Detecting Memory Injections Using a Hardware Monitor

Marcus Botacin^{1,2}, Uriel Kosayev², and Amichai Yifrach² ¹Texas A&M University (TAMU), USA and ²Cymdall, Israel ¹botacin@tamu.edu and ²{uriel,amichai}@cymdall.com

Abstract

Memory injection is the current State-Of-The-Art (SOTA) malware attack technique. Injections are hard to detect by current software-based AntiViruses (AVs) because monitoring operations system-wide causes significant performance impact. To mitigate performance penalties, AntiViruses often only monitor specific parts of the system, thus naturally missing some injection points, that are actively exploited by the attackers in an arms race. A solution to the problem is to move AntiViruses to hardware to allow full-system monitoring without performance impact. We here present a prototype of a hardware monitor to detect memory injection attacks. We evaluate the prototype via the injection of a backdoor payload into a native Windows process. The injection is not detected by the native Windows Defender nor by commercial Endpoint Detection and Response (EDR) solutions, but it is detected by the proposed detector.

Software Detectors				Hardware Detectors							
		Detection Engine	Malware Detector	User-land				Application 1	Application 2	User-land	
]							

8	#define X(new_vad_no_fileobject)	8	struct
9		9	{
10	// "Executable VAD became Write Executable"	10	ULONG CreateReported : 1;
11	#define X(executable_vad_became_write_executable)	11	ULONG NoDebugInherit : 1;
12		12	ULONG ProcessExiting : 1;
13	// "Section added to memory PE"	13	ULONG ProcessDelete : 1;
14	<pre>#define X(pe_section_added)</pre>	14	<pre>ULONG ManageExecutableMemoryWrites : 1;</pre>
15 };			

Solution Console

Time	Message
00:03:48.115	Process Created. PID=4868; PPID=588; CPID=0; cmdLine: explorer.exe
06:26:59.230	Maliciouse Intent Probability 75.0 due to: Executable VAD FileObject changed in VAD node at 0x00000000000000000
06:26:59.230	Maliciouse Intent Probability 1.0 due to: VAD_SHORT changed to VAD in VAD node at 0x0000000000000000000000000000000000
06:26:59.230	Maliciouse Intent Probability 75.0 due to: Executable VAD FilePath changed in VAD node at 0x0000000000000000000
06:26:59.230	Maliciouse Intent Probability 75.0 due to: New Write Executable VAD_SHORT created without FileObject - Injection found in VAD node at 0x0000000000000031C0
06:26:59.230	Maliciouse Intent Probability 1.0 due to: VAD changed to VAD_SHORT in VAD node at 0x000000000000000000000000000
06:26:59.230	Maliciouse Intent Probability 75.0 due to: Non Executable VAD_SHORT became Write Executable in VAD node at 0x0000000000000000000000000000000000
06:26:59.230	Maliciouse Intent Probability 75.0 due to: New Write Executable VAD_SHORT created without FileObject - Injection found in VAD node at 0x0000000000000000000000000000000000

Future Work	References	
• FPGA Prototyping.	1 Marcus Botacin et al. 2022. Terminator: A Secure Coprocessor to Accelerate Real-Time	
 Parse the Windows kernel data structures in the hardware. 	Antiviruses Using Inspection Breakpoints, ACM TOPS.	
• ASIC Prototyping.	2 Marcus Botacin et al. 2022. HEAVEN: A Hardware-Enhanced AntiVirus ENgine to accele- rate real-time, signature-based malware detection. Expert Systems with Applications.	
 Convert the FPGA prototype into an energy-space efficient chip. 	3 Ashkan Hosseini. 2017. Ten process injection techniques: A technical survey of common	
• PCI Accelerator.	and trending process injection techniques. Endpoint Security Blog (2017).	

- Deploy the solution at scale in partner cloud service providers.

4 Metasploit. 2020. Metasploit. How reverse shell use to In а https://docs.metasploit.com/docs/using-metasploit/basics/how-to-use-a-reverseshell-in-metasploit.html. 5 MITRE. 2020. Process Injection: Asynchronous Procedure Call.