
Detecting Memory Injections Using a
Hardware Monitor
Marcus Botacin1,2, Uriel Kosayev2, and Amichai Yifrach2

1Texas A&M University (TAMU), USA and 2Cymdall, Israel
1botacin@tamu.edu and 2{uriel,amichai}@cymdall.com

Abstract
Memory injection is the current State-Of-The-Art (SOTA) malware attack technique. Injections are hard to detect by current software-based AntiViruses (AVs) because monitoring operations
system-wide causes significant performance impact. To mitigate performance penalties, AntiViruses often only monitor specific parts of the system, thus naturally missing some injection
points, that are actively exploited by the attackers in an arms race. A solution to the problem is to move AntiViruses to hardware to allow full-system monitoring without performance
impact. We here present a prototype of a hardware monitor to detect memory injection attacks. We evaluate the prototype via the injection of a backdoor payload into a native Windows
process. The injection is not detected by the native Windows Defender nor by commercial Endpoint Detection and Response (EDR) solutions, but it is detected by the proposed detector.

Software Detectors

Detection Results
Solution Hardware Defender EDR1 EDR2
Detection 3 7 7 7

Hardware Detectors

Memory Injection Attacks
Most recent attacks are memory based because:

• Multi-stage malware is commonplace. • Fileless malware is SOTA.

Memory injection attacks pose detection challenges, because:

• Processes may act maliciously any time. • No file in disk for preliminary inspection.

A smart detection approach involves:

• Continuously monitoring memoery. • Mapping data changes into intents.

Hardware vs. Software Detectors
Software detectors have drawbacks:

• Monitor causes performance impact. • The monitor is a vulnerable surface.

Hardware detectors impose an implementation challenge:

• Semantic Gap: Software data structures must be reconstructed in hardware.

Hardware detectors have multiple advantages:

• Monitor causes no performance impact. • Monitor has no internal attack surface.

Monitored Intents
1 enum intent_event_type_e : size_t
2 {
3 INTENT_EVENTS
4 // "New VAD created"
5 #define X(new_vad)
6

7 // "New VAD created without FileObject"
8 #define X(new_vad_no_fileobject)
9

10 // "Executable VAD became Write Executable"
11 #define X(executable_vad_became_write_executable)
12

13 // "Section added to memory PE"
14 #define X(pe_section_added)
15 };

Kernel Data Structures Reconstruction
1 typedef union _EPROCESS_x64_10_19041_508_u{
2 struct _EPROCESS_x64_10_19041_508
3 {
4 struct _KPROCESS_x64_10_19041_508 Pcb;
5 struct _EX_PUSH_LOCK_x64_10_19041_508 ProcessLock;
6 ...
7 ULONG Flags;
8 struct
9 {

10 ULONG CreateReported : 1;
11 ULONG NoDebugInherit : 1;
12 ULONG ProcessExiting : 1;
13 ULONG ProcessDelete : 1;
14 ULONG ManageExecutableMemoryWrites : 1;

Solution Console

Future Work
• FPGA Prototyping.

– Parse the Windows kernel data structures in the hardware.

• ASIC Prototyping.

– Convert the FPGA prototype into an energy-space efficient chip.

• PCI Accelerator.

– Distribute the ASIC as a PCI board, security accelerator for easy integration.

• Cloud Deployment.

– Deploy the solution at scale in partner cloud service providers.

References
1 Marcus Botacin et al. 2022. Terminator: A Secure Coprocessor to Accelerate Real-Time

AntiViruses Using Inspection Breakpoints, ACM TOPS.

2 Marcus Botacin et al. 2022. HEAVEN: A Hardware-Enhanced AntiVirus ENgine to accele-
rate real-time, signature-based malware detection. Expert Systems with Applications.

3 Ashkan Hosseini. 2017. Ten process injection techniques: A technical survey of common
and trending process injection techniques. Endpoint Security Blog (2017).

4 Metasploit. 2020. How to use a reverse shell in Metasploit.
https://docs.metasploit.com/docs/using-metasploit/basics/how-to-use-a-reverse-
shell-in-metasploit.html.

5 MITRE. 2020. Process Injection: Asynchronous Procedure Call.


