
Why we need a theory of maliciousness:
Hardware Performance Counters in security

Marcus Botacin1,2 and André Grégio2

1Texas A&M University, USA
2Federal University of Paraná (UFPR), Brazil

{mfbotacin, gregio}@inf.ufpr.br
Extended Paper Version

Abstract. Hardware Performance Counters (HPCs) are at the center
of a research discussion: Is their use effective for malware detection?
Whereas some studies suggest that it is, others suggest it is not. Although
we do not have a definitive answer for this question, we do have a hint
on how to contribute towards advancing the discussion. In our view, the
aforementioned question is misleading. In practice, it is not a matter of
whether HPCs are generally applicable or not, but a matter to what extent
and for which types of malware they (and any solution) are. Therefore,
in this paper, we try to clarify the discussion by evaluating prior work
presenting HPC criticism and highlighting their implicit assumptions and
the potential research opportunities created by them. We discovered that
HPCs are particularly good at detecting malware that exploits architec-
tural side-effects, but not as good as traditional detection approaches at
detecting pure-software malware, such that the best detection rates are
achieved via a combination of detection approaches. We also identified
that most of the controversy about HPCs originates from researchers
not clearly stating which type of malware they were considering. Thus,
we claim the need for a theory of maliciousness to better state malware
threats and evaluate proposed defenses.

Keywords: Performance Counter · Malware · Science of Security

1 Introduction

Countering Malware is a continuous problem for most systems, and there is no
definitive solution for it, such that researchers are always trying to find new
tools, approaches, and techniques to mitigate its impact. The proposed defensive
solutions significantly varied over time, ranging from static byte signatures [54],
passing through heuristics [7], until reaching the currently widespread Machine
Learning (ML)-based models [48].

Recently, researchers started to propose the use of Hardware Performance
Counters (HPCs) for malware detection [8, 18]. The usual approach involving
HPCs consists of collecting system’s metadata about the execution of a software
and classifying the data as normal or not so as to infer the maliciousness of
the software execution. The name HPCs comes from the fact that modern
processors [4, 32] have special registers (counters) that automatically count the
occurrence of some events, such as cache hits and misses, branch predictions



2 Botacin et al.

and mispredictions, and so on, during code execution. Thus, one can collect this
information without much overhead and apply classification algorithms to it.

It is hard to say which was the first work proposing the use of HPCs for
malware detection, but research on the subject has been certainly impulsed by
an ISCA paper that suggested its feasibility in multiple scenarios and archi-
tectures [18]. After that, multiple related approaches emerged to highlight the
multiple benefits of HPC, such as not imposing significant overhead [19] and even
the possibility of collecting data via reconfigurable hardware, making HPC-based
approaches updatable via software [8].

However, no technique presents only benefits; approaches are always a matter
of trade-off decisions, so researchers started to investigate what were the negative
aspects of HPCs application and even question whether its usage was viable. A first
criticism involved the non-deterministic nature of the collected data [16]. Since
metadata depends on the architectural state on each execution, the classification
result might be also biased by it. Whereas this criticism certainly points out the
need for developing more robust classification procedures, it does not necessarily
invalidate the HPC application.

Another HPC criticism involves the fact that the metadata might not be
informative about the execution content. An implicit assumption of most work
on the HPC field is that a misbehavior at the software level corresponds to a
misbehavior at the hardware level. Whereas this is a plausible hypothesis, it
has been revealed not true in many cases. A significant work on HPC criticism
(presented in [55] and extended in [56]) demonstrated the case of a ransomware
sample that is malicious at software level but indistinguishable at the hardware
level, which led to the authors of these papers to claim HPCs infeasibility for
malware detection.

At the same time that the presented criticism emerged, new publications about
HPC kept appearing, and even Intel decided to adopt a HPC-based approach
in its security products [33], exactly to tackle the problem of ransomware. This
controversy immediately leads to the question: Who is right and/or wrong in this
controversy? Or even, Is there anyone right and/or wrong in this controversy?
These are questions that this work aims to help to answer.

To answer these broad questions, we had to adopt a two-step approach.
First, we revisited the problem of detecting malware using HPCs by analyzing
the findings of some representative works published in the academic literature.
We discovered a discrepancy on the reported results that justify contradictory
verdicts. This motivates our next step, which consisted in investigating the root
of the contradictory results.

For such, we critically analyzed the published works criticizing HPCs. We
discovered that the contradictory results originates in the fact that the concept
of malware is implicitly interpreted distinctly by the studies. Therefore, the
questions we formally address in this paper are twofold: (i) Can HPCs be used
to detect malware? and (ii) Is malware sufficiently well defined?

In the current world we live, there are malware of all types: some are classically
recognized as malware, operating from a software-focused perspective; others are



1. INTRODUCTION 3

emerging threats, being malicious by exploiting architectural side-effects, thus
also hardware-focused, such that they are not always understood as malware in
the usual sense. On the one hand, the studies claiming HPCs viable are implicitly
assuming side-effect malware. On the other hand, the studies claiming HPCs
unfeasibility implicitly assume software-focused malware operation.

In our view, the controversy can be solved (or mitigated) if an integrated
view is employed in the analyses. We demonstrate it via an example of a scenario
which mixes detectors based on typical ML and on HPCs. In it, the combination
of both approaches produced a greater detection rate than individual detectors.
We understand that the differences on the understanding of what is malware and
on the effectiveness of the proposed detection solutions comes from the lack of
a widely accepted theory of maliciousness, which should clearly establish which
effects are or not considered malicious and thus help judging which defenses are
suitable for these cases. In other words, we believe that answering the question
whether malware is well defined or not via a theory of maliciousness also answers
the question of whether HPCs are suitable for malware detection or not by
delimiting its scope and goals.

While this theory is not fully elaborated by the security community, we
present ideas to help driving this development. More specifically, we propose the
concept of attack space reduction, which involves the reduction of the possibilities
of action of a given sample, a goal which is clearly accomplished by HPCs, since
arbitrary malicious constructions designed to trigger architectural side-effects are
blocked by HPC models that enforce standard executions in terms of metadata.

Important to say that, when we critically analyze works debunking HPCs,
our goal is not try to prove them wrong, even because we agree with most of
them, but to show how they focused on a narrow scope and more research can be
done from them. The current status of HPC should not be seem as disincentive
for researchers but, the opposite, as multiple research opportunities.

We believe this work might help clarifying the scenarios in which HPCs should
be considered. In particular, we believe HPCs should be part of a pipeline of
detection solutions in which each one reduces the attack space in a distinct
direction. The elaboration of this concept is presented over this paper.

In summary, our contributions are as follows:

– We revisit the problem of deciding the feasibility of leveraging HPCs for
malware detection aiming to pinpoint its open questions and evaluating the
source of the controversy.

– We present a scenario of architecture-aware malware in which HPCs are key
for detection.

– We claim the need for establishing a theory of maliciousness to evaluate
malware attacks and defenses in a proper context.

This work is organized as follows: In Section 2, we present examples of
positive and negative results on HPCs to position the controversy in the context
of the discussion about their efficiency for malware detection; In Section 3, we
critically analyze some works aiming to debunk HPCs feasibility and discuss their



4 Botacin et al.

limitations under the light of the lack of a clear malware definition; In Section 4,
we present our proposal to clarify the discussion via a new interpretation of the
questions and results around the HPC controversy; In Section 5, we put our
study in the context of the science of security discussion; In Section 6, we present
related work to support our discussion; In Section 7, we draw our conclusions.
Vocabulary: In this paper, we refer to (i) HPC as short for HPC for malware
detection, with no implication for HPCs’ usage in other contexts; and (ii) side-
effects as the impact of running code on the internal processor structures [42].

2 Results on HPC for Malware Detection: Is it effective?

In this section, we briefly revisit some research works in the HPC for malware
detection field and evaluate whether the discussion about them is justified.
What is reported about HPCs for malware detection? To understand
whether the discussion about HPC application to malware detection is justified
or not, we need first to understand its origin. For doing so, we surveyed the
literature and found examples that demonstrate the origin of the controversy.
Our goal in this work is not to present an exhaustive survey of all published
work in the field (which is presented in [8, 56]), but to highlight the distinct
conclusions about the same aspect. Therefore, we searched papers in the most
popular research repositories for computer science (ACM, IEEE, and Springer)
and screened the papers with the HPC keyword in the title and/or abstract that
were cited at least once.

Table 1: HPC experiment’s results. Selected papers to highlight the distinct
conclusions about its viability.

Work Metric Conclusion

Botacin et al. [8] 36% to 97% accuracy Positive
Demme et al. [18] 35.7 to 83.1% AUC FPR Positive
Zhou et al. [56] 14.32% to 78.75% F1 score Negative

Table 1 presents the distinct metrics reported for some research works and
the respective author’s position towards the results (whether they are acceptable
for malware detection or not). We opted to represent the papers with the greatest
results variation among all screened papers (the extreme cases). Notice that the
distinct papers represent their results in terms of different metrics.

We notice that a common characteristic of all research works is the huge
variation among the metrics, that change according to the considered dataset,
monitored event, or used ML classifier. Face to this variation, the authors
made distinct conclusions, some accepting and others rejecting the possibility
of leveraging HPCs for the task at hand. Therefore, a better evaluation of the
reasoning made by the distinct authors is required to understand the discussion
involving HPCs.



2. RESULTS ON HPC FOR MALWARE DETECTION: IS IT EFFECTIVE? 5

What is behind the conclusions? Given the distinct conclusions presented
above, it is important to understand what led authors to make their decisions. On
the negative side, Zhou et al [56] clarify to us what motivates their uncertainty:
“The underlying assumption for previous HPC-based malware detectors are that
malicious behavior affects measured HPC values differently than benign behavior.
However, it is questionable, and in fact counter-intuitive, why the semantically
high-level distinction between benign and malicious behavior would manifest itself
in the micro-architectural events that are measured by HPCs.” In fact, only a few
studies so-far investigated the side-effects of malware execution at architectural
level (see Section 6), which makes this a reasonable argument until further
research is developed.

On the positive side, the authors that concluded that HPCs are effective also
have a good argument. They indeed presented scenarios in which HPC-based
detection was possible (though it must still be evaluated in real-world settings [5]).
If HPC-based detection is possible in many scenarios, nobody would care whether
one has already identified the correlation between detection and HPC values or
not1. It would be simply used. Therefore, the discussion turns also into a matter
of whether the obtained results by both researchers groups are robust enough for
allowing conclusions about their applicability.
Are these datasets enough? Once the discussion turned into an experimental
robustness discussion, it is important to investigate how experiments were per-
formed. Zhou et al [56] again explain their criticism of the studies with positive
conclusions: “the correlations and resulting detection capabilities reported by
previous works frequently result from small sample sets and experimental setups
that put the detection mechanism at an unrealistic advantage.”. This indeed
demonstrates an experimental fragility.

Table 2: HPC experiment’s dataset sizes. Summary of the dataset used in
the selected paper’s experiments.

Work Samples (#) Conclusion

Botacin et al. [8] 4K samples in 2 disjoint datasets Positive
Demme et al. [18] 503 malware and 210 benign Positive
Zhou et al. [56] 1,000 malware and 1,300 benign Negative
Das et al. [16] 313 malware Negative

The problem with this criticism is that most of the criticizing studies also
suffer from the same problem that they point out. Table 2 shows the dataset size
used by the selected studies supporting or criticizing the use of HPCs (also the
extreme cases). We notice that the considered datasets are all limited, especially
in comparison to studies using other techniques for malware detection, such
as typical ML classifiers. Thus, greater conclusions can only be taken if more
studies are performed. Therefore, we conclude that the discussion about HPC is

1 We agree it would be great to identify it.



6 Botacin et al.

worth to be addressed and that further research is warranted. The next step is
to understand how to contribute to this discussion.

Why datasets are so limited? It is important to understand why the so-far
considered datasets are so limited to understand what limits the research on
HPC to evolve to stronger conclusions. We hypothesize that a significant reason
is that HPC research often requires experiments to be performed on bare-metal
machines since performance counters are not often exposed to virtual machines,
the most used environment for malware research. The use of a bare-metal system
naturally limits the experiments due to the reduced scalability in comparison
to virtual machines. Some hypervisors, such as KVM [37], export a reduced
performance counters set from host to guest, but the literature is not conclusive
in how much the hypervisor events themselves do not affect the statistics, thus
causing the uncertainty problem [16]. Therefore, it seems that a required step
towards developing more robust experiments is to first develop a more robust
testing platform. In the next sections, we discuss other required steps towards
more robust HPC experiments.

3 A View on Debunking Attempts: Is Malware well
defined?

In science, while something has not turned yet into an acceptable fact, it is
common to conduct attempts to debunk the proposition. In this section, we revisit
a notable HPC debunk attempt to highlight how, in our view, the discussion has
been driven towards an unproductive direction.

Is a single counter-example enough? Zhou et al [56] developed a ransomware
sample not detected by the HPC-based approach to claim its infeasibility. In
their own words “We also demonstrate the infeasibility in HPC-based malware
detection with Notepad++ infused with a ransomware, which cannot be detected
in our HPC-based malware detection system”. The authors are right in their
feeling that some events cannot be differentiated and logically this single counter-
example debunks the feasibility of HPCs. So, is the discussion finished? To
answer this question, we must take a closer look and try to understand: Why
did researchers care about proving it? Cohen’s work [15] already proved in the
’80s that a perfect malware detector does not exist. Isn’t this work just an
extension of this conclusion? It happens that security is by nature a practical
subject and researchers and companies are always trying to find ways to detect
malware in practice, in the average case, regardless of their limitations for specific
cases. In this sense, if we accept that single counter-examples discard entire
techniques, such as HPCs, we should have also to discard signatures, since they
have already been proven evadable [51], even though they are still used by
AVs [54]. Similarly, we should have to stop using ML, since adversarial attacks
have been demonstrated [39], even though the ML use has increased over time
(see Section 6 for ML drawbacks mitigation). Therefore, the discussion about
HPC should not be whether mechanisms can be bypassed or not, but in which



3. A VIEWONDEBUNKING ATTEMPTS: IS MALWAREWELL DEFINED? 7

cases. The HPCs’ use would make sense if it is good at detecting some type of
malware or in some specific scenario. For what type of malware are HPCs good?

Which Are the Types of Malware? Malware samples are diverse and there
are multiple ways to classify them. Typical classification methods assign samples
to clusters based on their construction goals (e.g., Virus, Trojan, and so on)
and/or behaviors [29] (e.g., Evaders, Downloaders, and so on). However, these
classification schemes do not tell the whole malware story. Malware samples can
also be classified according to their operational nature: samples focused on the
software abstraction vs. samples focused on the hardware abstraction. The typical
classification schemes only focus in the first case, giving no attention to the latter.
In the first case, malware samples are constructed as typical software pieces
that blindly rely on the hardware abstractions and that target other software
abstractions (e.g., files, objects, pipes, and so on). Whereas the execution of
these software pieces impacts the hardware (it changes the architectural state),
it is not the attacker’s goal, but just a side-effect. Therefore, the architectural
impact caused by these malware samples is often minimal, because they present
predictable execution events in terms of hardware/architectural pieces (e.g., cache
accesses, branch predictions, and so on). In the second case, however, the malware
samples are designed by looking beyond the hardware abstraction and to abuse
it to cause effects on software, such as by exploring the hardware organization to
read so-far protected data, flip memory bits, and so on. These caused side-effects
are then used by the attackers to attack the software stack itself (e.g., hardware
bit flips disabling software protections). This second category also covers software
pieces that cause side-effects while exploring software components (e.g., buffer
overflows), since the bad behavior caused by the attacker’s control flow hijackinng
lead to unpredictable behavior in terms of hardware/architectural states (e.g.,
large number of cache misses, branch mispredictions, and so on). Due to this
difference on the nature of the malware execution, it is plausible to hypothesize
that different detection technologies can be used to detect them, including HPCs.

When HPC are suitable? In the argumentation against HPCs, Zhou el
al [56] state that: “we believe that there is no causation between low-level micro-
architectural events and high-level software behavior.”. Whereas this argument
makes sense for malware samples that act maliciously by invoking high-level
APIs, this statement misses an entire class of attacks: those that act maliciously
by exploiting architectural side-effects. Table 3 shows some known attacks that
exploit the system’s architecture for malicious intents, such as escalating privileges,
and/or leaking private data. It also exemplifies how these attacks are available
on the Web in standalone binaries, and how these attacks could theoretically be
detected by architectural side-effects identification.

The nature of these attacks suggests that HPC might be particularly good
at detecting samples leveraging them. To evaluate this hypothesis, we repeated
previous work’s strategies and developed two classification models: The first
based on typical dynamic features used in ML detectors, such as tuples of invoked
functions over time [27]; and the second using the performance counters supposed
to detect the aforementioned events [8]. All tests were executed in a Linux



8 Botacin et al.

Table 3: Attacks with Architectural Side-effects. The columns show, re-
spectively, the popular attack name, examples of their availability, and potential
ways to detect them via HPC events.

Attack Example Reason

RowHammer [20,21] Excessive cache flushing [38]
ROP attacks [24,25] Excessive instruction misses [53]
DirtyCoW [22,23] Excessive Paging

environment, using the perf tool for HPC data collection, and considered the
10-folded evaluation of a set of 1K malware samples (of which 50 we identified to
exploit architectural issues) and 1K goodware collected from system directories.

To create the test dataset, we relied on a collection of all 5K unique Linux
malware samples available in the Virusshare2, and Malshare3 repositories between
2012-2020, thus constituting a representative set of the existing Linux malware
threats. At each test run, we randomly sampled a subset of this greater dataset
to build a test dataset with an equal number of x86 samples for each year.
The random sampling respects the family distribution observed in the original
collection: 24% of Exploits, 22% of Virus, 20% of Backdoors, 10% of Rootkits,
and 4% of Generic labels. All samples that cause side-effect were labeled as
Exploits, according to the application of AVClass [47] over Virustotal4 labels.

This distribution between samples that cause and do not cause side-effects
was selected to reflect the proportion of samples that we found in-the-wild
during our research, limited by the current number of samples causing side-effects
available in the online malware repositories. We fine-tuned hyper-parameters for
all tested classifiers and we are reporting the results for the best combination
(RandomForest classifier in both models).

Table 4: HPC and ML detectors. Solutions perform distinctly according to
the scenario. The columns represent, respectively, the used approach, the result
when all samples are combined, when only traditional samples are considered,
and when only samples that cause side-effects are considered.

All Samples All but side-effects Side-effects only

Typical ML 93,40% 98,00% 6,00%
HPC 85,55% 85,00% 96,00%

Combined 97.9% 98,00% 96,00%

Table 4 shows the accuracy results for the tested classifiers (remind that
the dataset is balanced). It shows that the traditional (non-HPC) ML approach

2 virusshare.com
3 malshare.com
4 virustotal.com



4. TOWARDS A DEFINITION OFMALWAREDETECTION EFFECTIVENESS 9

outperforms the HPC one in the overall scenario, which is compatible with Zhou
et al’s reasoning. However, if we isolate the evaluation of the “ordinary” samples
from those that cause side-effects, we notice that the whole detection capability
of typical ML systems is due to the classification of “ordinary” samples. The HPC
approach significantly outperformed it when classifying the samples that cause
side effects. The impact of these two datasets in the final result is proportional
to their relative presence on the dataset. It is supposed that if malware that
causes side-effect becomes more popular over time, as it seems to be with the
recent SPECTRE and MELTDOWN-class attacks–as they start to be observed in the
wild [52], the importance of an HPC-based detector will be highlighted.

In our view, the previously-presented experiment is already clear in demon-
strating HPCs’ advantages in comparison to traditional, binary-based features,
since the only difference between the two experimental settings is the data collec-
tion approach (binary-based vs. HPCs). However, we decided to perform a second
experiment to demonstrate that results are not biased by the small fraction of
samples causing architectural side-effects (i.e., no fitting problems). In the new
experiment, we trained and tested the same models previously presented with
respectively 500 samples that cause and do not cause architectural side-effects
(the same number of 1K as in the previous experiment). Since we had only
50 samples that originally caused architectural side-effects, we adopted data
augmentation strategies [6] to increase our sampling to this more representative
dataset size. In other words, we created malware variants by adding and remov-
ing information from the binaries. We adapted the adversarial machine learning
strategies described in [17] in this step, such as adding new sections, headers,
dead-code, and appending data to the binaries to increase their diversity, and
packing the samples with multiple packers to reduce their exposed features. The
final result revealed similar characteristics as the previously presented experiment.
For the dataset with samples that cause no side-effects, the typical ML model
surpassed the HPC model in 11% (accuracy), whereas the HPC model performed
17% better (accuracy) than the ML model when considering side-effects samples.
Therefore, we conclude that HPCs might still have a significant role in malware
detection procedures. The next step is to discuss how to streamline it.

4 Towards a definition of malware detection effectiveness

In this section, we try to move the discussion forward by presenting a new
interpretation of malware attacks and their associated defenses.
The need for better positioning. We previously showed experimental results
that suggest that HPC detectors are good for some types of malware but not for
others. Thus, they cannot be simply claimed as not good for malware detection.
While some might claim that this result is somehow expected after we presented
it, why haven’t other researchers recognized the problem as such? In other words,
where does this controversy come from? In our view, it originated because there is
not a consensus in the research community as a whole about what is objectively
considered malware and therefore how to handle it. Table 5 shows the multiple



10 Botacin et al.

definitions found on NIST-indexed documents [43]. All definitions are broad and
do not characterize samples regarding their form or precise target, even though
they all state that malware is something undesired. More than that, we observe
that the definitions are not coherent among the multiple standards defining them.
Definitions tend also to not be coherent among research papers, as a previous
study showed that the field tends to adopt ad-hoc definitions [10].

Table 5: Malware Definitions. Variety observed on NIST-indexed publica-
tions [43].

“Hardware, firmware, or software that is intentionally included or in-
serted in a system for a harmful purpose.”

“Software or firmware intended to perform an unauthorized process that
will have adverse impact on the confidentiality, integrity, or availability
of an information system.”

“A program that is inserted into a system, usually covertly, with the
intent of compromising the confidentiality, integrity, or availability of
the victim’s data, applications, or operating system or of otherwise
annoying or disrupting the victim.”

“Software designed and operated by an adversary to violate the security
of a computer (includes spyware, virus programs, root kits, and Trojan
horses).”

“A program that is written intentionally to carry out annoying or
harmful actions, which includes Trojan horses, viruses, and worms.”

“A computer program that is covertly placed onto a computer with
the intent to compromise the privacy, accuracy, or reliability of the
computer’s data, applications, or operating system.”

Whereas most people, including researchers, might have developed a generic
feeling about malware as something undesired and that the solution for it is to
get rid of malicious files, the few attempts towards formally defining malware
have been revealed often problematic in the detection context due to the multiple
corner-cases about the subject. The hardness in defining malware is made clear
when we consider the “tricky” cases. Following some of multiple examples: (i)
can a software be considered malicious for some user and not for another?; (ii)
can a performed action be considered malicious in the context of one software
piece but legitimate for another?; (iii) can (corrupted/abused) data be considered
malicious or the concept only applies for the complete software?; (iv) is a software
malicious if it only causes harm/conflicts when operating along with another
application?; (v) is a software piece with a known exploitable bug malicious
due to the possibility of acting maliciously? finally, (vi) in the specific context
of this work, if the malware target is the system architecture and not another
application or data, is it still malware? And how to handle this case? While
these questions are not formally answered, researchers have been working with



4. TOWARDS A DEFINITION OFMALWAREDETECTION EFFECTIVENESS 11

operational definitions of malware, which might suffice for most research work,
but sometimes might lead to controversies as the one here presented.

When Zhou et al [56] present their criticism about HPC, their implicit
assumption (operational definition) is that malware is the “ordinary” samples
employing high-level constructs, as it is made clear in excerpts that mentions high-
level constructions, such as “both ransomware and benignware use cryptographic
APIs, but the ransomware maliciously encrypt user files, while the benignware
safeguards user information.”, thus discarding the samples that intentionally
cause side-effects (and the impact of the effects themselves). However, it is hard
to not consider these sample’s activities as malicious, especially because both
types of attacks might be associated: A sample might cause side-effects to escalate
privileges and further cause more impacting harm via high-level actions [46].
This highlights the need for better positioning attacks and defenses in a context.
This discussion might advance with someone trying to distinguish “malware”
from “exploits”, using some characterization criteria (e.g., phases of a kill chain
model [31]), but this discussion can easily return to the initial point, as it only
characterizes the threat temporally and not based on their execution nature.
This, in our view, only highlights more the need for establishing clear concepts
when evaluating attacks and defenses. So, how to advance towards a definition?
And, most importantly, how to advance towards more defenses against whatever
malware can be?

Towards better positioning. Once we identified that the lack of proper defini-
tions is a problem, we need to start thinking about how to define things. In our
view, “if security is to be taken more seriously as a science” (paraphrasing a paper
criticizing HPCs [16]), we need a theory of maliciousness to measure malware
attacks and defenses. In science, concepts do not exist without a theory [13] (one
possible view of science). In a didactic analogy with physics, the concept of mass
only exists in a Newtonian theory, and not in a quantum one, where you only
have the energy concept for measuring things. Thus, one could not measure mass
without Newton’s concepts as reference. Similarly, one cannot precisely measure
malware attacks and defenses without a theory of maliciousness.

More than that, it is important to highlight that a theory of malware is
composed not only by the definition of what is considered malware, but it also
brings multiple implicit and explicit consequences, such as how to measure the
malware problem. Therefore, the point of this paper is not that we need only an
extended taxonomy to include malware samples that cause side-effects, but we
need a theory of malware that explains why this type of sample is considered
malicious and how we detect them (eventually using HPCs).

Whenever one proposes a scientific theory, he/she necessarily embeds in it
his/her own views and judgments about it. Back to our physics analogy, when
Newton proposes gravity to explain why the apple falls, he also poses questions
about whether falling is a “problem” for our lives or not, how to measure the fall
rate, and what if we could control the fall. Similarly, when one defines malware,
he/she implicitly states it as a problem (otherwise would not be defining it), as
undesired, and poses questions on how to measure and control it. Therefore, a



12 Botacin et al.

good theory of maliciousness should shape our understanding about the problem
and provide tools/methods to let us know if we succeeded on controlling it.

As authors and researchers, we would like to provide a complete theory of
maliciousness, but, unfortunately, we are not able to by this time. In fact, this
can only be achieved by an integrated community work. Meanwhile, we can give
some hints about how it might look like and we believe HPCs work as a good
example. We understand that a key contribution for a theory of maliciousness
is the concept of attack space, i.e., the possibilities of actions that an attacker
has over a resource to be protected. In the case of HPC, the attack space is
defined in two dimensions: software and hardware, as shown in Figure 1. In this
example, an applicationn can be positioned somewhere in the plane defined by
the software interactions it performs and the hardware effects it causes to perform
these interactions. As defenders, we are interested in blocking both undesired
software behaviors as well as its architectural roots and consequences.

Figure 1a illustrates the current scenario, in which we have an unbounded
attack space due to the lack of stronger definitions, with malware and goodware
samples mixed all over the space, as any malware implemention is allowed.
Figure 1b illustrates what happens when HPCs are applied: the space is partially
bounded in the performance direction, clearly positioning the (performance
anomalous) samples out of the boundaries as malware. Even though, there are
still some remaining malware and goodware samples mixed in the (non-anomalous
performance) bounded space, which explains why additional classifiers (such as
typical ML ones) are still required for complete malware detection. When these are
applied, the attack space is constrained in a distinct direction (software-wise), as
shown in Figure 1c. In other words, whereas “not all atacks are anomalous” [28],
HPCs might help detecting the ones that are.

Malware

Goodware

(a) Completely Un-
bounded Attack Space.

Malware

Goodware

HPC

(b) HPC-bounded Attack
Space.

Malware

Goodware

HPC

ML

(c) HPC and ML-bounded
Attack Space.

Fig. 1: The role of HPCs in security. Reducing the attack space.

More formally, we can start hypothesizing the definition of the security
provided by a solution as to how much it bounds the attack space, even though
reducing it from a “greater” infinite to a “smaller” infinite space (assuming
that the spaces are computationally tractable [49]). The key insight behind that
is that it inverts the incentives. In an unbounded space (e.g., no performance



5. HPCS AND THE SCIENCE OF SECURITY 13

restrictions), malware authors are free to place their samples anywhere, which
requires defenders to counteract the attacks. In a more bounded space, such as
the ones provided by HPCs, attackers are forced to conform their payloads to the
behavior and/or form of the benign/desired applications, which is supposedly
harder and more costly.
Attack Surface vs. Attack Space. Some might notice that the attack space
concept resembles the attack surface concept [36]. Whereas they have similar
goals, they have a significant difference. The attack surface concept aims to limit
the number of objects susceptible to be attacked, but it does not say anything
about the nature of the possible attacks, which might be potentially infinite.
In turn, the attack space concept does not say anything about the number of
objects susceptible to be attacked, but it limits the possibilities of the attacks
to be performed against them. Therefore, we envision them as complementary
aspects that should be evaluated in conjunction.
Making HPC practical. The above definition is interesting but abstract. What
does it mean in practice? It means that a way to evaluate whether a technology
contributes to making systems more secure is to verify whether its addition to a
set of existing techniques reduces the attack space or not. We intentionally refer
to a set of techniques because it is naive to imagine that a standalone technology
will reduce the attack space in all dimensions. In the light of this definition, we
believe that HPCs increase security in the sense presented in Table 4: When
HPCs are combined with typical ML detectors, the detection rate is increased
to values that are not reached by any solution individually. Thus, HPCs should
be seen as part of a pipeline of malware detectors that contribute to security by
establishing borders in specific dimensions (the samples that cause side effects).
Future Research Directions. We expect that our contribution might have
helped better positioning HPC research in the “big picture” of malware detection
technologies. However, this does not mean that the discussion is exhausted. HPCs
warrant more studies to bridge the gaps on the definition of the limits of their
attack space reduction capabilities. Therefore, we would like to finish pointing
out a possible direction for future developments. Zhou et al [56] observed that:
“Modern processors can capture more than 100 micro-architectural events, but
a design-imposed strict limit of 4 (on Intel) and 6 (on AMD) counter registers
dictates that HPCs can only monitor a small subset of these events at one time.”.
Future HPC research warrants investigating whether this limitation translates
into an implementation barrier for malware detectors or if even the hundred
events were available at the same time (which can be observed via simulations,
as done in other scenarios [41]) HPCs would still be unable to reduce the attack
surface more significantly than already described in the literature.

5 HPCs and the Science of Security

After we have presented all our concerns and insights about the use of HPCs
for malware detection, it is key to face the question: if the required theory of
maliciousness is still not complete and the if HPCs cannot be fully integrated or



14 Botacin et al.

discarded until such theory is developed, why should one care about the proposed
discussion? The answer for that is very straightforward: because reflecting about
these aspects helps us to advance security as science. Thus, we following position
the controversy in terms of the science of security debate.

“There is much discussion on whether security is a science” [1]. Whereas
some work claim it is far from being [30], some claim that it might be [10], and
some claim that it indeed is [50]. This uncertainty by itself shows that the subject
warrants more discussion. Even those who agree that security is/can be science
point out many current limitations. Table 6 shows the distinct challenges pointed
in [50] towards making security more scientific.

Table 6: Science of Security. Challenges acknowledged by the community
(pointed by [50]).

“Information security will not be a science until we all agreeon a common
language or ontology of terms”

“we do not even have the fundamental concepts, principles,mathematical
constructs, or tools to reliably predict or even measure cyber-security”

“Science is taken as a way to systematize knowledge at the appropriate
level of generality that it can both be shared and remain useful”

“the most important attributes would be the construction of a common
language and a set of basic concepts about which the security community
can develop a shared understanding”

“Security science should give us an understanding of the limits of what is
possible in some security domain, by providing objective and qualitative
or quantifiable descriptions of security properties and behaviors”

“Consider the criticism of failure to seek refutation rather than con-
firmation. What do we refute in security? ...Such definitions can be
argued for or justified, but are always contextual and not something
we usually talk about as refuting or confirming.”

We believe that all these aspects are present in the HPC discussion. The
terminology aspect is clearly present in the distinct definitions of malware
adopted by the researchers, sometimes including malware that cause side-effects
and sometimes excluding them. This aspect is strongly tied to the information
sharing aspect, since the distinct studies can only be compared if they are used
an unified definition of the studied artifacts. Once malware is properly defined,
one can start focusing on the measurement problem, as we would know what
to consider in experiments and how to measure the expected effects. This is not
currently as clear as is desirable, such that we introduced the new attack space
concept as a way to help towards this direction. The experiments should clearly
define the limits on the application of the proposed approach/technology.
Whereas the studies presented in this paper have this goal in mind, they present
their results in an unstructured way, such that they demonstrated weaknesses
but did not draw clear limitation frontiers. In this sense, the refutation aspect



6. RELATED WORK 15

is also present. We particularly discussed the debunking attempts due to the
observed need for understanding what is being refuted, if the entire approach, or
if it is a matter of drawing limits (our position).

Previous studies have claimed that the security field need to move from “study
cases to experiments“ [12]. We understand that this same need is present in the
HPC case, as we need to identify not only specific weaknesses, but also to draw a
landscape of their usefulness. More specifically, we need to put them in a greater
context. Previous research have already identified the difficulty of putting things
in context in many works in the literature [3]. It is mentioned that “Research
Objectives tend to be difficult to locate, which could hinder the ability of other
researchers to put the findings in the proper context.”, which turns out to be
exactly the difficulty we presented over this paper to compare the distinct works.

Considering the above scenario, we expect that the analyses presented in
this work might help clarifying the controversy on HPC usage, give hints on
how to advance the discussion on how to measure and evaluate defenses, and,
in the last instance, contribute to the science of security field with an example
that motivates and highlights the need for more scientific foundations to solve
practical problems.
Beyond HPCs. We selected HPC as an illustrative example of current con-
troversy in the academic literature. However, the phenomenon here discussed is
not unique to the HPC technology, but it is common to any malware detection
technique. Thus, the same might have happened in the past and might happen
again in the future. Therefore, it is key to have a structured approach to evaluate
the viability of newly proposed malware detectors. In this sense, we believe that
approaching the problem via the science of security perspective as discussed is
the best strategy.

6 Related Work

In this section, we revisit and discuss previous work to better position the
discussion presented in this paper.
Defining Malware is a hard task and one can only find a few works in the liter-
ature trying to formalize the concept [35]. In most cases, malware is only defined
in terms of its exhibited behaviors [29,40] and not based in some hypothesized
internal “essence”. Therefore, it is plausible to argue that malware can also be
seem through the lens of the caused side-effects in addition to OS events, which
puts HPCs at a promising position for the development of malware detectors.
Non-standard malware is out there. In addition to typical EXE files, it is not
rare to find malware samples written in Java, Javascript, and other languages [9].
The more diverse the malware samples, the greater the attacker’s chance in
evading “one-size-fits-all” malware detectors. To handle the multitude of malware
samples, detectors have been diversified, now ranging from web detectors, to
network monitors. The same way these detectors are not evaluated using all the
same criteria, we believe that HPCs should also be evaluated in their proper
context, and not for a generic malware detection task.



16 Botacin et al.

Other hardware tracing mechanisms than HPCs exists in modern CPUs.
Intel’s CPUs [32], for instance, present the Branch Trace Store (BTS) and
Processor Tracer (PT) extensions that allow collecting metadata from instruction
execution, including taken branches. The academic literature presents multiple
research works based on both BTS [2] and PT [45], but none of these works led
to the controversy involving HPCs. We believe that a plausible explanation for
that is the deterministic nature of these technologies in comparison to HPCs.
If this is really the case, more robust data handling procedures [34] should be
developed to make HPC-based solutions more practical.
The relations between hardware and software events certainly need to
be better clarified, but it is unfair to say that they are completely unknown.
Previous work have demonstrated, for instance, the impact of malware packing
on CPU’s internal structures (e.g., caches, pipelines) due to the execution of
self-modifying-code constructions [11]. In the specific case of HPCs, their relation
with side-channel attacks and defenses has been already well-established [14].
The controversies on machine learning resemble the scenario we have drawn
for HPCs. Whereas ML-based malware detectors become very popular [48],
attacks to them have been demonstrated very effective [39]. Despite that, ML
was not discarded as a valuable technique, but more robust models have been
proposed to mitigate some of the evasion possibilities [26, 44]. We believe that a
similar path should be taken for HPC-based approaches.

7 Conclusion

In this work, we revisited the problem of malware detection using Hardware
Performance Counters (HPCs) so as to clarify the existing controversy about its
feasibility. We discussed the current attempts to support and/or debunk HPCs
via two research questions: (i) Can HPCs be used to detect malware? and (ii) Is
malware sufficiently well defined? We concluded that:

– The existing controversy is justified, since research works presents contradic-
tory verdicts about the HPCs feasibility for malware detection based on a
wide-range of metrics.

– The experimental setup to conduct HPC experiments must be improved so
as to provide more conclusive results, as current studies are limited in dataset
size and variety, which also limits conclusions.

– The controversy comes from distinct interpretations about the malware
concept, which sometimes consider only software effects and sometimes also
include hardware side-effects.

Based on these conclusions, we recommend the following set of actionable
items to be taken as goals to be pursued by the research community towards
clarifying the discussion:

– The development of platforms that allow scaling HPC experiments beyond
the limits of current bare-metal systems.



7. CONCLUSION 17

– The realization of experiments with greater datasets, in size and variety, to
allow broader and stronger conclusions.

– The development of more robust methods to handle uncertainty and variability
effects in HPC measurements.

– The development of a theory of maliciousness to better define which type of
malware is evaluated and which criteria defines the success of a detector.

As a suggestion to move forward, we proposed:

– The concept of attack space reduction to complement the attack surface
reduction by reducing the actions an attacker can perform over a surface in
addition to eliminating exposed surfaces.

References

1. ACM: People of acm - leigh metcalf. https://www.acm.org/articles/people-of-
acm/2020/leigh-metcalf (2020)

2. Aktas, E., Ghose, K.: Run-time control flow authentication: An assessment on
contemporary x86 platforms. In: Proceedings of the 28th Annual ACM Symposium
on Applied Computing. p. 1859–1866. SAC ’13, Association for Computing Ma-
chinery, New York, NY, USA (2013). https://doi.org/10.1145/2480362.2480708,
https://doi.org/10.1145/2480362.2480708

3. Al-Zyoud, M., Williams, L., Carver, J.C.: Step one towards science of security.
In: Proceedings of the 2017 Workshop on Automated Decision Making for Active
Cyber Defense. p. 31–35. SafeConfig ’17, Association for Computing Machinery,
New York, NY, USA (2017). https://doi.org/10.1145/3140368.3140374, https:
//doi.org/10.1145/3140368.3140374

4. AMD: AMD64 Architecture Programmer’s Manual Volume 2. AMD (2013)
5. Axelsson, S.: The base-rate fallacy and the difficulty of intrusion

detection. ACM Trans. Inf. Syst. Secur. 3(3), 186–205 (aug 2000).
https://doi.org/10.1145/357830.357849, https://doi.org/10.1145/357830.

357849

6. Bae, J., Lee, C.: Easy data augmentation for improved malware de-
tection: A comparative study. In: 2021 IEEE International Conference
on Big Data and Smart Computing (BigComp). pp. 214–218 (2021).
https://doi.org/10.1109/BigComp51126.2021.00048

7. Bazrafshan, Z., Hashemi, H., Fard, S.M.H., Hamzeh, A.: A survey on heuristic mal-
ware detection techniques. In: The 5th Conference on Information and Knowledge
Technology. pp. 113–120 (2013). https://doi.org/10.1109/IKT.2013.6620049

8. Botacin, M., Galante, L., Ceschin, F., Santos, P.C., Carro, L., de Geus,
P., Grégio, A., Alves, M.A.Z.: The av says: Your hardware defini-
tions were updated! In: 2019 14th International Symposium on Reconfig-
urable Communication-centric Systems-on-Chip (ReCoSoC). pp. 27–34 (2019).
https://doi.org/10.1109/ReCoSoC48741.2019.9034972

9. Botacin, M., Aghakhani, H., Ortolani, S., Kruegel, C., Vigna, G., Oliveira,
D., Geus, P.L.D., Grégio, A.: One size does not fit all: A longitudinal anal-
ysis of brazilian financial malware. ACM Trans. Priv. Secur. 24(2) (2021).
https://doi.org/10.1145/3429741, https://doi.org/10.1145/3429741https://

secret.inf.ufpr.br/papers/marcus_tops_br.pdf



18 Botacin et al.

10. Botacin, M., Ceschin, F., Sun, R., Oliveira, D., Grégio, A.: Challenges
and pitfalls in malware research. Computers & Security 106, 102287
(2021). https://doi.org/https://doi.org/10.1016/j.cose.2021.102287, https://www.
sciencedirect.com/science/article/pii/S0167404821001115

11. Botacin, M., Zanata, M., Grégio, A.: The self modifying code (smc)-aware proces-
sor (sap): a security look on architectural impact and support. Journal of Com-
puter Virology and Hacking Techniques (2020). https://doi.org/10.1007/s11416-020-
00348-w, https://doi.org/10.1007/s11416-020-00348-whttps://secret.inf.

ufpr.br/papers/SMC_marcus.pdf

12. Carver, J.C., Burcham, M., Kocak, S.A., Bener, A., Felderer, M., Gander, M., King,
J., Markkula, J., Oivo, M., Sauerwein, C., Williams, L.: Establishing a baseline
for measuring advancement in the science of security: An analysis of the 2015 ieee
security & privacy proceedings. In: Proceedings of the Symposium and Bootcamp on
the Science of Security. p. 38–51. HotSos ’16, Association for Computing Machinery,
New York, NY, USA (2016). https://doi.org/10.1145/2898375.2898380, https:
//doi.org/10.1145/2898375.2898380

13. Chalmers, A.: What Is This Thing Called Science? University of Queensland Press
(2013)

14. Chiappetta, M., Savas, E., Yilmaz, C.: Real time detection of cache-based side-
channel attacks using hardware performance counters. Appl. Soft Comput. 49(C),
1162–1174 (Dec 2016). https://doi.org/10.1016/j.asoc.2016.09.014, https://doi.
org/10.1016/j.asoc.2016.09.014

15. Cohen, F.: Computer viruses: Theory and experiments (1987).
https://doi.org/https://doi.org/10.1016/0167-4048(87)90122-2, https:

//www.sciencedirect.com/science/article/pii/0167404887901222

16. Das, S., Werner, J., Antonakakis, M., Polychronakis, M., Monrose, F.: Sok: The
challenges, pitfalls, and perils of using hardware performance counters for secu-
rity. In: 2019 IEEE Symposium on Security and Privacy (SP). pp. 20–38 (2019).
https://doi.org/10.1109/SP.2019.00021

17. Demetrio, L., Biggio, B., Lagorio, G., Roli, F., Armando, A.: Functionality-
preserving black-box optimization of adversarial windows malware. IEEE
Transactions on Information Forensics and Security 16, 3469–3478 (2021).
https://doi.org/10.1109/TIFS.2021.3082330

18. Demme, J., Maycock, M., Schmitz, J., Tang, A., Waksman, A., Sethumadhavan, S.,
Stolfo, S.: On the feasibility of online malware detection with performance counters.
In: ISCA. ACM (2013)

19. DeRose, L.A.: The hardware performance monitor toolkit. In: Sakellariou, R., Gurd,
J., Freeman, L., Keane, J. (eds.) Euro-Par 2001 Parallel Processing. pp. 122–132.
Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

20. ExploitDB: Rowhammer. https://www.exploit-db.com/exploits/36310 (2015)
21. ExploitDB: Rowhammer. https://www.exploit-db.com/exploits/36311 (2015)
22. ExploitDB: Linux kernel 2.6.22 ¡ 3.9 - ’dirty cow’ ’ptrace pokedata’ race condi-

tion privilege escalation (/etc/passwd method). https://www.exploit-db.com/
exploits/40839 (2016)

23. ExploitDB: Linux kernel 2.6.22 ¡ 3.9 - ’dirty cow ptrace pokedata’ race condition
(write access method). https://www.exploit-db.com/exploits/40838 (2016)

24. ExploitDB: Crashmail 1.6 - stack-based buffer overflow (rop). https://www.

exploit-db.com/exploits/44331 (2017)
25. ExploitDB: Pms 0.42 - local stack-based overflow (rop). https://www.exploit-

db.com/exploits/44426 (2017)



7. CONCLUSION 19

26. Fleshman, W., Raff, E., Sylvester, J., Forsyth, S., McLean, M.: Non-negative
networks against adversarial attacks (2019)

27. Galante, L., Botacin, M., Grégio, A., de Geus, P.: Machine learning for malware
detection: Beyond accuracy rates. In: Anais Estendidos do XIX Simpósio Brasileiro
de Segurança da Informação e de Sistemas Computacionais. pp. 47–56. SBC, Porto
Alegre, RS, Brasil (2019). https://doi.org/10.5753/sbseg estendido.2019.14005,
https://sol.sbc.org.br/index.php/sbseg_estendido/article/view/14005

28. Gates, C., Taylor, C.: Challenging the anomaly detection paradigm: A provoca-
tive discussion. In: Proceedings of the 2006 Workshop on New Security
Paradigms. p. 21–29. NSPW ’06, Association for Computing Machinery, New
York, NY, USA (2006). https://doi.org/10.1145/1278940.1278945, https://doi.
org/10.1145/1278940.1278945

29. Grégio, A.R.A., Afonso, V.M., Filho, D.S.F., Geus, P.L.d., Jino, M.: Toward
a Taxonomy of Malware Behaviors. The Computer Journal 58(10), 2758–2777
(07 2015). https://doi.org/10.1093/comjnl/bxv047, https://doi.org/10.1093/

comjnl/bxv047

30. Herley, C., Van Oorschot, P.: Sok: Science, security and the elusive goal of security
as a scientific pursuit. In: 2017 IEEE Symposium on Security and Privacy (SP). pp.
99–120 (2017). https://doi.org/10.1109/SP.2017.38

31. Hutchins, E.M., Cloppert, M.J., Amin, R.M.: Intelligence-driven computer network
defense informed by analysis of adversary campaigns and intrusion kill chains. In:
White Paper (2010)

32. Intel: Intel® 64 and IA-32 Architectures Software Developer’s Manual. Intel (2013)
33. Intel: A new tool for cybersecurity - intel threat detection technol-

ogy. https://www.intel.com/content/www/us/en/architecture-and-

technology/vpro/idc-security-report.html (2021)
34. Kazdagli, M., Reddi, V.J., Tiwari, M.: Quantifying and improving the effi-

ciency of hardware-based mobile malware detectors. In: 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). pp. 1–13
(2016). https://doi.org/10.1109/MICRO.2016.7783740

35. Kramer, S., Bradfield, J.C.: A general definition of malware. Journal in Computer
Virology 6(2), 105–114 (May 2010). https://doi.org/10.1007/s11416-009-0137-1,
https://doi.org/10.1007/s11416-009-0137-1

36. Kurmus, A., Sorniotti, A., Kapitza, R.: Attack surface reduction for commodity os
kernels: Trimmed garden plants may attract less bugs. In: Proceedings of the Fourth
European Workshop on System Security. EUROSEC ’11, Association for Computing
Machinery, New York, NY, USA (2011). https://doi.org/10.1145/1972551.1972557,
https://doi.org/10.1145/1972551.1972557

37. KVM: Perf events. https://www.linux-kvm.org/page/Perf_events (2020)
38. Li, C., Gaudiot, J.L.: Detecting malicious attacks exploiting hardware vulner-

abilities using performance counters. In: 2019 IEEE 43rd Annual Computer
Software and Applications Conference (COMPSAC). vol. 1, pp. 588–597 (2019).
https://doi.org/10.1109/COMPSAC.2019.00090

39. Martins, N., Cruz, J.M., Cruz, T., Henriques Abreu, P.: Adversarial machine
learning applied to intrusion and malware scenarios: A systematic review. IEEE
Access 8, 35403–35419 (2020). https://doi.org/10.1109/ACCESS.2020.2974752

40. Meng, G., Xue, Y., Xu, Z., Liu, Y., Zhang, J., Narayanan, A.: Semantic modelling of
android malware for effective malware comprehension, detection, and classification.
In: Proceedings of the 25th International Symposium on Software Testing and
Analysis. p. 306–317. ISSTA 2016, Association for Computing Machinery, New



20 Botacin et al.

York, NY, USA (2016). https://doi.org/10.1145/2931037.2931043, https://doi.
org/10.1145/2931037.2931043

41. Mirbagher-Ajorpaz, S., Pokam, G., Mohammadian-Koruyeh, E., Garza, E., Abu-
Ghazaleh, N., Jiménez, D.A.: Perspectron: Detecting invariant footprints of mi-
croarchitectural attacks with perceptron. In: 2020 53rd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO). pp. 1124–1137 (2020).
https://doi.org/10.1109/MICRO50266.2020.00093

42. Moseley, T., Vachharajani, N., Jalby, W.: Hardware performance monitoring for
the rest of us: A position and survey. In: Altman, E., Shi, W. (eds.) Network and
Parallel Computing. pp. 293–312. Springer Berlin Heidelberg, Berlin, Heidelberg
(2011)

43. NIST: Glossary. https://csrc.nist.gov/glossary/term/malware (2021)
44. Íncer Romeo, I.n., Theodorides, M., Afroz, S., Wagner, D.: Adversarially

robust malware detection using monotonic classification. In: Proceedings of
the Fourth ACM International Workshop on Security and Privacy Analyt-
ics. p. 54–63. IWSPA ’18, Association for Computing Machinery, New York,
NY, USA (2018). https://doi.org/10.1145/3180445.3180449, https://doi.org/
10.1145/3180445.3180449

45. Schumilo, S., Aschermann, C., Gawlik, R., Schinzel, S., Holz, T.: kafl: Hardware-
assisted feedback fuzzing for OS kernels. In: 26th USENIX Security Sym-
posium (USENIX Security 17). pp. 167–182. USENIX Association, Vancou-
ver, BC (Aug 2017), https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/schumilo

46. Seaborn, M.: Exploiting the dram rowhammer bug to gain kernel priv-
ileges. https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-

rowhammer-bug-to-gain.html (2015)
47. Sebastián, M., Rivera, R., Kotzias, P., Caballero, J.: Avclass: A tool for massive

malware labeling. In: Monrose, F., Dacier, M., Blanc, G., Garcia-Alfaro, J. (eds.)
Research in Attacks, Intrusions, and Defenses. pp. 230–253. Springer International
Publishing, Cham (2016)

48. Singh, J., Singh, J.: A survey on machine learning-based malware de-
tection in executable files. Journal of Systems Architecture 112, 101861
(2021). https://doi.org/https://doi.org/10.1016/j.sysarc.2020.101861, https://www.
sciencedirect.com/science/article/pii/S1383762120301442

49. Spring, J.: An analysis of how many undiscovered vulnerabilities remain in in-
formation systems. https://resources.sei.cmu.edu/library/asset-view.cfm?
assetid=875310 (2022)

50. Spring, J.M., Moore, T., Pym, D.: Practicing a science of security: A philosophy
of science perspective. In: Proceedings of the 2017 New Security Paradigms Work-
shop. p. 1–18. NSPW 2017, Association for Computing Machinery, New York,
NY, USA (2017). https://doi.org/10.1145/3171533.3171540, https://doi.org/10.
1145/3171533.3171540

51. Tasiopoulos, V.G., Katsikas, S.K.: Bypassing antivirus detection with en-
cryption. In: Proceedings of the 18th Panhellenic Conference on Informat-
ics. p. 1–2. PCI ’14, Association for Computing Machinery, New York,
NY, USA (2014). https://doi.org/10.1145/2645791.2645857, https://doi.org/
10.1145/2645791.2645857

52. (jvoisin) Voisin, J.: Spectre exploits in the ”wild”. https://dustri.org/b/spectre-
exploits-in-the-wild.html (2021)

53. Wang, X., Backer, J.: Sigdrop: Signature-based rop detection using hardware
performance counters (2016)



7. CONCLUSION 21

54. Wressnegger, C., Freeman, K., Yamaguchi, F., Rieck, K.: Automatically inferring
malware signatures for anti-virus assisted attacks. In: AsiaCCS. ACM (2017)

55. Zhou, B., Gupta, A., Jahanshahi, R., Egele, M., Joshi, A.: Hardware performance
counters can detect malware: Myth or fact? In: AsiaCCS. ACM (2018)

56. Zhou, B., Gupta, A., Jahanshahi, R., Egele, M., Joshi, A.: A cautionary tale about
detecting malware using hardware performance counters and machine learning.
https://seclab.bu.edu/papers/perf_cnt_dtsi_2021.pdf (2021)


