Dissecting Applications Uninstallers & Removers:
Are they effective?

Marcus Botacin'? and André Grégio?

!Texas A&M University, USA
2Federal University of Parand (UFPR), Brazil
{mfbotacin, gregio}@inf.ufpr.br

Abstract. Developing a safe application is so important as to properly
install it in a system, and not an application’s tampered version. In a
similar note, developers should properly care about applications’ uninstall
process to avoid leaving traces of sensitive data behind in the system
or interfere with the remaining applications. Until now, the academic
literature has paid little attention to uninstall procedures so far. Moreover,
a whole ecosystem of application uninstallers has been created, making
multiple uninstallers available in software repositories. A key point is to
understand how these applications work so as to develop stronger systems.
To this end, we present a landscape work evaluating the operation of
the 11 most downloaded uninstaller applications from the three most
popular Internet software repositories. We discovered that most of these
applications are not very different from the native Windows uninstaller.
Although evaluated uninstallers present a more organized User Interface,
thus enhancing usability, they are only able to find the same installed
application as the native Windows uninstaller, but not broken installations.
Few uninstallers apply heuristics to find broken application installations.
However, we show that those heuristics can be abused by attackers to
remove third applications. Finally, we also show that none of the removers
is resistant to malicious uninstallers that terminate the remover process.

Keywords: Uninstaller - Installer - Removal - Malicious Code

1 Introduction

Safety and security are key aspects of any modern application. Thus, to cope with
the safety and security requirements of a modern application, software engineers
are often looking for ways of writing better code [11,19]. However, the challenge
does not finish there. As important as developing a safe and secure application is
to properly install this application in a system and not a tampered/vulnerable
version of it [1]. Similarly, as important as properly installing an application is
to uninstall it to not leave traces of sensitive data in the system [10] or interfere
with the remaining applications.

Unfortunately, the academic literature has been giving little attention to
uninstall procedures so far, and few to no works on the subject can be found in

2 Botacin and Grégio

the major research paper databases. It causes us to have a poor understanding of
an ongoing phenomenon: the popularity of application uninstallers, which can be
found at hundreds in any popular Internet software repository and with a large
number of downloads (e.g., 80K for IoBit and 400K for Revo in the Softonic
repository). Application uninstallers (or removers) are often recommended by
users in forums and/or websites [9] to be used in the cases where the native
Windows uninstaller fails, but its consequences are not well understood.

To bridge this gap, we delve into the internals of Windows uninstallers to
present a landscape of the operation of application uninstallers in this platform.
We selected the 11 most popular apps from 3 popular software repositories
(CNET [3], Softonic [22], and Softpedia [23]) and completely analyzed their
operations regarding their removal capabilities, interactions with the user and
with the operating system.

We discovered that, on the one hand, most of these applications are not very
different from the native Windows uninstaller in operation, often displaying the
same installed apps with no additional capability of searching for broken instal-
lations. On the other hand, the User Interfaces presented by these applications
are clearly more detailed than the Windows’ native one, presenting much more
information, which might explain user’s preference for them.

A few installers present advanced uninstall capabilities, such as the ability to
perform system checkpoints or the application of heuristics to find files remaining
from broken installations. We discovered that these capabilities and heuristics
implicitly assume that the targeted uninstaller will be well-behaved. We demon-
strate that multiple attacks are possible if a malicious uninstaller is the target of
them, such as removing third-party files and even processes termination. In this
scenario, the usage of the uninstallers would cause more harm than good.

In summary, our contributions are as follows: (1) We contextualize the
usage of application uninstallers and the challenges associated with their use;
(2) We present a summary of legitimate and malicious uninstaller’s operations
on Windows; (3) We discuss the limits of their application to the removal of
protected applications.

This paper is organized as follows: In Section 2, we introduce related work and
discuss the gap of understanding on the operation of uninstallers; In Section 3,
we revisit the operation of uninstallers on the Windows system; In Section 4,
we introduce the methodology we adopted to conduct our experiments and the
research questions we aim to answer; In Section 5, we present experiments results
regarding the actual operation of popular uninstallers; In Section 6, we discuss
the implications of our findings; In Section 7, we draw our conclusions.

2 Related Work: Why Studying Uninstallers?

Before we explain how we evaluated uninstallers, it is key to understand why
evaluating them is important. When a user is not satisfied with a software piece
and wants to remove it, the straightforward option is to use the native Windows
uninstall solution. However, it is not rare to find cases where the native uninstaller

3. BACKGROUND: HOW WINDOWS SUPPORTS UNINSTALLERS? 3

fails to remove an application. In these cases, it is common that users try to use
standalone removal tools (Uninstallers and Removers), since it is also common
to find websites recommending the use of this type of solution [9]. This ends up
creating an entire ecosystem of application uninstallers, as can be found in any
popular software repository (e.g., CNET [3]). This ecosystem must be studied
and understood, as uninstalling software is as safety- and security-critical for a
system as installing new ones.

Whereas the academic literature is full of good research on the software
development topic (e.g., secure development and coding practices [11,19]), little
attention has been given so far to the problem of uninstalling applications: We
could find almost no research work in the main research paper databases (e.g.,
ACM, IEEE, Springer, and so on). Meanwhile, the largest part of the information
users can find about uninstallers is delivered via grey literature [24] (i.e., websites,
blog posts, and so on). Unfortunately, publications in this type of literature often
do not present formal evaluations of uninstallers or a strong methodology to
evaluate them, such that we understand that there is currently an understanding
gap about the operation of these solutions.

We believe the subject has been given little attention so far because the
uninstallation problem is often seen in the literature as a management problem [18]
rather than also a technological problem. A few works in the literature address
the uninstallation problem from a more technical point-of-view and, if so, they
are very limited in scope (e.g., a forensic analysis of uninstalled steganography
apps [28]). We believe that uninstallers must be studied more broadly to present
a landscape, as recently done for applications installers [1].

The related work on application installers already pinpointed some limitations
of the associated uninstallers, such as the improper definition of the uninstaller
executable [1]. In this work, we aim to go further and analyze the behavior
of the applications designed to uninstall these failure-prone applications. For
instance, we aim to evaluate whether uninstallers can clean registry keys after the
application removal. Previous research work has demonstrated that potentially
sensitive information remained resident in the registry after the uninstall of some
specific software [10].

Therefore, this work aims to shed light on the greater scenario of uninstallers
operation. It is important to notice that application uninstallers are available to
most platforms (e.g., Android [7]), but we focused our efforts in this paper on
the Windows platform due to the popularity of uninstallers in this ecosystem.

3 Background: How Windows supports uninstallers?

Before understanding how third-party uninstallers operate, it is key to understand
how Windows applications are installed and removed natively. On Windows,
installers should register the installed applications with the Windows registry by
creating an entry in the proper registry branch [13]. Applications installed for a sin-
gle user must add their information to the key at HKEY_CURRENT_USER\Software\
Microsoft\Windows\CurrentVersion\AppPaths. Applications installed for all

4 Botacin and Grégio

users in the machine should add their information to the key at HKEY_LOCAL_
MACHINE\Software\Microsoft\Windows\CurrentVersion\AppPaths.

The Windows’ “Installed Apps” menu gathers information from these keys to
display the installed apps and their removal/edit options. The first uninstallation
problem is that nothing prevents an app from not registering with Windows (e.g.,
executable files directly extracted from compressed files—zips). In these cases, the
application will be not found in the Windows’ “Installed Apps” menu.

When the application registers itself with Windows, it must set some required
registry keys, such as the application name, the provider, and the uninstaller
path. Therefore, when a user requires an application to be uninstalled by the
native Windows uninstaller, the uninstaller checks the path stored in this registry
key and launches the registered removal process.

The problem with this approach is that nothing prevents an application to
register a fake or a broken uninstall path, such that the uninstaller will not
be able to create a process from it. In this case, the application is never really
uninstalled. Although this is considered a bad practice according to the security
policies of large software ecosystem providers (e.g., Google [8], Microsoft [17]),
this strategy is often used by many applications available for user’s download.

Another problem is that Windows completely trusts the invoked uninstaller to
remove the application files and keys. However, if the application’s native installer
does not do a great job removing its own application, files and registry keys will
remain in the system. Overall, there are many reasons why an application might
be not properly removed, for instance:

— Installations without registering associated keys [12].

— Installers setting the APPNOREMOVE key [14], that prevents the native uninstall
to launch the uninstall process.

— Implementation bugs, such as applications setting registry keys greater than
60 chars [15], which is unsupported by Windows.

When we consider the possibilities above discussed, we notice that the process

of uninstalling an application is not straightforward. Therefore, we consider that
understanding how uninstallers handle those conditions is essential for developing
better applications.
The role of the third-party uninstallers. Face to this challenging removal sce-
nario, third-party uninstallers promise to succeed in the cases where conventional
removal fails. They promise not only to remove the applications listed by the
Windows, but also to discover the ones that did not register with the Windows,
remove files from previous, broken installation, and even defeat protections that
prevent a software to be uninstalled. All these cases are evaluated in this paper.

4 Methodology: What do we aim to discover? And how?

In this section, we present the questions we aimed to answer, the applications we
considered in our analysis, and the approach for inspecting them.

4. METHODOLOGY: WHAT DO WE AIM TO DISCOVER? AND HOW? 5

Research Questions. We defined the following Research Questions (RQs) to
help us to understand the uninstallers:

— RQ1. What is the anatomy of the uninstallers? This question aims to
answer what are the modules and components of a typical uninstaller. It also
aims to answer how uninstallers are structured.

¢ RQ1.1 Are there applications bundled in the uninstallers? This
derived question aims to answer whether additional components not
essential to the uninstallers operations are added to them.

— RQ2. How do uninstallers operate? This question aims to answer how
uninstallers interact with system components.

e RQ2.1 Do uninstallers include extra features? This derived question
aims to answer whether uninstallers provide non-traditional mechanisms
to uninstall applications.

— RQ3. What is the difference for the native uninstaller? This question
aims to answer whether there is any significant advantage on migrating to a
standalone application.

— RQA4. Do uninstallers handle drivers, services, and privileged com-
ponents? This question aims to answer what are the limits of uninstallers
operations.

— RQ5. Are there any performance gains in using an uninstaller? This
question aims to verify if claims of perceived performance gains made by
some vendors and users are real.

— RQ6. Do uninstallers leave files in the system? This question aims to
answer what is the potential of uninstallers for cleaning files.

¢ RQ6.1 Did uninstallers evolve?. We repeated the experiments re-
ported in the literature [10] to check whether the scenario changed over
time.

— RQT7. Are uninstallers able to remove protected applications? This
question aims to answer what are the capabilities of the uninstallers.

¢ RQ7.1 Are uninstallers resistant to tampering attempts? This
derived question aims to answer how resistant to malicious applications
uninstallers are.

e RQ7.2 Are uninstallers able to remove malware? This question
aims to answer whether uninstallers can unlock resources from malicious
processes, such as hypothesized by some users in forums [4, 5, 6].

Uninstallers Selection. To provide a landscape of the uninstallers, we followed
the same strategy adopted in the reference study of application installers [1]:
the search for applications in the most popular online software repositories. Our
search in December/2021 revealed the existence of 275 uninstallers entries for
the uninstaller keyword for CNET [3], 6 thousand for Softonic [22] (unfiltered),
and 268 for Softpedia [23].

Unfortunately, we cannot handle these amounts via manual analysis, as
required by the experiments we designed, such that we opted for selecting
the applications ranked first in the repositories (the most downloaded ones),

6 Botacin and Grégio

Table 1: Selected Uninstallers. We selected the most popular applications
that were successfully downloaded and not part of a security solution. Columns
represent, respectively, tool name, tool version, if they are embedded in security
solutions (v') or not (X), if they were successfully downloaded (v) or not (X), if
they run on VM (V') or not (X), and their ranking in the repositories. Empty
fields mean that the data is not available and/or the criteria does not apply.

Uninstaller Version Security Downloaded VM CNET Softonic Softpedia

Tobit 11.0.1.14 X v v 1 2

Revo 2.1.5.0 X v v 2 1 2
Your 7.5.2014.3 X v v 3 3
Advanced X X 4 6 8
Easy X X 5

Wise 2.3.6.140 X v v 6

Ashampoo 10.10.00.13 X v v 7 9 15
Zsoft 2.5 X v v 8 12
Anvi 1.0 X v v 9

Smarty 4.9.6 X v v 10 11
Puran 3.0 X v v 11

Handy 1.2 X v v 12 12

Absolute 5.3.1.26 X v v 13 9
Ccleaner v 14

Bazooka Adware v 15

Uninstall Manager X X 16

Total Uninstall 6.16.0 X v X 17 10 5

hypothesizing them to be more representative of the solutions most users install
in their machines. We found a low agreement between the ranks of all repositories,
such that we tried to maximize our coverage by considering the most popular apps
in the higher rank positions in the majority of the repositories. We discovered
that considering the CNET rank as a reference was the selection that maximize
the rank position coverage.

From all possible uninstallers to be selected, we discarded those that were
not successfully downloaded (e.g., server errors on the repository side and/or
corrupted files), those that did not execute in Virtual Machines (VMs)-used for
tests—and also discarded those that were part of security solutions, since the
analysis of security solutions is different from our goal of analyzing the uninstallers
by themselves (specific analyses are reported in the academic literature [2]).
Table 1 shows the 11 selected uninstallers and their respective rank positions for
the multiple repositories. We also show the downloaded apps’ versions for the
sake of reproducibility.

Removed Apps Selection. The applications we targeted to remove using
the uninstallers were the native applications installed with Windows, additional
Microsoft products installed in typical user’s machines (e.g., Office), and the
top-10 most popular applications used by the users (e.g., browsers) according to
the rankings of the same repositories that we downloaded the uninstallers. The

5. EVALUATION: WHAT WE DISCOVERED? 7

number of applications used in each experiment varied according to their goals: a
random one, when designing a malicious uninstaller; all of them simultaneously,
when evaluating the presence of sensitive information.

Analysis Methodology: To inspect the uninstaller applications, we manually
installed each of them into a fresh Virtual Machine (VM) and inspected the
installed files (static analysis) and their interaction with system components
while we interacted with the application’s UI (interactive dynamic analysis). All
monitoring was performed using either Microsoft native tools, such as regedit,
for registry inspection, or Microsoft complements, such as SysInternals [16], for
advanced system state inspection. The VMs were restored to the original state
after each uninstaller was tested.

Copyright Information: During our experiments, no decompilation was per-
formed so as to not violate the creator’s copyright. All analyses were performed
by statically examining the installed software files and/or the behavior of the
applications during their normal execution.

5 Evaluation: What we discovered?

In this section, we present our experiment’s results and show how they contribute
to understanding uninstaller’s operations.

5.1 RQ1. The Anatomy

We started our investigation by analyzing the structure of the uninstallers, as
summarized in Table 2. Our initial goal was to use the complexity of their
constructions as a proxy for evaluating the complexity of their operations. Our
initial hypothesis was that these installers would be complex pieces of software
that integrate with multiple parts of the system to be able to perform the removal
actions that the installers and the OS itself was not able to perform. Instead, we
found that most applications were simpler than expected.

In fact, some uninstallers are even standalone applications, operating from a
self-contained binary, which embeds all capabilities and presents all data hard-
coded within it. Their simplicity associated with the great number of Windows
libraries imported by them makes us to hypothesize then that they operate only
like wrappers for invoking the proper Windows native functions designed to
remove software.

Being a standalone application is not a problem, simplicity is desired, since
the application is well-designed and follows the best practices. Interestingly, in
the case of the Anvi installer, the standalone application does not register its
own binary with the system, thus not appearing in the list of installed software.
In some sense, the uninstaller application acts the same way that the software it
is designed to remove acts.

Even the uninstallers that are not standalone are not complex, with a minority
presenting even libraries. We hypothesized initially that libraries would be used

8 Botacin and Grégio

Table 2: Uninstallers Anatomy. Files and Components. Columns represent,
respectively, tool name, if they are registered with the Windows (v') or not (X),
the number of executable files it is composed of, if it is composed of shared
libraries (v') or not (X), the number of kernel drivers composing the tool, if
the applications stores data in databases (v) or not (X), and if it relies on
configuration files (v') or not (X).

Unnstaller Register EXE DLL Drv DB Config

Tobit v 21 v 3 v X
Revo v 1 X X X X
Your v 6 X X X v
Wise v 3 X X Vv v
Ashampoo v 6 X/ X
ZSoft v 2 X X X v
Anvi X 1 X X X X
Smarty v 2 X X X
Puran v 2 X X X v
Handy v 1 X X X X
Absolute v 4 v 1 X X

to implement custom removal algorithms, but we mostly found libraries used for
compatibility (e.g., zlib for compression support). Similar reasoning can be applied
for kernel drivers, which are found only in two uninstallers. Most uninstallers
operate in the same privilege level as the software they aim to remove.

Even when they are not standalone binaries, most uninstallers do not keep
usage sessions in the current system. We only found 3 uninstallers storing in-
formation about the system in databases (all cases in sqlite databases). In
most cases, they simply use information hardcoded in the binaries or gathered
from configuration (config) files (often stored in plain) to increase their removal
capabilities and intelligence.

In the case of the Wise uninstaller, the configuration file stores a list of ratings
for popular applications and also an application exclusion list (e.g., Firefox,
Chrome, Opera), whose files will not be touched by the uninstaller, limiting the
aggressiveness of the heuristics, but also the removal capabilities. Lists are also
found in the Ashampoo uninstaller. In this case, a whitelist, protected against
modifications only by filesystem permissions, is used by the application. It means
that the applications present in the whitelist will not be removed from a system
by the removal software and its heuristics. The approach used by the ZSoft
uninstaller is of blocklisting applications. It means that the removal software
looks for the presence of specific, known “bad” applications to be removed.
We identified that the “bad” reputation of a given software is given by the
StopBadware list [25], present in the configuration files of this application.

RQ1.1. Bundling Most uninstaller applications are distributed in limited
forms to incent a purchase, as shown in Table 3. As a limitation, a few of them

5. EVALUATION: WHAT WE DISCOVERED? 9

will display ads to the user. The worst case, however, is when the uninstallers
are delivered with additional packages bundled in the original file. In this case,
whereas users are looking for an application to remove software from their system,
the final result is that more software is installed, which is not reasonable.

Table 3: Application Bundling. Some uninstallers distribute other applications
during their installation. Columns shows, respectively, the tool name, the type of
contented bundled with it, if it displays ads (v') or not (X) and of which type (if
available), and the license type.

Uninstaller Bundled Ads Type
Itop suite Opera
Tobit Itop screen recorder Driverbooster Freemium
Itop vpn
Revo X X Freemium
Your X X Shareware
Wise X X Freeware
Ashampoo X X Shareware
ZSoft X X Freeware
Anvi X X Shareware
Smarty X X Shareware
Puran X X Freeware
Handy X Random Ads Freeware
Absolute Games X Freeware

5.2 RQ2. Operation

The key goal of our investigation is to discover how uninstallers really remove
the applications. For such, we requested the evaluated uninstallers to remove
multiple applications under different settings. A summary of the uninstaller’s
capabilities is shown in Table 4.

Our first finding is that in an overall manner the uninstallers display the
same installed application as Windows, which indicates that they search the
same registry locations. Only two uninstallers performed a full registry search.
On the one hand, broader searches are useful to find software not installed in
standard locations. On the other hand, this strategy ends up generating false
positive reports.

We discovered that a universal uninstaller’s strategy is to invoke the original
uninstaller of the application to be removed before taking any other action
to remove the software. This strategy is adopted by all evaluated applications.
Whereas some applications seem limited to this functionality, acting only as
another GUI for the removal process, some applications try to complement the
removal procedure. In this sense, the uninstaller’s philosophy seems more to try
to clean residual entries than trying to remove applications by themselves.

10 Botacin and Grégio

Table 4: Uninstallers Operation. Uninstallers first invoke the native uninstaller.
Some apply heuristics after that. Columns show, respectively, tool name, if the
list of installed apps is retrieved from the Windows subsystem or directly from
the registry, if it invokes the native uninstaller (V) or not (X), if the removal
process is automated (v') or not (X), and if it has custom removal heuristics (v)
or not (X).

Uninstaller List Native Auto Custom

Tobit Windows v v X
Revo Windows v v X
Your Windows v v X
Wise Windows v v X
Ashampoo Windows v X v
ZSoft Registry v X X
Anvi Windows v X v
Smarty Windows v v X
Puran Windows v X v
Handy Registry v X X
Absolute Windows v X X

The strategies used to perform additional cleanings are varied. Some unin-
stallers perform custom scans, asking the user if they want to remove a given file.
It does not seem to be a significant advantage in comparison to manual removal
procedures. The only clear benefit in it is to automatically locate files, but no
decision is taken by the application. Other uninstallers try to add intelligence to
the process by employing heuristics to automatically identify which files must be
removed.

To evaluate the identified third-party uninstaller’s capabilities in practice, we
created a crafted application installation with an integrated custom uninstaller
that purposely did not remove registry keys and installation files. We applied
the third-party uninstallers to check their actions over the remaining installation
artifacts. We summarize the results in Table 5.

All uninstallers were able to run the native uninstaller (our custom one) and
thus remove the application from the list of installed apps. However, it does not
mean that applications were fully uninstalled by all of them. Not all uninstallers
were able to wipe the registry entries associated with the application that were
intentionally left by our uninstaller. Similarly, not all of them were able to follow
the paths stored in the registry keys and delete the files intentionally left in the
filesystem. The only solutions able to perform this type of uninstallation were
the ones using heuristics. The heuristic used by the uninstallers is to follow the
path added to the InstallLocation key and suggest the removal of whatever is
pointed by it.

A major drawback of using heuristics is that they provide no guarantee that
they will remove correct files, and this characteristic might even be abused. To
demonstrate that, we configured an application installation whose InstallLocation
path points to another application’s folders, unrelated to our targeted application.

5. EVALUATION: WHAT WE DISCOVERED? 11

Table 5: Removal Experiment. Heuristics might be tricked to remove the
wrong files. Columns represent, respectively, tool name, if the tool was able
to remove apps from the installed apps list (v') or not (X), if they were able
to remove associated registry keys (v/) or not (X), if they were able to remove
associated files (V') or not (X), and if they are prone to remove wrong files (v) or
not (X).

Uninstaller List Registry Files Wrong

Tobit v v v v
Revo v v v v
Your v v X X
Wise v v v v
Ashampoo v v v v
ZSoft v v X X
Anvi v X X X
Smarty v v v v
Puran v X X X
Handy v v X X
Absolute v X X X

In all cases, the installers suggested removing the unrelated folders, even when
we pointed them to native Windows folders, which might even break the system
operation.

RQ2.1. Extra Features In addition to their original function of uninstalling
applications, many uninstallers also offer other facilities to the users. Table 6
summarizes the extra features we found on the evaluated uninstallers.

Many features offered by the installers are focused on usability rather than
on the removal process itself (e.g., identifying very large files, rarely used files,
unattended update files left in the system, and so on). Some facilities are related
to the removal but do not involve a specific process (e.g., cleaning the system),
such that they were evaluated separately.

Two extra features are of our particular interest when evaluating uninstallers:
(i) the ability to monitor new installations, and (ii) the ability of performing
system checkpoints. These two functions are not natively provided by Windows
and they would be useful to the users. We discovered, however, that these two
functions are very limited in all uninstallers. We discovered, for instance, that
the so-called monitors do not perform whole-system monitoring, as expected.
Instead, they only search specific locations and registry keys, such that standalone
installers are not identified (e.g., EXE files extracted from zip folders) and manual
registry edits are also not reported.

The checkpoint mechanism works similarly on both evaluated uninstallers
that offer this capability. The user takes a snapshot of the current system state
(files and registry keys) before installing an application, installs it, and takes a

12 Botacin and Grégio

Table 6: Extra Features. Some uninstallers present additional monitoring and
management resources. Columns show, respectively, tool name, if they filter
installers by size (v') or not (X), by usage frequency (v/) or not (X), if they
handled installed updates (v') or not (X), if they have cleaning capabilities (v)
or not (X), if they monitor new installations (v') or not (X), and if they create
installation checkpoints (v') or not (X).

Uninstaller Size Freq. Upd. Clean. Mon. Checkpoint

Tobit v v X X v X
Revo X X X X X X
Your X X X v X X
Wise X X X X X X
Ashampoo X X 4 X v X
ZSoft X X X X X v
Anvi v X X X X X
Smarty X X X X X v
Puran X X X X X X
Handy X X v X X X
Absolute X v v X X X

new snapshot after it. The newly added files and registry keys are then reported.
If the user asks for application removal, these files will be removed.

The snapshot mechanism is very fast, such that we hypothesized that the
uninstallers do not look for file contents (not even a hash/digest). We evaluated
this hypothesis by modifying an existing file and we discovered that this was also
reported as a new file. We then hypothesized that the uninstaller was identifying
it via the filesystem’s modification time. We confirmed that by re-saving files,
with no actual modification, during the snapshot, such that these files were
reported as new. Whereas timing-efficient, this approach is problematic because
it reports any modified file as belonging to the installed application and suggests
its removal. When we modified a system file, this file was also suggested for
removal, which might break the system operation.

5.3 RQ3. The Differences

One of the goals of this research work is to investigate the reasons why one would
prefer a third-part uninstaller than the native solution. We did not discover many
differences to support such migration, except the one here discussed.
Applications might mark themselves to not be removed by setting the
APPNOREMOVE key in the registry. In this case, the native Windows uninstaller will
not display the uninstall button for that application, even though the application
will still be displayed in the list of installed apps. We evaluated the behavior
of the other uninstallers in this case. Table 7 shows that all uninstallers except
for ZSoft simply ignore this registry key and invoke the registered uninstaller
anyway. Whereas skilled users might perform manual registry editing to remove
the key and allow the native Windows uninstaller to remove the application, we

5. EVALUATION: WHAT WE DISCOVERED? 13

Table 7: Applications with NOREMOVE option. Most uninstallers simply ignore

the option. The set of columns show, respectively, tool name and if the tool was

able to remove applications with the NOREMOVE option set (v/) or not (X).
Uninstaller Removed Uninstaller Removed

Windows X ZSoft X
ToBit v Anvi v
Revo v Smarty v
Your v Puran v
Wise v Handy v
Ashampoo v Absolute v

consider that in this scenario the third-part uninstallers perform better than the
native one because even users with less knowledge about Windows internals can
remove applications in this setting.

5.4 RQA4. Privileges

As important as to identify that a given resource must be removed is to have
the ability to remove it. In practice, this might be challenging due to permission
issues (e.g., a file might be locked, a process might still be running, the access
to a key might require admin privileges). Therefore, we aimed to evaluate how
uninstallers handle these conditions. We discovered that, since the uninstallers
rely on the invocation of the original uninstaller, they have almost the same
capabilities as them. In this sense, the uninstallers do not elevate themselves to
admin, but they wait for the native uninstallers to do so to remove the files. If
they do, the files are removed. If they do not remove a file that requires special
permissions, the standalone uninstallers will not be able to remove them as
well. Similarly, if the native uninstaller unloads kernel drivers and stops services,
these will be removed. However, if the standalone uninstallers are required to
remove them while running, any attempt will fail due to the lack of proper
permissions. Whereas we understand that this scenario is somehow expected
and thus acceptable, most uninstallers do not make it clear to the users. In our
searches, we found that only the Revo uninstaller stated in its manual that drivers
must be removed in safe mode [26].

5.5 RQ5. Performance

It is common to find users in Web forums recommending the use of uninstallers
and/or cleaners to speed up system performance. The hypothesis behind it is that
having fewer files and/or registry keys in the system would make searches faster,
as the system would have to traverse smaller structures, which is a reasonable
hypothesis at a first glance [20]. This “popular knowledge” become widespread
to the point of that some solutions even advertise performance gains. Therefore,
it is important to investigate to which extent these supposed performance gains
are significant.

14 Botacin and Grégio

Two of the uninstallers solutions that we evaluated made explicit performance
claims: You Uninstaller and Ashampoo. In the first case, the advertised cleaning
function is, in fact, limited to a few pre-defined locations, such as browser’s history,
cookies, and so on. Even though this might have a (limited) impact on navigation,
it is hard to consider these actions as a performance improvement to the system.
In the second case, the uninstaller presents a solution to clean the registry tree as
a whole. We evaluated its impact by taking a snapshot of the registry tree before
and after the cleaning. We discovered that the solution is very conservative when
removing keys. It only removes registry entries with no associated keys (empty),
but it does not remove orphaned keys (e.g., keys that point to invalid paths). On
the one hand, the solution works both for the current user (HKCU) as well as
for the other uses (HKLM). On the other hand, it is very conservative and does
not touch keys that affect the system (e.g., HKCR).

In the end, after an average of 10 repetitions, the solution removed 500 keys
from an average of 318 thousand keys with 564 thousand associated values present
in our fresh Windows installation. We consider that this result (less than 0.2%
effect) is not significant to support claims of performance gains. To confirm this
hypothesis, we executed 10 repetitions of a Windows registry benchmarking
tool [21] and measured the depth of the traversed registry branches and the
actual time spent traversing them. We noticed no statistical difference between
the system state before and after the system cleanup.

5.6 RQ6. Remaining Files

A good uninstaller application should be able to remove all traces of an installed
application from the registry and filesystem. Of course, this is the main task of
the native application uninstaller, but since in this work we assume the user is
using some other application because the native uninstaller already failed, we
would like to verify whether the third-part uninstallers are able to bridge this
gap. Unfortunately, they are not. Since most uninstallers only invoke the native
uninstaller to remove the application, they end up failing in the same aspects
as the original uninstaller. The uninstallers that perform additional heuristic
checks indeed remove more files, but no uninstaller completely removed all files
of any application we tested. This essentially happened because applications
often install their files in two distinct locations: Program Files, for the binaries;
and AppData, for the configuration files. Since only the first location is affected
by the requirements to register the application with the Windows registry, the
heuristics are only able to correlate this location with the installed application,
always leaving the second folder untouched.

RQ6.1. Evolution A major problem with files and registry keys left in the
filesystem is that they can potentially reveal sensitive information about the users,
as demonstrated by a previous work [10]. We repeated their experiment to verify
if the situation improved with time and if the use of third-party uninstallers is a
viable option for cleaning the system after an uninstall. To do so, we installed the

5. EVALUATION: WHAT WE DISCOVERED? 15

same application considered in the original work (in updated versions) in a fresh
Windows installation. We populated these applications with data from an entire
day of use. For instance, for the mail client, we registered an account in it and
sent and received emails. We inspected the filesystem and the registry after we
uninstalled the applications using the native uninstaller and the third-part ones.
We notice that no clear sensitive information is left by the native uninstaller (e.g.,
no key storing email addresses), which we might credit to enhancement to the
native uninstaller itself over time. On the other hand, configuration and temporary
files were still spread all over the filesystem after the installation. The files stored
in the AppData folder were cleaned by the third-part uninstallers, but there were
remaining files in other folders after the application of all solutions. Therefore,
we conclude that whereas uninstallers might help removing some orphan files,
they are not the solution for definitively eliminating all files, especially if one is
concerned with privacy leaks.

5.7 RQ7. Protection

If uninstallers are supposed to remove badly-behaved applications, they should
be protected at least against the basic types of interference attempts, such as
termination. We inspected the uninstallers in search of signs of self-protection
mechanisms to evaluate their protection level. We did not find, however, for all
uninstallers, OS-independent protection mechanisms, which indicates that they
assume that the software they will uninstall is well-behaved (i.e., they will operate
following the best standards, ordinary methods, and not abusing interfaces).

For two uninstallers, we identified components that could be used to increase
self-protection (e.g., kernel drivers that could be used to prevent access to the
uninstaller files). We discovered, however, that these components are only part
of the uninstaller engine and not part of self-protection modules (e.g., kernel
drivers are used as callback mechanisms). In the case of the Absolute uninstaller,
the driver could be terminated by any user/process having admin privileges (in
the last instance, it could be even the application requested to be uninstalled).
In the case of the IoBit, there were 3 drivers running in our test environment
(responsible for the process, registry, and filesystem callbacks, respectively).
Whereas the first two were resistant to termination due to the lack of proper
permissions, the filesystem driver was easily terminated by the admin (which we
interpreted as a bug, since the other 2 drivers were protected).

RQ7.1. Anti-Tampering To demonstrate uninstallers vulnerabilities due to
the lack of self-protection mechanisms, we developed some attacks® that could
be leveraged by a malicious application to not be removed by an uninstalling
application.

! Attack demos available at: https://www.youtube.com/watch?v=Rkw6WbD-nMY,
https://www.youtube.com/watch?v=mZPb7h4cy80, and https://www.youtube.com/
watch?v=0AjFCZWUhfU

16 Botacin and Grégio

Our first attack is based on the fact that the standalone uninstallers directly
call from their main process the application registered in the registry as an
uninstaller for the target application rather than calling them from a child/pro-
tected process. This allows the targeted uninstaller to identify the PID of their
parent processes (the standalone uninstallers) and directly attempt to terminate
this Process ID (PID). If no protection mechanism is employed, the attack will
succeed and the targeted application remains installed in the system.

Table 8: Uninstaller Termination. Uninstallers can be terminated by the

targeted uninstall application. The set of columns show, respectively, tool names,

and if the installers were terminate (v') or not (X) by a malicious uninstaller.
Uninstaller Terminated Uninstaller Terminated

Windows Crashed ZSoft v
IoBit v Anvi v
Revo v Smarty v
Your v Puran v
Wise v Handy v
Ashampoo v Absolute v

We developed a Proof-of-Concept (PoC) uninstall application for this attack
and registered it as the uninstall of an application to be removed by the standalone
uninstallers. Table 8 shows this experiment’s results. Whereas the Windows
installer crashed, but did not terminate, all standalone uninstallers terminated
before removing the targeted application.

The problem with the first attack is that terminating the application is
noticeable for the user and might raise concerns. A more effective strategy would
be to remove the application from the list of installed software without actually
uninstalling it. We developed a second class of attacks with this goal by exploiting
the facts that (i) installers have no self-protection mechanisms; and (ii) they rely
on standard system interfaces for their operation.

Our second attack consisted of injecting a DLL into the uninstaller applications
to hook the Windows APIs used by the uninstallers to remove our PoC application
from the installed applications list. In other words, we developed a userland rootkit.
Table 9 shows that we were able to inject the DLL and remove applications from
the list of all standalone uninstallers when the processes were already launched
with the injected DLL. It also shows that injection was possible in runtime into
all but three uninstallers. The two failure cases are due to their process being
protected against memory writes after the process setup phase, which is the only
self-protection measure we found among all uninstallers we inspected.

We also developed a third attack that does not depend on code injection to
demonstrate that the reliance on OS APIs is the weakest point of the uninstaller’s
security model. We developed a kernel driver that implements callbacks to prevent
uninstallers from accessing registry keys associated with the targeted application,
which could be performed by a malicious software that prevents uninstallations.

6. DISCUSSION: WHAT ARE THE IMPLICATIONS OF OUR FINDINGS? 17

Table 9: Uninstaller Tampering. External code might affect uninstaller’s
operations. Columns show, respectively, the tool name, if the tool is affected
by code injection at startup (v') or not (X), at runtime (v') or not (X), and by
external kernel drivers (v/) or not (X).
Uninstaller Userland Kernel
Startup Runtime
X

ToBit
Revo
Your
Wise
Ashampoo
ZSoft
Anvi
Smarty
Puran
Handy
Absolute

AN

NANENE NN NENENEN
SRUX SN
NN N N N N N R

In other words, we developed a kernel rootkit. Table 9 shows that this strategy
succeeded against all uninstallers, removing the targeted application from the list
of installed software without actually removing the application from the system.

RQ7.2. Anti-Malware Considering the self-protection limitations that we
presented above, we understand that uninstallers are not suitable as a replace-

ment for security solutions for the task of malware detection, as suggested in some
Web forums, since an armored malware could terminate them or interfere with
their operation. Moreover, we also did not find evidence of an actual capability
of removing malware traces in any of the solutions. In our tests, we infected a
system with multiple samples collected from VirusShare [27] (10 randomly-chosen
samples tested against each uninstaller) that created AutoRun keys for persisting
in the registry. Even after we manually removed the malicious binaries from the
system and left the keys orphan, the uninstallers were still not able to detect it
and remove these entries from the registry. In other words, the uninstallers were
not able to identify that the malware samples were the original parents of the
leftover AutoRun keys. This happens mostly because the removal heuristics used
by the uninstallers rely on data that is often set by benign applications (paths in
registry keys) that were not set by the malware samples.

6 Discussion: What are the implications of our findings?

Based on our findings, we here present a brief discussion about some implications
of our findings.

18 Botacin and Grégio

The need for better uninstallers using current technology. Whereas
most of the investigated uninstallers did not present significantly greater removal
capabilities than the native Windows one, all of them present a better user
interface (UI)/user experience (UX), in the sense that applications are categorized,
ranked, locations are displayed, and so on (see RQ 2.1). These information pieces
are not available in the standard Windows tool. We believe that this might be one
of the reasons why users adopt this kind of solution rather than using the native
installer. Therefore, OS developers (e.g., Microsoft/Windows) should investigate
refactoring and enhancement possibilities of their native solutions. We believe
that incorporating the features from the third-part solutions to a native system
is an immediately applicable action that does not depend on the development of
new technologies.

The need for better uninstallers using next-gen technology. Whereas
enhancing the UI/UX is an immediately applicable action, enhancing the removal
capabilities depends on the development of new technologies. When we analyze
the removal procedure, we observe that uninstallers fail to remove files remaining
from broken installation because no system component keeps track of processes’
interactions all the time. Therefore, for the development of an efficient uninstal-
lation procedure, systems would have either to (i) monitor the system constantly
to identify which files/registry keys/so on were accessed by each process; or (ii)
tag the touched files so one could identify to which applications a file/registry key
belongs. If we develop a tagging mechanism, one could remove files associated
with a process by looking at the registry keys tags or, otherwise, remove registry
keys associated with a process by looking for the tags assigned to a file belonging
to that process. Efficiently tagging resources consists of a significant open research
problem that must be addressed by the research community.

Study Limitations. Whereas this study presented a comprehensive analysis of
the most popular uninstallers, thus covering a significant user base, it is important
to highlight that this study is noth exhaustive. The manual approach required
to inspect the uninstallers limited the number of uninstallers that our research
team was able to analyze. We understand that our current findings are a first
step to shed light on the uninstallers landscape. For the future, more research
is warranted to cover a greater number of uninstallers, of distinct nature, and
covering distinct platforms.

7 Conclusion

In this work, we investigated the operation of the 11 most downloaded application
uninstallers from the 3 most popular Internet software repositories. We analyzed
their operation against well-behaved and malformed uninstallers to characterize
their weak and strong aspects. Based on our experiments, we concluded the
following about their operation: (1) Most installers are similar to the native
Windows uninstaller, finding the same installed applications and not locating
broken installations; (2) Some installers provide interesting additional features,
such as creating a system checkpoint, but this feature might corrupt files if not

7. CONCLUSION 19

applied immediately after the broken application installation; (3) The heuristics
employed by a few installers to clean broken installation files might be abused
by a malicious uninstaller to force the removal of third-party’s files; (4) The
installers are not resistant against a malicious uninstaller designed to terminate
the uninstaller application.

We recommend the OS vendors to: (1) Redesign their uninstallation systems.
The third-part uninstallers all present better application organization than the
native uninstaller (e.g., categorizing them), such that this might work as an
incentive for users adopting this type of solution rather than the native one.

We recommend for users: (1) Do not confuse removing an application from

the installed apps list with actually removing the application files. Sensitive
files might still be resident in the filesystem after an application removal; (2)
Application uninstallers are not secure robust enough to remove malware, thus
they should not be used as a replacement for Antiviruses and security solutions.
Reproducibility. All code developed for our experiments are available at https:
//github.com/marcusbotacin/Uninstallers.
Acknowledgments. The authors would like to thank the Brazilian Ministry
of Education for supporting this work (Research Project “Plataforma MEC de
Recursos Educacionais Digitais”, Funding Agency: Fundo Nacional de Desen-
volvimento da Educagiao - FNDE, TED n. 10.959).

References

1. Botacin, M., Bertao, G., de Geus, P., Grégio, A., Kruegel, C., Vigna, G.: On the
security of application installers and online software repositories. In: Maurice, C.,
Bilge, L., Stringhini, G., Neves, N. (eds.) DIMVA. Springer (2020)

2. Botacin, M., Domingues, F.D., Ceschin, F., Machnicki, R., Zanata Alves, M.A., de
Geus, P.L., Grégio, A.: Antiviruses under the microscope: A hands-on perspective.
Computers & Security (2022)

3. Cnet: Uninstall - search. https://download.cnet.com/s/uninstall/?platform=
linux (2021)

4. Forum, A.: When does one use revo uninstaller? https://forum.avast.com/index.
php?topic=127051.0 (2013)

5. Forum, I.: Cbs/cnet recommended i use an uninstaller to remove their malware.
https://forums.iobit.com/topic/12814-cbscnet-recommended-i-use-an-
uninstaller-to-remove-their-malware/ (2014)

6. Forum, V.: My opinion of revo uninstaller pro. https://forum.videohelp.com/
threads/351573-My-opinion-of-Revo-Uninstaller-Pro (2003)

7. Google: Uninstallers - google play. https://play.google.com/store/search?q=
uninstaller (2021)

8. Google: Unwanted software policy. https://www.google.com/about/unwanted-
software-policy.html (2021)

9. Hoffman, C.: Should you use a third-party uninstaller? https://www.howtogeek.
com/172050/htg-explains-should-you-use-a-third-party-uninstaller/
(2016)

10. Kim, Y., Lee, S., Hong, D.: Suspects’ data hiding at remaining registry values
of uninstalled programs. In: e-Forensics. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering) (2008)

20

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

Botacin and Grégio

Liou, J.C., Duclervil, S.R.: A Survey on the Effectiveness of the Secure Software
Development Life Cycle Models. Springer (2020)

Microsoft: Adding and removing an application and leaving no trace in the
registry. https://docs.microsoft.com/en-us/windows/win32/msi/adding-and-
removing-an-application-and-leaving-no-trace-in-the-registry (2018)
Microsoft: Application registration. https://docs.microsoft.com/en-
us/windows/win32/shell/app-registration#registering-verbs-and-other-
file-association-information (2018)

Microsoft: Configuring add/remove programs with windows installer.
https://docs.microsoft.com/en-us/windows/win32/msi/configuring-add-
remove-programs-with-windows-installer (2018)

Microsoft: Program is not listed in add/remove programs after installa-
tion. https://support.microsoft.com/en-us/topic/program-is-not-listed-
in-add-remove-programs-after-installation-0866db2a-£8d9-fb0f-16d2-
850£5072e536 (2018)

Microsoft: Windows sysinternals. https://docs.microsoft.com/en-
us/sysinternals/ (2021)

Microsoft: Software download products & services, freeware & share-
ware. https://about.ads.microsoft.com/en-us/policies/restricted-
categories/software-freeware-shareware#uninstall-functionality (2022)
Primiero, G., Boender, J.: Managing software uninstall with negative trust. In:
Trust Management XI. Springer (2017)

Ramirez, A., Aiello, A., Lincke, S.J.: A survey and comparison of secure software
development standards. In: 2020 13th CMI Conference on Cybersecurity and Privacy
(CMI) (2020)

Raymond: The performance cost of reading a registry key. https://devblogs.
microsoft.com/oldnewthing/20060222-11/7p=32193 (2006)

RegBench: Regbench, windows registry benchmark utility. https://bitsum.com/
regbench.php (2017)

Softonic: Uninstallers - search. https://www.softonic.com.br/s/uninstallers
(2021)

Softpedia: Uninstallers - search. https://www.softpedia.com/dyn-search.php?
search_term=uninstallers (2021)

Soldani, J.: Grey literature: A safe bridge between academy and
industry? SIGSOFT Softw. Eng. Notes 44(3), 11-12 (Nov 2019).
https://doi.org/10.1145/3356773.3356776, https://doi.org/10.1145/3356773.
3356776

StopBadware: Zango. https://wuw.stopbadware.org/tags/zango?__cf_chl_
jschl_tk__=pmd_a220ec1f116838d84c8791496582d0446d9606f7-1632851755-0-
gaNtZGzNAc2;jcnBszQj0 (2009)

Uninstaller, R.: How to force wuninstall a program that won’t unin-
stall. https://www.revouninstaller.com/blog/how-to-force-uninstall-
a-program-that-wont-uninstall/ (2021)

VirusShare: Virusshare. https://virusshare.com/ (2021)

Zax, R., Adelstein, F.: Faust: Forensic artifacts of uninstalled
steganography tools. Digital Investigation 6(1), 25-38 (2009).
https://doi.org/https://doi.org/10.1016/j.diin.2009.02.002, https://www.

sciencedirect.com/science/article/pii/S1742287609000267

