurecom.fr/docs/ndss21_kuechler.pdf, 2021.

[48] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building customized program analysis tools with dy-
namic instrumentation. In Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’05, pages 190–200, New York,
NY, USA, 2005. ACM.

[49] Microsoft. Cmregistercallbackex function. https://docs.
microsoft.com/en-us/windows-hardware/drivers/
ddi/content/wdm/nf-wdm-cmregistercallbackex,
2018.

[50] Microsoft. Fsrtlregisterfilesystemfiltercallbacks
function. https://docs.microsoft.com/en-us/
windows-hardware/drivers/ddi/content/ntifs/
nf-ntifs-fsrtlregisterfilesystemfiltercallbacks,
2018.

[51] Microsoft. Getcurrentprocessid function. https:
//msdn.microsoft.com/pt-br/library/windows/
desktop/ms683180(v=vs.85).aspx, 2018.

[52] Microsoft. Peb structure. https://msdn.microsoft.
com/pt-br/library/windows/desktop/aa813706(v=vs.
85).aspx, 2018.

[53] Microsoft. Pssetcreateprocessnotifyroutine func-
tion. https://docs.microsoft.com/en-us/
windows-hardware/drivers/ddi/content/ntddk/
nf-ntddk-pssetcreateprocessnotifyroutine, 2018.

[54] Microsoft. Avscan file system minifilter
driver. https://docs.microsoft.com/en-us/
samples/microsoft/windows-driver-samples/
avscan-file-system-minifilter-driver/, 2019.

17

[55] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. B. Kang.
Vigilare: Toward snoop-based kernel integrity monitor. In
Proc. 2012 ACM Conf. on Comp. and Comm. Sec., CCS
’12, US, 2012. ACM.

[56] Novabench. Free benchmark. https://novabench.com/,
2018.

[57] M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and
D. Ponomarev. Malware-aware processors: A framework
for efficient online malware detection. In 2015 IEEE 21st
International Symposium on High Performance Computer
Architecture (HPCA), pages 651–661, US, Feb 2015. IEEE.

[58] M. Rahmatian, H. Kooti, I. G. Harris, and E. Bozorgzadeh.
Hardware-assisted detection of malicious software in em-
bedded systems. IEEE Embedded Systems Letters, 4(4):94–
97, Dec 2012.

[59] C. Sandbox. Cuckoo sandbox: Automated malware anal-
ysis. https://cuckoosandbox.org/, 2018.

[60] V. S. Sathyanarayan, P. Kohli, and B. Bruhadeshwar.
Signature Generation and Detection of Malware Families,
pages 336–349. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2008.

[61] S. Sethumadhavan, R. Desikan, D. Burger, C. R. Moore,
and S. W. Keckler. Scalable hardware memory disam-
biguation for high ilp processors. In Proceedings. 36th An-
nual IEEE/ACM International Symposium on Microarchi-
tecture, 2003. MICRO-36., pages 399–410, US, Dec 2003.
ACM.

[62] A. Shabtai, E. Menahem, and Y. Elovici. F-sign: Au-
tomatic, function-based signature generation for malware.
IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), 41(4):494–508, July
2011.

[63] Softonic. Softonic: App news and reviews, best software
downloads and discovery. softonic.com, 2018.

[64] Sophos. Default anti-virus scanning options for sophos
central. https://community.sophos.com/kb/en-us/
119637, 2016.

[65] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz. Theory
and practice of bloom filters for distributed systems. IEEE
Communications Surveys Tutorials, 14(1):131–155, First
2012.

[66] X. Ugarte-Pedrero, M. Graziano, and D. Balzarotti. A
close look at a daily dataset of malware samples. ACM
Trans. Priv. Secur., 22(1):6:1–6:30, Jan. 2019.

[67] D. Uluski, M. Moffie, and D. Kaeli. Characterizing an-
tivirus workload execution. SIGARCH Comput. Archit.
News, 33(1):90–98, Mar. 2005.

[68] UPX. Upx: the ultimate packer for executables. https:
//upx.github.io/, 2018.

[69] C. Wressnegger, K. Freeman, F. Yamaguchi, and K. Rieck.
Automatically inferring malware signatures for anti-virus
assisted attacks. In Proceedings of the 2017 ACM on Asia

Conference on Computer and Communications Security,
ASIA CCS ’17, page 587–598, New York, NY, USA, 2017.
Association for Computing Machinery.

[70] A. Yakunis. Nice bloom filter applica-
tion. http://blog.alexyakunin.com/2010/03/
nice-bloom-filter-application.html, 2010.

[71] Yara. Yara - the pattern matching swiss knife for
malware researchers. https://virustotal.github.io/
yara/, 2018.

[72] T.-Y. Yeh and Y. N. Patt. Alternative implementations of
two-level adaptive branch prediction. In [1992] Proceedings
the 19th Annual International Symposium on Computer
Architecture, pages 124–134, AUS, 1992. ACM.

[73] I. You and K. Yim. Malware obfuscation techniques: A
brief survey. In 2010 International Conference on Broad-
band, Wireless Computing, Communication and Applica-
tions, pages 297–300, JP, Nov 2010. IEEE.

[74] T. Zhang, X. Zhuang, S. Pande, and W. Lee. Hardware
supported anomaly detection: down to the control flow
level. https://smartech.gatech.edu/handle/1853/96,
2004.

[75] T. Zhang, X. Zhuang, S. Pande, and W. Lee. Anomalous
path detection with hardware support. In Proceedings of
the 2005 International Conference on Compilers, Archi-
tectures and Synthesis for Embedded Systems, CASES ’05,
pages 43–54, New York, NY, USA, 2005. ACM.

[76] Z. Zhang, S. Park, and S. Mahlke. Path sensitive signa-
tures for control flow error detection. In The 21st ACM
SIGPLAN/SIGBED Conference on Languages, Compil-
ers, and Tools for Embedded Systems, LCTES ’20, page
62–73, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[77] B. Zhou, A. Gupta, R. Jahanshahi, M. Egele, and A. Joshi.
Hardware performance counters can detect malware: Myth
or fact? In Proceedings of the 2018 on Asia Conference on
Computer and Communications Security, ASIACCS ’18,
page 457–468, New York, NY, USA, 2018. Association for
Computing Machinery.

A Branch Signature Extraction
A key step of HEAVEN branch signature generation is the
branch pattern extraction. We expect that AV companies per-
form branch pattern extraction using their own dynamic anal-
yses sandboxes, enabling HEAVEN’s signature generation. A
recent survey showed that hardware-assisted sandboxes are the
current state-of-the-art for transparent malware analysis [15],
which makes HEAVEN immediately viable due to the ease of
extracting branch patterns with low-level monitoring tools.

We suggest that AV companies take advantage of the Intel
Processor Trace (PT) mechanism [43] as a basis for sandbox
development and branch pattern extraction. The PT feature
is present on Intel’s 6th generation processor family (formerly
known as Skylake) microarchitecture and later. PT captures
runtime information using dedicated hardware, and efficiently
encodes that information in packets stored into memory pages.

18

Once the buffers are fully written, PT generates an interrupt
that allows for data collection. Collected data includes taken
and not taken branches. As a drawback of PT, it depends upon
post-interrupts for each packet sequence, whereas HEAVEN’s
GHR matching is a real-time, memory-free approach. There-
fore, PT is more suited for branch pattern extraction aiming at
signature generation than real-time matching (better accom-
plished with HEAVEN by design).

Since HEAVEN focuses on branch data, AVs companies
should look to tnt.8 packets, which encodes up to 6 branches.
By repeatedly collecting such branches, AVs companies could
build a branch signature the same way HEAVEN does for the
GHR. To demonstrate the viability of using PT for branch pat-
tern extraction, we implemented a proof of concept (PoC) rely-
ing on existing drivers [41] and a Intel PT decoder library [2].
In Code Snippet 1, we show that our PoC is able to detect a
branch signature after a sequence of tnt.8 packets:

1. Line 1 shows the first captured tnt.8 packet;

2. Line 2 shows that the bits from the second captured packet
are appended to the left of the signature so as to build the
branch pattern;

3. This process is repeated for the remaining captured packets
(shown in Lines 3 to 6), until a sequence of 32 branches
(HEAVEN’s signature size) is completed;

4. Line 8 shows the detection signal raised when the produced
pattern matches a stored signature.

1 1st tnt.8: 001110
2 2nd tnt.8: 111111
3 3rd tnt.8: 011111
4 4th tnt.8: 110011
5 5th tnt.8: 111011
6 6th tnt.8: 11----
7 --
8 Obtained signature:

|11|111011|110011|011111|111111|001110|

Code 1: Obtaining signatures using using tnt.8 packets from
Processor Trace.

19

