Detecting Memory Injections Using a Hardware Monitor

Marcus Botacin Uriel Kosayev Amichai Yifrach
botacin@tamu.edu uriel@cymdall.com amichal@cymdall.com
Texas A&M University CYMDALL CYMDALL
Texas, USA Israel Israel
ABSTRACT How it works. There are multiple techniques to perform code in-

Memory injection is the current state-of-the-art malware attack
technique. Injections are hard to detect by current software-based
AntiViruses (AVs) because monitoring operations system-wide
causes significant performance impact. To mitigate performance
penalties, AVs often only monitor specific parts of the system, thus
naturally missing some injection points, that are actively exploited
by the attackers in an arms race. A solution to the problem is to
move AVs to hardware to allow full-system monitoring without
performance impact. In this paper, we present a prototype of a
hardware monitor to detect memory injection attacks. We evaluate
the prototype via the injection of a backdoor payload into a na-
tive Windows process. The injection is not detected by the native
Windows Defender, but it is detected by the proposed detector.

CCS CONCEPTS

« Security and privacy — Intrusion/anomaly detection and
malware mitigation; Network security; Systems security;

KEYWORDS

Malware, Antivirus, Cloud Computing, Hardware Design

ACM Reference Format:

Marcus Botacin, Uriel Kosayev, and Amichai Yifrach. 2023. Detecting Mem-
ory Injections Using a Hardware Monitor. In Proceedings of Make sure to enter
the correct conference title from your rights confirmation emai (ACSAC ’23).
ACM, New York, NY, USA, 2 pages. https://doi.org/XXXXXXX.XXXXXXX

1 MEMORY INJECTION ATTACKS

In this work, we address the problem of memory injection by mal-
ware. We start presenting background on this type of threat to
motivate the further presentation of a hardware-based detector.

Why Code Injection? OSes support adding code to processes for
multiple reasons, from shrinking code bases via dynamic libraries
to the addition of wrappers for legacy support. However, code
injection might also become a threat when abused by malware.

The threat. Code injection becomes a threat when malware loads
its code in the context of a third process. Malware does that for two
reasons: (i) stealing information from the user by harvesting the
process’ data (e.g., browser information); and (ii) making detection
harder, by mixing its malicious with the ones of a benign process.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACSAC °23, June 03-05, 2018, Woodstock, NY

© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/XXXXXXX.XXXXXXX

jection [1]. They can be classified into two classes: (i) using native
methods (e.g., Windows API); and (ii) abusing the OS structures. In
the first case, the malware uses system APIs to load a pre-compiled
code into a target process memory. In the latter, the attacker man-
ually maps the payload into the image of the target process by
manipulating the OS structures (e.g., the loaded image list).

How to Detect. When code injection is performed using the Win-
dows APIs, one can directly monitor the API usage. The Windows
kernel provides notification callbacks for this type of monitoring it.
Typical AVs rely on these callbacks for monitoring code injection.
When the injection strategy is based on the abuse of OS structures,
the only detection method possible is to parse the OS structures
and check their integrity. There is no API for that, which requires
manual implementation. There is also no precise trigger for this
check, which requires polling. Many AVs often do not implement
this type of check for the above reasons.

2 DESIGN

We implemented two versions of the security monitor: (i) one in
pure software, to serve as ground truth, and one in hardware, to
be performance efficient. Both rely on the same detection engine.
We following present the two implementations and describe the
details of the detection engine.

2.1 Software Implementation

In a software-based AV architecture, the AV has (i) a kernel compo-
nent that accesses the memory objects at the OS memory subsystem;
and (ii) a userland component that periodically requests kernel data
to classify if the object is malicious or not. Figure 2 illustrates the
data flow in this type of architecture as we implemented in our
prototype. The major drawbacks of this architecture are that (i) the
userland component has to synchronously query the kernel driver
for data, which causes CPU impact; and (ii) the userland component
has to spend CPU time processing the detection routines.

2.2 Hardware Implementation

In a hardware-based AV architecture, the AV does not need to have
interposition components at the software level. Instead, the memory
objects can be retrieved directly from the hardware structures—the
kernel stores memory pages in the Memory Management Unit and
the Translation Lookaside Buffer (TLB). Thus, the monitor imple-
mented in hardware can access this information directly. Also, a
hardware implementation does not require software for processing,
since the detection engine can be implemented in the hardware
layer. Figure 3 illustrates the data flow in this type of architecture
as we implemented it in the hardware emulation solution. This
architecture will be deployed in ASIC hardware.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ACSAC 23, June 03-05, 2018, Woodstock, NY

Time Message

Botacin et al.

06 230

Process Created. PID=4868; PPID=588; CPID=0; emdLine: explorer.exe

Maliciouse Intent Probability 75.0 due to: New Write Executable VAD_SHORT created without FileObject - Injection found in VAD node at 0x00000000000031C0

Maliciouse Intent Probability 75.0 due to: Executable VAD FileObject changed in VAD node at 0x0000000000003170
06:26:53.230 Maliciouse Intent Probability 1.0 due to: VAD_SHORT changed to VAD in VAD node at 0x0000000000003170
06:26:59.230 Maliciouse Intent Probability 75.0 due to: Executable VAD FilePath changed in VAD node at 0x0000000000003170
06:26:59.230
06:26:59.230 Maliciouse Intent Probability 1.0 due to: VAD changed to VAD_SHORT in VAD node at O0x000000000000D540
06:26:59.230 Maliciouse Intent Probability 75.0 due to: Non Executable VAD_SHORT became Write Executable in VAD node at 0x000000000000D540
06:26:59.230

Maliciouse Intent Probability 75.0 due to: New Write Executable VAD_SHORT created without FileQbject - Injection found in VAD node at 0x000000000000D540

Figure 1: Log Console. The hardware detector identifies the memory structure manipulation.

Detection

Engine Malware Detector User-land
A
|
1
I

Memory Memory Subsystem

Objects y Y Kernel-land

Figure 2: Software-Based Detector. In the traditional model,
the information is collected from the kernel via a kernel
driver and processed in the userland.

Application 1 Application 2 User-land
Memory b
Objects Memory Subsystem | Kernel-land
I
¥
Page | D
Tables ol Engine Processor

Figure 3: Hardware-Based Detector. In the new model, the
kernel information is directly collected from and processed
at the hardware level.

2.3 Detection Engine

The detection engine for memory injection is an integrity checker
that enforces the security policy that only the libraries referenced in
the PE header can be loaded in the memory space. To enforce that,
we parse the PE header at the loading time and check all library
names, creating a database for that process. When a new image is
loaded within the process context, we check if that image matches
the information in the database. If the information mismatches, code
injection is detected and reported. In the software implementation,
the loading of PEs and libraries is directly retrieved from the kernel
via callbacks. In the hardware implementation, this information
is retrieved from the loading of new memory pages. The parsing
mechanism is implemented by directly checking the memory offsets
within each read page.

3 EVALUATION

We here present the evaluation of the proposed solution against a
real attack and real defenses.

The Attack. The sample attack for our evaluation consisted of a
remote thread injection via the Asynchronous Procedure Call (APC)
injection method [3]. This type of injection is often performed by
malware samples in post-exploitation steps. The payload is injected
into the native Windows’ explorer.exe process. The injected pay-
load consists of a reverse shell generated via Metasploit [2].

The Defenses. Our experiment considered two different scenarios:
(i) with and (ii) without defenses. The scenario without defenses
was only considered as ground truth to warrant the attack working.
The scenarios with defenses considered four different protections,
divided into three classes: (i) the developed hardware monitor;
(ii) the native Windows defender; and (iii) two popular Endpoint
Detection and Response (EDR) solutions.

Results. Once the attack succeeds in the ground truth experiment,
we evaluate its effectiveness against the proposed defenses. Table 1
details the performance result of the defensive solutions.

Table 1: Detection Results. The hardware detector is the only
solution that detects the memory injection.

Solution Hardware Defender EDR1 EDR2
Detection v X X X

We notice that the attack succeeded in all scenarios with soft-
ware AVs, either they being the native Windows Defender or the
commercial EDRs. The proposed hardware detector was the only
solution able to detect the thread injection.

Figure 1 illustrates the console messages outputted by the hard-
ware solution. We notice that the solution was able to keep track
of the memory changes during all attack steps.

4 CONCLUSION

In this paper, we investigated the problem of efficiently detecting
code injection attacks by malware samples.

Contributions. We presented a prototype of a hardware-assisted
malware detector that can detect memory injection by externally
parsing Windows structures. The detection was possible even in
the case when the native Windows Defender did not detect the ma-
licious payload. We expect these results might foster new hardware-
assisted security developments.

Limitations. The current prototype implementation is limited to
memory injection attacks and it is still not a complete replacement
for software AVs, that also detect other types of threats.

Future Work. We will extend the hardware monitor to cover other
types of attacks, such that it might replace the software implementa-
tion of an AV engine. Our first step was to partner with a company
to embed the solution into a chip.

Acknowledgments. The authors thank CYMDALL for supporting
the development of this research project.

REFERENCES

[1] Ashkan Hosseini. 2017. Ten process injection techniques: A technical survey of
common and trending process injection techniques. Endpoint Security Blog (2017).

[2] Metasploit. 2020. How to use a reverse shell in Metasploit. https:
//docs.metasploit.com/docs/using-metasploit/basics/how-to-use-a-reverse-
shell-in-metasploit.html.

[3] MITRE. 2020. Process Injection: Asynchronous Procedure Call.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://docs.metasploit.com/docs/using-metasploit/basics/how-to-use-a-reverse-shell-in-metasploit.html
https://docs.metasploit.com/docs/using-metasploit/basics/how-to-use-a-reverse-shell-in-metasploit.html
https://docs.metasploit.com/docs/using-metasploit/basics/how-to-use-a-reverse-shell-in-metasploit.html

	Abstract
	1 Memory Injection Attacks
	2 Design
	2.1 Software Implementation
	2.2 Hardware Implementation
	2.3 Detection Engine

	3 Evaluation
	4 Conclusion
	References

