
Towards more realistic evaluations: The impact of label delays in

malware detection pipelines

Marcus Botacin (1) and Heitor Gomes (2)

(1) Texas A&M University, USA - botacin@tamu.edu (corresponding)
(2) Victoria University at Wellington, NZ - heitor.gomes@vuw.ac.nz

Abstract

Developing and evaluating malware classification
pipelines to reflect real-world needs is as vital to pro-
tect users as it is hard to achieve. In many cases,
the experimental conditions when the approach was
developed and the deployment settings mismatch,
which causes the solutions not to achieve the de-
sired results. In this work, we explore how unrealistic
project and evaluation decisions in the literature are.
In particular, we shed light on the problem of label
delays, i.e., the assumption that ground-truth labels
for classifier retraining are always available when in
the real world they take significant time to be pro-
duced, which also causes a significant attack oppor-
tunity window. In our analyses, among diverse as-
pects, we address: (1) The use of metrics that do
not account for the effect of time; (2) The occur-
rence of concept drift and ideal assumptions about
the amount of drift data a system can handle; and
(3) Ideal assumptions about the availability of ora-
cle data for drift detection and the need for relying
on pseudo-labels for mitigating drift-related delays.
We present experiments based on a newly proposed
exposure metric to show that delayed labels due to
limited analysis queue sizes impose a significant chal-
lenge for detection (e.g., up to a 75% greater attack
opportunity in the real world than in the experimen-
tal setting) and that pseudo-labels are useful in miti-
gating the delays (reducing the detection loss to only
30% of the original value).

1 Introduction

Malware infections are major threats to modern
computer systems and new strategies to fight them
emerge at a fast pace. Machine Learning (ML) mod-
els are at the core of many state-of-the-art proposals
for malware detection. Whereas ML models certainly
provide invaluable gains for security, their application
is not as straightforward as deploying a single ML
model. Rather, a pipeline of solutions is required to
enable the long-term operation of the ML model at
proper detection rates.

Although the academic literature is rich in pro-
posals for ML-based detectors, most of them [5] do
not present a complete pipeline to assure the proper
operation of the ML model. Most solutions do not
account for the different effects ML models are sub-
ject to, especially those derived from real-world con-
straints, such as storage and processing limitations.
Neglecting these aspects creates a blurry understand-
ing of the security dynamics of real systems, results in
papers that overstate their impact [12] and, most im-
portantly, in solution deployments that do not meet
the expectations and real-world needs [3]. In this
scenario, it is key to better understand the pipeline
dynamics to allow one to better select the ML-based
security architecture that best fits the targeted sce-
nario.

A naive strategy to integrate ML in malware de-
tection is to simply pass incoming samples through
a ML model. This pipeline is naive because the per-
formance of the ML model degrades over time due to
the evolution of the malware samples (a phenomenon

1



called concept drift [15]). A smarter pipeline includes
a concept drift detector to retrain the ML model
when its performance is degraded. A major draw-
back of this solution is that it relies on an oracle
to provide the correct labels for concept drift detec-
tion. True oracles do not exist in reality. Some works
suggest relying on active learning [31] as the oracle.
However, these works assume that the oracle has un-
limited resources and immediate labeling capabilities.
In practice, sandboxes (and even more human ana-
lysts) used by security companies as oracles have lim-
ited availability and a large response time, such that
samples spend significant time in queues, causing a
delay in the delivery of the ground-truth labels.

A delay in the delivery of the ground-truth labels
implies that attackers have an attack opportunity
window to act while the sample is not correctly de-
tected by the companies. Thus, it is key to mitigate
the delayed label problem to enable faster incident re-
sponse. Unfortunately, most works in the literature
do not model analysis queues as part of their detec-
tion pipelines. A really smart architecture to address
these real-world constraints should mitigate the prob-
lem of the delayed labels via pseudo-labels assigned
by an intermediate classifier that bridges the tem-
poral gap between the original ML model and the
Oracle solution. Once again, pseudo-labels are not
the standard consideration for most pipelines in the
literature.

To bridge the gap between real-world constraints
and literature works, in this paper, we present mal-
ware detection experiments for the multiple architec-
tures presented in the literature while (i) consider-
ing and (ii) discarding the real-world limitations and
comparing their results. We test all the different ar-
chitectures with the DDM and EDDM drift detectors
with a state-of-the-art classifier [15] applied to the
DREBIN [6] dataset. We simulate conditions where
the architecture has full access to retraining (past)
data and when the architecture only has access to
partial data due to constraints in the malware analy-
sis queue. We propose a new metric to evaluate how
exposed to threats users are in each scenario.

Our ultimate goal with this work is that the phe-
nomenon we here describe might be considered by
researchers and security engineers in future analy-

ses, designs, and deployments of (realistic) ML-based
malware detection solutions.

Our findings for each timeframe in the tested
dataset are that:

• Concept drift mitigation reduces the user expo-
sure to new threats on average in ≈ 50%;

• Delayed labels increase the user exposure on av-
erage in ≈ 50%;

• Using pseudo-labels reduces the user exposure
on average in ≈ 30%.

This paper’s contributions are as follows:

• We revisit ML-based malware detection
pipelines proposed in the literature and crit-
ically analyze their limitations to real-world
deployments;

• We demonstrate via experiments that effects de-
rived from real-world constraints, such as label
delay, cause a significant impact on the pipeline
outcome and should not be neglected;

• We introduce a new exposure metric to evalu-
ate pipelines over time while accounting for the
effect of the multiple real-world constraints.

This work is organized as follows: In Section 2, we
define the research problem; In Section 3, we criti-
cally evaluate the ML pipelines presented in the lit-
erature; In Section 4, we detail the proposed experi-
mental methodology; In Section 5, we report experi-
ment results on different architectural designs; In Sec-
tion 6, we report experiments results on real-world
constraints; In Section 7, we discuss the experimen-
tal findings; In Section 8, we position our contribu-
tions among related works; We draw our conclusions
in Section 9.

2 Problem definition

In this section, we formalize the problem addressed
in this research work and its associated challenges.
The malware detection problem. Security com-
panies receive multiple suspicious files to scan every

2



day. The companies have to decide if those files are
malicious or not. If the files are malicious, the com-
panies must generate the detection rules. To tackle
the malware detection problem, security companies
(typically Antivirus ones) use distinct strategies at
the backend (their servers) and the frontend (end-
points, also known as user machines) [13]. We here
investigate what happens in the backend of AV com-
panies, and assume that the outcome of the classifi-
cation process is a detection rule (e.g. YARA [36])
that is efficient at the frontend component,

The process of deciding if an artifact is malicious
or not aims to accomplish two goals [25]: (I) accu-
racy and (2) fast response. Accuracy means that
it should detect malicious and only malicious files,
with great confidence. There should be no (or min-
imum) False Positives (FPs) because blocking legiti-
mate software impedes users from using it, and then
they are likely more prone to remove the security soft-
ware and never buy it again. Currently accepted FP
levels are in the magnitude of 1% or less [26]. Fast
response means that it should correctly identify ma-
licious files as soon as possible because the longer it
takes to decide (and respond), the greater the chance
that attackers will be infecting users with them [11].
The ML challenge. Combining accurate and fast
detection is hard. Companies rely on many tech-
niques for that, including Machine Learning (ML),
our focus in this research. To achieve these goals,
it is not enough to simply add an ML classification
model in production. In fact, it requires a pipeline of
ML solutions. This research investigates the best ML
pipeline architecture to achieve these two goals. Un-
like most previous works, we target a problem setting
where the ML model should be capable of evolving
to detect new threats.

We model the aforementioned real-world problem
as a delayed and partially labeled evolving data
stream classification problem [21]. The streaming na-
ture of the problem comes from the fact that new mal-
ware samples arrive every day, creating an analysis
flow. The delayed and partially labeled constraints
come from the fact that: (1) new malware might not
be immediately correctly labeled, but the wrong la-
bels will be fixed over time, thus the correct labels
will be delayed. Also, (2) at any given point in time,

only a fraction of the correct labels will be available,
as corrections are not immediate, thus the problem
presents the partially labeled characteristic. Finally,
the evolving aspect comes from the fact that changes
are expected as new malware is created to fool the
ML pipeline and the ML model is expected to react
to it.

3 Pipelines

Modern detection solutions are not composed of
a single solution but multiple solutions in an ML
pipeline [3]. In this section, we revisit detection
pipelines proposed in the literature over time and
critically analyze their relationship with the real
world.
Naive Triage Architecture. The most straight-
forward detection pipeline uses a single ML classifier
for triaging files. Figure 1 shows the execution flow:
The unknown suspicious file enters the classifier and
it gives its verdict. This classifier should be fast (e.g.,
static feature extraction) to meet the response time
requirement. This pipeline is naive because as the in-
put files change over time, the classifier becomes un-
able to meet the same accuracy standards as training
time [15].

1].pdf
Figure 1: Naive Triage Architecture. The ML
model is never updated and deteriorates over time.

Triage-Update Architecture. A solution for the
time-related degeneration is to use adaptive classifi-
cation models [7], updating them either periodically
or when concept drift is detected. Thus, in this up-

3



graded pipeline, the triage classifier is externally up-
dated by an update monitor, such as a drift detector.
Figure 2 displays an architecture where the triage
classifier is externally updated by an update monitor
(e.g., a drift detector).

2].pdf
Figure 2: Triage-Update Architecture. The
triage model is externally updated by a drift detec-
tion solution. Most solutions assume that the correct
labels are always available for the correction process.

This architecture’s drawback is that it requires the
correct labels to check if the classification provided
by the model matches the real label. Most works in
the literature assume that labels are always available
by the classification time, which is not realistic [22].
In practice, ground-truth labels are often provided by
a secondary inspection, such as by human analysts.
Analysts take significant time to inspect a sample,
thus the ground truth labels often arrive a long time
after the samples were first seen by the model. Also,
most works assume that correct labels are available
in an unconstrained number. Once again, ground-
truth labels are usually generated after manual or
semi-automated inspection, and human analysts are
limited resources, thus the correct labels might spend
some time in analysis queues before they are available
for the concept drift detector. This dynamic should
not be neglected in the statistics otherwise one is eval-
uating a scenario that does not match reality.
Triage-Oracle-Update Architecture. A more re-
alistic architecture involves not supposing a perfect
oracle but adding a second-layer dynamic analysis
sandbox to the pipeline, that has a greater discrimi-
nation capacity than the static detector and a higher
throughput than human analysts. Figure 3 shows
an architecture in which the incoming sample is sent

both to the static classifier and the dynamic analysis.
The rationale is that the static classifier will provide
a fast response, while the dynamic analysis solution
will provide an accurate response. Therefore, the la-
bels produced by the static classifier and the sandbox
are compared by the drift detector to help enhance
classification in the future. The hypothesis is that if
such predictions diverge significantly, then a concept
drift has occurred. This is similar to teacher-student
approaches for unsupervised drift detection [14] pro-
posed in the stream mining literature.

3].pdf
Figure 3: Triage-Oracle-Update Architecture.
Sandbox execution is treated as an oracle for produc-
ing ground truth labels. Dynamic analysis is expen-
sive and it still cannot provide an unlimited number
of samples.

Whereas sandboxes are more scalable than human
analysts, it is also not an unlimited resource. Trac-
ing samples in sandboxes takes time and although AV
companies run large cloud servers, it is not enough to
run all the millions of samples that an AV company
daily receives. Therefore, some prioritization strat-
egy must be defined: either (1) not all malware sam-
ples are sent immediately to the dynamic analysis,
but only those whose classifier confidence is low are
prioritized, or (2) if a huge number of samples is sent
to dynamic analysis, they should wait on a queue.
Both strategies once again cause the actual labels to
be delayed. This delayed label dynamic cannot be
neglected in ML pipeline evaluations, but unfortu-
nately, label delays are hardly ever modeled in the
literature papers.
Triage-Oracle-Eager-Update Architecture.

4



The root cause for the problem of the delayed label
is that the Oracle (the sandbox) is much slower in
producing labels than the original classifier. This
is required because to be more accurate, and thus
produce better labels than the original classifier, the
Oracle must put in bigger inspection efforts, which
costs more time. A solution for mitigating the delay
problem is to bridge the timing gap between the
two classifiers, i.e., to add an intermediate instance
that can produce better labels than the original
classifier (but not as good as the oracle) and that is
faster than the oracle. The labels produced by this
intermediate instance are considered pseudo-labels
and they are only valid until the oracle produces
the actual ground-truth labels. The idea behind
that is to eagerly update the model by speculatively
predicting drift occurrence. Figure 4 illustrates the
case of a pipeline with an eager retrain configuration.

4].pdf
Figure 4: Triage-Oracle-Eager-Update Archi-
tecture. A secondary classifier is used to provide
pseud-labels to the drift detector to mitigate the ef-
fect of delayed ground-truth labels by the oracle.

The incoming sample is classified by the fast triage
classifier, but it also enters a second classifier queue.
This second classifier will produce pseudo-labels that
will be temporarily used by the concept drift detec-
tor. Meanwhile, the sample is also added to the sand-
box queue. When the sandbox produces the defini-
tive label, it is sent to the concept drift detector
again. This allows the correction of any wrong la-
bel that might have been speculatively generated by
the second-layer classifier.

4 Methodology

To evaluate the best ML pipeline architecture for
each scenario, we implemented all discussed architec-

tures and performed experiments to exercise them.
In this section, we present the methodological setting
developed to perform the evaluation experiments.

Classifiers and Features. We represented the mal-
ware samples via textual features derived from their
Android packages, based on the implementation pro-
vided by [15]. All experiments we present are based
on the Random Forest (RF) classifier. We adopted
the RF classifier because it is the most adopted clas-
sifier considering all related works and also the clas-
sifier which typically leads to better detection results
in most experimental settings [15].
Target Detection Rate. All presented experi-
ments have a False Positive Rate (FPR) lower than
1% to reflect the real-world requirements, in which
FPs are considered extremely harmful. Classifiers
that presented FPRs higher than 1% were discarded,
such that we ensure that all presented results meet
the target FPR.
Tested Drift Detectors. This work’s goal is not
to compare drift detectors but to show the role of
drift detectors in a pipelined architecture. Thus, we
selected for our experiments the DDM and EDDM
detectors, since they are the most popular drift de-
tectors and have been used in related works [15], thus
working as ground truth. We highlight, however, that
our proposal is agnostic to the used drift detectors,
thus also being able to work with other detectors pro-
posed in the literature [29, 17, 8]. Whereas the fre-
quency of drift detections might be different for each
type of detector, our goal here is to shed light on the
overall phenomena of label delays and limited queue
sizes, that are present for any number of detections.
Testing Dataset. We considered the DREBIN [6]
dataset of Android malware in our experiments.
This dataset has been widely studied in the litera-
ture [15] and thus the classification phenomena are
well known [18], which allows us to claim differences
to be due to our proposed architecture and not due
to unknown dataset effects. We highlight that we do
not claim the prevalence statistics of the DREBIN
dataset to generalize to any dataset, but that the
drift phenomenon well known to happen in DREBIN
is common to any drifting scenario (see App. D).
Streaming. This work models the malware detec-

5



tion problem as a data stream. We rely on a version
of the DREBIN dataset that is temporally ordered
based on VirusTotal’s first-seem dates. We used the
temporal order information to split the dataset into
multiple epochs of different numbers of samples each
to test the effect of time over the classification while
ensuring that new malware characteristics are coher-
ently appearing to the stream. In our experiments,
we considered 250 epochs of 500 samples.
Drift detection and epochs. Most ML works de-
tect concept drift via sample-by-sample checks. This
is unrealistic since companies cannot have a view of
the entire stream of millions of malware samples ev-
ery day over the years. Thus, we adopted a concept
drift detection method based on the elapsed epochs.
We check for the occurrence of concept drift for all
samples within a given epoch. If concept drift is re-
ported for any sample within a window, the window
is considered to be drifting and a new classifier is
trained for the next epochs. We consider that the
classifier retrain is inexpensive, so it is immediately
available. Although realistic retraining might take
some epochs, we consider that assuming negligible
retrain time was experimentally valid to isolate the
effect of label delays from the delay caused by the
retraining step.
Full and Partial Data Views. The used drift de-
tectors provide two levels of drift notifications: (1)
warnings, when the drift occurrence is potential; and
(2) drift occurrence, when concept drift is already
happening. We consider that a pipeline has a full
data view if all samples between two drift occurrences
are considered for retraining. This is unrealistic as it
requires the AV company to store a myriad of sam-
ples. An alternative is to store the samples only when
drift is about to happen. We consider that a pipeline
has a partial data view when it collects samples for
retraining only after a drift warning.
Class Imbalance Handling. DREBIN presents
more goodware than malware, which reminds the
real world, where most endpoints have few mal-
ware instances. Temporally ordering DREBIN cre-
ates an even bigger imbalance, such that models do
not effectively learn at this scale. To mitigate that,
we adopted random sampling as the undersampling
strategy for the majority class (goodware), such that

we ensured to always keep the same imbalance be-
tween goodware and malware samples over the train-
ing set. We identified the target proportion in pre-
liminary tests and kept it over all experiments. We
highlight that we kept the temporal relation between
goodware and malware during every undersampling
procedure, thus not snooping into future data [5].
Result Correctneess Assurance. Random sam-
pling causes the experimental results to become prob-
abilistic. To mitigate the randomness effect, all re-
sults presented in this paper are an average of 10 dif-
ferent executions of the same experimental setting.
Implementation Framework. All pipelines were
implemented in Python via scikit-learn and
gensim. The code is available at: https://github.

com/marcusbotacin/ML.delay.experiments

5 Exploring Pipeline Designs

In this section, we present a series of experiments
aiming to explore the design space of pipeline solu-
tions. Our goal is to identify the challenges affecting
the systems operations in the real world and solu-
tions for these challenges. Our findings are presented
as different lessons for future malware experiments.

5.1 Adopting a proper evaluation
metric

What is the best way to measure user protec-
tion? Metrics are key for security [38]. However,
establishing proper metrics is hard, especially in the
AV scenario [11]. No single metric tells a whole story
(See App. C), thus when one selects a metric, one
also selects a way to view the problem. In our view,
detection solutions should adopt a historical (tempo-
ral) view of the problem, since they aim to tackle
the problem in the long term. In our view, the typ-
ical metrics used in detection evaluations (accuracy,
recall, precision, and so on) suffer from a major draw-
back: the lack of temporal dimension. Even though
one can plot their variation over time, these metrics
do not provide a good understanding of how exposed
to threats a user has been over time. In our under-
standing, a good metric should also consider if a user

6



has been repetitively exposed to a threat and if the
detection mechanism reacted to this exposure. Thus,
we propose detection strategies to be evaluated using
the exposure metric. This paper reports all detec-
tion results as exposure values.

Exp(samples, days) =

day=d∑
day=1

sample=s∑
sample=1

FN(s, d) (1)

Equation 1 defines the absolute exposure of a set of
samples (1:sample) emerging as a stream problem as
the sum of the non-detected samples–the False Neg-
atives (FNs)– in all epochs within a given timeframe
(1:day). Each epoch (e.g., day) in which a sample is
not detected contributes to increasing the exposure
value, as a user is potentially exposed to this threat.
If this sample is never detected, it keeps threaten-
ing users and thus increasing exposure. If a sample
starts being detected on a given date, it stops con-
tributing to the exposure value, but its past effect is
not eliminated. Therefore, the coverage values are
non-decreasing, as one can only be at most as histor-
ically protected in a given day as it was in the past.

The rationale behind this metric is that if a mal-
ware sample is misclassified as goodware, it should
not count only once to the statistics, but it should
count for every epoch it has been undetected by the
security solution, as the user has been exposed to
this threat during this whole period. Figure 5 exem-
plifies the use of the exposure measures over time for
5 different scenarios. All of them exhibit exponen-
tial characteristics as new exposition to the threats
are accumulated over time. Small differences between
the detection rates of the two settings that could not
be spotted at first glance (beginning of the graph)
become clear in the accumulated scenario.

RelExp(s, d) =

∑day=d
day=1

∑sample=s
sample=1 FN(s, d)∑day=d

day=1

∑sample=s
sample=1 1

(2)

A natural extension of the exposure concept is the
relative exposure, i.e. when the exposure is nor-
malized with the maximum exposure possible (Equa-
tion 2), which is determined by considering the sce-
nario when no detection is effective, i.e., FNs are

maximum. In this worst-case scenario, the user would
be exposed to all types of threats, as when using no
detection solution. Due to the timing nature, the rel-
ative exposure is only defined and can only be com-
pared over the same time frames. Figure 6 shows
the relative exposure for the same previous scenario.
This representation highlights the small differences
between the closest curves (6:1 ratio) while still ac-
counting for their overall exposure risk.

5.2 Adopting a realistic imbalance ra-
tio

What is a proper baseline for evaluating detec-
tor improvements? Fully-balanced datasets tend
to achieve higher detection rates, but they are not
realistic. Remind that real machines might see more
goodware than malware [32]. Thus, it is key to test
how detectors perform in unbalanced scenarios. Fig-
ure 5 shows absolute exposure over time for multiple
scenarios. We varied two parameters: threshold (the
model’s confidence in the decision) and dataset bal-
ance (the ratio of goodware to malware samples). We
present exposure for the worst and best cases consid-
ering the two-dimensional parameters. We omitted
the parameter combinations that either (i) are inter-
mediate values between the worst and best; or (ii) did
not reach the target 1% FPR. We present results for
splitting the dataset into 500 epochs because it allows
observing multiple effects with increased readability.
Other scenarios are shown in App. A.

The worst-case scenario for user security is the
maximum exposure possible, which is achieved when
no detection is performed, i.e., all new malware sam-
ples are classified as goodware. As expected, the
exposure is accumulated exponentially over time, as
their false negatives are counted every epoch. We
notice that the scenarios with tighter threshold val-
ues (80% and 90%) are closer to the maximum expo-
sure. The tight threshold causes these detectors to
have a few to no False Positives (FPs), but they also
have little to no detection capabilities, regardless of
dataset balance. The classifiers using laxer thresholds
achieved greater detection results, but the dataset
balance also has a significant influence: Establishing
a relation of 6:1 between goodware and malware sam-

7



ples leads to the best results (lower exposure) for this
dataset. The results are even better than the natu-
ral distribution of the DREBIN dataset (represented
by *). This is explained by the fact that the natural
temporal distribution of malware and goodware in
the DREBIN dataset significantly changes over the
epochs.

0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000
550000
600000
650000
700000
750000

Ex
po

su
re

 (#
)

Malware Exposure over time

No Detection
90%/10:1
80%/6:1
50%/*:1
50%/6:1

Figure 5: Absolute Exposure. Exposure varia-
tion for different settings of classifier threshold and
dataset balances.

What does a relative exposure show? Figure 6
describes the same scenarios as above but now in
terms of their relative exposure to highlight the dif-
ferences between the curves. In comparison to the
previous representation, it highlights that the highest
detection curves were always at a significantly lower
exposure level than the maximum exposure value.
Although the maximum exposure is increasing over
the epochs, the relative exposure for these curves is
reasonably constant, which shows the number of de-
tected samples increases proportionally to the num-
ber of new samples. If the detection rate decreases
over time, the relative exposure tends to increase to
values closer to the maximum relative exposure possi-
ble. This is the scenario observed for the lower curves
in the graph.

5.3 Adopting a proper updating
mechanism

Problem and goal: Concept drift is a known is-
sue, but how to measure its impact on the users?
Attackers update their strategies over time, thus up-
dating the defenses is also key. We here evaluate

0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

82

85

88

91

94

97

100

Re
la

tiv
e 

Ex
po

su
re

 (%
)

Malware (Relative) Exposure over time

90%/10:1 80%/6:1 50%/*:1 50%/6:1

Figure 6: Relative Exposure. Exposure varia-
tion for different settings of classifier threshold and
dataset balances.

how effective retraining strategies are. Figure 6 il-
lustrates a scenario with two sets of curves: (i) the
ones on top present a very stable behavior, which is
tied to the fact that their detection rate is constantly
low, thus the curves are always close to the maxi-
mum exposure possible. (ii) the lower curves present
greater detection capabilities, thus they are farther
from the maximum exposure. We notice that the
curve of the greater detection capability (the lower
one in the graph) is slowly increasing its value, get-
ting closer to the maximum exposure value. It means
that this detector is losing its detection capabilities
as new samples are being considered, which is called
concept drift.

0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000
550000
600000
650000
700000
750000

Ex
po

su
re

 (#
)

Malware Exposure over time

No Detection
50%/6:1
50%/6:1 (DDM)
50%/6:1 (EDDM)

Figure 7: Absolute Exposure and Concept Drift
Mitigation. The exposure is reduced by half when
models are retrained upon the detection of concept
drift occurrence.

Figure 7 shows the absolute exposure over time for
the (i) worst scenario; (ii) best scenario without drift

8



detection; and (iii and iv) the best scenarios for DDM
and EDDM. Our goal is not to compare drift detec-
tors (see a comparison in [15]) but to show a clear
way to measure their impact via the exposure metric.
The exposure metric makes it clear that retraining at
concept drift detection significantly reduces user ex-
posure over time. While the exposure metric is still
exponential in both scenarios (with and without drift
detection), it grows much less in the scenario with the
drift mitigation (reaching ≈50% of the previous ex-
posure value).

What is bigger: the impact of parameter tun-
ing or retraining on drift? The exposure met-
ric highlights that using a drift detection strategy is
more effective than any threshold or balance value
might achieve for a scenario without drift mitigation
since sample evolution is the dominating effect. It
also highlights that the difference between DDM and
EDDM is smaller than the difference between the
worst scenario and the best detector possible with-
out a drift detector, as previously presented. This
shows that having a mitigation for drift occurrence is
a major effect over the small differences between the
different types of detectors.

0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

40
45
50
55
60
65
70
75
80
85
90
95

100

Re
la

tiv
e 

Ex
po

su
re

 (%
)

Malware (Relative) Exposure over time

50%/6:1 50%/6:1 (DDM) 50%/6:1 (EDDM)

Figure 8: Relative Exposure and Concept Drift
Mitigation. The relative exposure has been decreas-
ing over time, thus indicating that more samples are
detected over time than new rates are added to the
stream.

Do the differences between drift detectors
matter face to the overall drift effect? Fig-
ure 8 shows the relative exposure over time for the
(i) best scenario without drift detection; and (ii and
iii) the best scenarios for the two tested drift de-

tectors (DDM and EDDM), computed with relation
to the (iv) worst scenario, with maximum exposure.
It clearly shows that the drift mitigation strategy is
effective, as the curves for both drift detectors de-
creased their relative exposure values over time. It
shows that the system has been gaining the ability
to detect more samples over time, either by detect-
ing more of the new samples or by detecting more of
the previously seen but so far undetected ones. In
comparison, the curve for the best scenario without
concept drift mitigation presented the usual behavior
of stability and small increase, thus showing that it
has been losing its detection ability over time. The
relative exposure metric allows one to enter the de-
tails of the behavior of the drift detectors. We no-
tice that the drift detectors experienced two differ-
ent scenarios: (i) an initial step with more frequent
changes (more frequent drift events) to which the de-
tectors had to adapt; and (ii) a more stable scenario
in the long term, where the exposure becomes more
constant in comparison to the previous case, as the
models have already enough samples to perform de-
tection more stably. This metric also highlights the
small differences between the two detectors: while
the EDDM’s more proactive drift detection policy
led to better results in the initial phase, with mul-
tiple drifting points, it has been revealed to not be
the best strategy for the most stable scenario, where
the DDM’s conservative policy of only retraining on
a drift event detected with high confidence was more
effective.

9



0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

30

40

50

60

70

80

90

100

Pr
ec

is
io

n 
(%

)

Malware detection precision over time

50%/6:1 50%/6:1 (DDM) 50%/6:1 (EDDM)

Figure 9: Classification Precision and Concept
Drift (CD) Mitigation. Whereas one can notice
that the precision of the scenario with CD mitigation
is greater than the one without it, this metric is not
as clear as the exposure metric in highlighting the
impact of the mitigation.

Why can’t we just measure the drift impact
using ordinary metrics? Figure 9 shows the clas-
sification precision values over time for the (i) best
scenario without drift detection; and (ii and iii)
the best scenarios for the two tested drift detectors
(DDM and EDDM). Remind that the precision val-
ues are affected by the heavy data imbalance in the
DREBIN dataset. It shows that the classification
process had an initial step with high variation and
a second step with more stability, as also shown by
Figure 8. Whereas the achievement of a more sta-
ble classification step is observed also in the scenario
without drift mitigation–which shows it is an intrin-
sic characteristic of the dataset–the drift mitigation
effect can be noticed by the fact that the precision
values for the two drift detectors are superior than
for the scenario without drift detection. This graph
also shows that there are some differences between
the two drift detectors. However, this type of repre-
sentation is not clear in demonstrating the impact of
the retraining strategy over the whole process. Al-
though the precision value for the scenarios without
drift mitigation is lower, one cannot have a clear no-
tion of how this impacts detection over time. The
final difference in the score for the last epoch is 20%,
rather than the 50% reported for the accumulated
exposure value from Figure 7, which reinforces our
claim for metrics that look temporally to the detec-

tion process.

5.4 Remind that AVs have partial
data views

How do storage constraints affect detection
rates? Previous experiments assumed that AVs can
see an entire history of samples when retraining mod-
els. In practice, due to storage and processing con-
straints, AV‘s history size is limited, such that it is
key to evaluate its impact. We tested the scenario
in which AVs only have a view of the samples col-
lected during drift warnings (partial data view), as
described in Section 4.

0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000
550000
600000
650000
700000
750000

Ex
po

su
re

 (#
)

Malware Exposure over time

No Detection
50%/6:1
50%/6:1 (DDM)
50%/6:1 (EDDM)
50%/6:1 (DDM/Partial)
50%/6:1 (EDDM/Partial)

Figure 10: Absolute Exposure and Concept
Drift Mitigation with Partial Data View. Ex-
posure is less mitigated in the scenario with a partial
data view.

Figure 10 shows the absolute exposure over time for
the (i) worst scenario; (ii) best scenario without drift
detection; (iii and iv) the best scenarios for the two
tested drift detectors (DDM and EDDM) with full
data view; and (v and vi) the best scenarios for the
two tested drift detectors (DDM and EDDM) with
limited data view. It shows that having a partial view
limits the classifier’s retraining capacities, such that
they learn less about the malware samples than when
having a full view, which leads to greater exposure.
This effect is more noticeable for the EDDM classifier
than for the DDM one. Although the exposure values
are not the same as for the ideal scenario for drift
detection, the results are clear in showing that it is
still beneficial to use a drift detector with a limited
data view than using no drift detector.

10



0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

40
45
50
55
60
65
70
75
80
85
90
95

100

Re
la

tiv
e 

Ex
po

su
re

 (%
)

Malware (Relative) Exposure over time

50%/6:1
50%/6:1 (DDM)
50%/6:1 (EDDM)
50%/6:1 (DDM/Partial)
50%/6:1 (EDDM/Partial)

Figure 11: Relative Exposure and Concept
Drift Mitigation with Partial View. Highlight-
ing the intervals in which the partial view of the drift
effect limited the exposure reduction.

Are different drift detectors affected differ-
ently by partial data view? Figure 11 shows the
relative exposure over time for the (i) best scenario
without drift detection; (ii and iii) the best scenarios
for the two tested drift detectors (DDM and EDDM)
with full data view; and (iv and v) the best scenarios
for the two tested drift detectors (DDM and EDDM)
with limited data view. All relative values are com-
puted in relation to the (vi) worst scenario, without
detection. The figure clarifies the behavior of each
drift detector and helps to highlight the effect of the
partial view. The EDDM model was more affected by
having a partial view because of its aggressive pos-
ture in predicting drift. Being aggressive with fewer
data increases the chance of mistakenly missing drift
points. This can be seen clearly via the increase in
the relative exposure in the [30-100] interval. After
that, the drift detector recovered its capacity, and
the relative exposure decreased, achieving the stabil-
ity rate.

5.5 Remind that labeling takes time

How do delays in labeling affect detection re-
sults? Previous experiments assumed that Oracle
labels were immediately available. In practice, due
to storage and processing constraints in the analysis
queues, Oracle labels might arrive only after some
time, such that it is key to evaluate its impact.

Figure 12 shows the absolute exposure over time

0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000
550000
600000
650000
700000
750000

Ex
po

su
re

 (#
)

Malware Exposure over time

No Detection
50%/6:1
DDM+81 epochs
DDM+61 epochs
DDM+41 epochs
DDM+31 epochs
DDM+21 epochs
DDM+11 epochs
DDM+1 epoch
50%/6:1 (DDM/Partial)

Figure 12: Delayed ground-truth labels for con-
cept drift detection. Results for the DDM drift
detector.

for the scenario where the drift detector for the DDM
classifier is exposed to ground-truth labels at dif-
ferent delay rates, according to a different number
of epochs. We varied the epochs in chunks of 10
and plotted the biggest variety possible while keep-
ing the didacticism of the figure. Delaying the arrival
of ground-truth labels by only one epoch is already
enough to cause an observable impact on the abso-
lute exposure value. It happens because the samples
whose detection was missed in a given day cumula-
tively account for the total exposure metric. As ex-
pected, the impact of the delay grows proportional
to the number of epochs the label is delayed (i.e., for
∀delayx/delayA > delayB → exposure(delayA) >
exposure(delayB)), such that exposure(delay11) >
exposure(delay1) and so on. On average, in the pre-
sented scenario, for every 10 epochs by which the la-
bels are delayed, the absolute exposure increases by
50K points. In other words, for every 10 epochs of
delay we can mitigate, the total exposure is reduced
on average by 6.66%. After 81 epochs of label delays,
the exposure is increased by 50% in comparison to
the scenario with immediate label availability. In the
presented scenario, 81 epochs correspond to ≈ 1/3
of the entire stream. Delays greater than 81 epochs
(e.g., 91, 101, and so on), take the curve to the same
value as the scenario without drift, which implies that
drift mitigation is not effective at this scale anymore.

Does the situation change with different drift
detectors or is it a general phenomenon? Fig-
ure 13 shows the absolute exposure over time for the

11



0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000
550000
600000
650000
700000
750000

Ex
po

su
re

 (#
)

Malware Exposure over time

No Detection
50%/6:1
EDDM+81 epochs
EDDM+61 epochs
EDDM+41 epochs
EDDM+31 epochs
EDDM+21 epochs
EDDM+11 epochs
EDDM+1 epoch
50%/6:1 (EDDM/Partial)

Figure 13: Delayed ground-truth labels for con-
cept drift detection. Results for the EDDM drift
detector.

scenario where EDDM is exposed to ground-truth la-
bels at different delay rates (in epochs). We varied
the epochs in chunks of 10 and plotted the biggest
variety possible while keeping the figure readable.
A single epoch of delay already causes a noticeable
increase in the absolute exposure. Unlike DDM,
EDDM’s differences manifest more in the long term.
It is expected because EDDM tries to detect the drift
early, so a single epoch of delay makes no significant
difference in the short term, as the model can have
another opportunity to detect drift in the following
epochs. However, in the long-term, the EDDM de-
tector misses many opportunities to speculative re-
train the classifier, which causes the difference in the
long term. In this scenario, the exposure also grows
according to the delay epochs. On average, a 60K
exposure increase is observed every 10 epochs. How-
ever, the difference is not well distributed, with a
concentration after 21 epochs, thus showing the lim-
its of the delay effect over this detector. The total
exposure increased by 50% after 61 epochs of delay.
Delays greater than 61 epochs (81, 91, 101, and so
on) take the curve to the same value as the scenario
without drift, which implies that drift mitigation is
not effective at this scale anymore. The results for
the two drift detectors show that the delayed label
problem has a significant effect on the exposure that
cannot be neglected in the evaluations. Also, DDM
and EDDM presenting the same effects show that la-
bel delays are a major effect, being more important
than any small differences between them.

5.6 Remind that AV backends can be
diverse

Can pseudo-labels mitigate the effects of label
delays? When designing an ML-based classification
pipeline, it is key to keep in mind that different re-
strictions are present in the end-point machines and
at the AV company’s backend. Therefore, classifiers
can be deployed in different settings in these two en-
vironments. Following this idea, one can deploy an
enhanced version of the main classifier in the com-
pany backend and use it as a pseudo-label generator
to mitigate the impact of label delays.

To evaluate the effectiveness of this strategy, we re-
peated the previous experiments–varying delay times
in periods of 10 epochs–but now have a second classi-
fier that produces pseudo-labels to mitigate the label
delay effect. Although the secondary classifier can be
selected with a larger degree of freedom in compari-
son to the main classifier, we limited our experiment
to varying the dataset balance from the main to the
secondary classifier. Therefore, in our tests, the sec-
ondary classifier is an exact copy of the main one, but
without the need to downsampling the training set as
in the main model. Our goal was to simulate a real-
world scenario where the main model has stronger
storage constraints than the AV backend. With this
formulation, we isolate variables and claim that any
difference in classification power between the mod-
els is due to the different dataset balances and not
due to model differences, thus reinforcing our claim
on the important impact of different architectures in
the classification process.

In our experiments, label delay was mitigated in
all scenarios, but at different levels. Figure 14 il-
lustrates the exposure values for the scenarios with
21 and 71 epochs of delay, respectively, in compari-
son to the scenarios with no delay and with no delay
mitigation. The scenarios with 21 and 71 epochs of
delay were selected to illustrate the extreme scenar-
ios didactically. The exposure values for all delay
values are shown in Appendix B. We notice that, in
all cases, the exposure for the scenarios with delayed
labels is greater than in the scenarios with no de-
lay. However, the curves for the scenarios with delay
mitigation have smaller exposure values than their

12



0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000
550000
600000
650000
700000
750000

Ex
po

su
re

 (#
)

Malware Exposure over time

DDM+71 epochs
50%/0:1 (Pseudo+71)
DDM+21 epochs
50%/0:1 (Pseudo+21)
50%/6:1 (DDM/Partial)

Figure 14: Delay mitigation via Pseudo-Labels.
Pseudo-labels completely mitigate the delay effect for
small delays. The greater the delay, the less effective
the pseudo-labels are.

respective curves with delay, thus showing the effec-
tiveness of this strategy. As expected, the impact of
the pseudo-labels is different for each one. The sce-
nario with 21 epochs of delay has greater mitigation
than the scenario with 71 epochs of delay. This sce-
nario is naturally more challenging because there are
fewer opportunities to update the main model and
the secondary model.

Do pseudo-labels actually cause retraining? To
confirm that the exposure mitigation happens due to
the use of pseudo-labels, we compared the drift points
of the original curve and the delayed curves, with
and without mitigations. Figure 15 shows the curve
for the scenario with 71 epochs of delay, which was
once again taken as an illustrative example. It shows
curves and drift points for the original classification–
with no delay due to the use of a perfect oracle, thus
no need to use pseudo-labels–and for the scenario
with 71 epochs of delay, but mitigated with pseudo-
labels. It also shows the curve for the scenario with
71 epochs of delay having only the true Oracle up-
dates.

In comparison to the scenario with no delay, the
scenario with 71 epochs of delay has fewer drift
points, since there is less information available at
each verification time. We also notice that after some
point (≈180), only drift points due to pseudo-labels
are observed in the curve for the mitigated delay sce-
nario. which justifies the decreased exposure for it. It
is important to notice the fact that the last drift point

0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000
550000
600000
650000
700000
750000

Ex
po

su
re

 (#
)

Malware Exposure over time

DDM+71 epochs (DDM/Partial)
DDM+71 epochs (Pseudo)
50%/6:1 (DDM/Partial)
Oracle
Oracle
Pseudo
Oracle

Figure 15: Drift Points. New drift detection points
are added due to the use of pseudo-labels.

in the base curve is ≈ 140, which should cause a de-
layed drift point at a ≈ 211 in the delayed curve, but
it did not happen. It shows that delayed and pseudo
labels not only anticipate drift points but also change
the drift dynamics of the scenarios and eliminate the
need for drift retraining in certain points.

0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000
550000
600000
650000
700000
750000

Ex
po

su
re

 (#
)

Malware Exposure over time

DDM+71 epochs
DDM+21 epochs
Oracle
Pseudo
Oracle
Pseudo

Figure 16: Drifts over Time. The smaller the
delay, the more opportunities for the oracle to act.
Pseudo-labels act when no Oracle data is available.

Although the use of pseudo-labels partially miti-
gates the effect of label delays, we notice that the
problem is still significantly tied to Oracle updates.
Figure 16 compares the scenarios with 21 and 71
epochs of delays, both with delay mitigation via
pseudo-labels. The exposure for the scenario with 71
epochs of delay is still greater than for the scenario
with 21 epochs, although at a smaller scale than the
original scenario due to the mitigations. We notice
that for the scenario with 21 epochs of delay, there are
not only more retrain points due to Oracle updates
but also more retrains due to pseudo-label updates.

13



0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000
550000
600000
650000
700000
750000

Ex
po

su
re

 (#
)

Malware Exposure over time

DDM+71 epochs (No-2nd-Retrain)
DDM+71 epochs (Pseudo)
Oracle
Oracle
Oracle
Pseudo

Figure 17: Classifier update strategies. The sec-
ondary classifier must also be updated at drift points
to not degrade the classification performance with
poor pseudo-labels.

It happens because although stronger than the main
model, the secondary model still has limited classi-
fication power in comparison to the Oracle, whose
updates are still key to exposure mitigation. The
more Oracle updates the secondary model receives,
the more the secondary model corrects the main one.

Should the secondary classifier be updated?
Previous results highlighted the importance of updat-
ing the secondary classifier when the first classifier is
updated. This ensures that the differences between
the two classifiers are only in the imbalance, not the
training set. If the second model is not updated, it
starts to suffer concept drift, and its prediction might
even cause more harm than good to the main model.
Figure 17 compares the scenario for 71 epochs of de-
lay chosen as representative for the cases in which the
second model is and is not updated. We notice that
at the beginning of the prediction the effects are not
so noticeable–the drift effect is even masked by the
greater classification capacity of the secondary model.
However, over time, the curves tend to differentiate,
and the scenario without updates presents a greater
exposure than the scenario with updates. Also, the
number of times the secondary model causes a retrain
due to drift identification is small since the model lost
its ability to identify prediction errors.

6 Detection Under Realistic
Limits

Problem and Goal: We previously discussed the
effects of different architectures on classification re-
sults, but there is still a question to be answered:
How do these effects happen in practice? Or, in other
words, How does it affect the design decisions of a se-
curity engineer?

We identified two assumptions that must be re-
visited: the queue size and the policy for queueing
samples. The first major non-realistic assumption of
most architectures is that all samples can be classified
by the oracle. In practice, analysis queues are limited
and do not support all samples at once. If all samples
are sent to the queue, this is the cause of the label
delays, as the last samples in the queue will only be
analyzed in further epochs. We simulated multiple
scenarios to demonstrate and evaluate its impact.

0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000
550000
600000
650000
700000
750000

Ex
po

su
re

 (#
)

Malware Exposure over time

10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Figure 18: Exposure vs. Queue Size (Oracle-
Only). Queue size as a proportion of the samples per
epoch. The more limited the queue size, the greater
the exposure.

How does the exposure vary with the differ-
ent queue sizes? Figure 18 shows exposure values
for different queue capacities as proportions of the
input. Since our base scenario considers 500 sam-
ples per epoch, a 10% capacity means that the queue
handles 50 samples per epoch, and a 100% capacity
means that all the 500 samples are handled at once
(ideal scenario). In this experiment, queued samples
are directly sent to the oracle, with no pseudo-label
usage to mitigate delay effects. It implies that sam-

14



ples queued after the queue reaches its full capacity
remain in the queue for the next epochs. We observe
that although different exposure values are observed
for each configuration, we can draw a general con-
clusion: the exposure grows inversely proportional to
the queue size, i.e., the bigger the queue, the lower
the exposure, as one could hypothesize.

0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000
550000
600000
650000
700000
750000

Ex
po

su
re

 (#
)

Malware Exposure over time

10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Figure 19: Exposure vs. Queue Size (Pseudo-
Labels). Queue size as a proportion of the samples
per epoch. The smaller the queue size, the greater
the exposure. Pseudo-labels mitigate the exposure
growth in comparison to Oracle-only.

Do pseudo-labels mitigate the impact of small
queue sizes? Figure 19 shows exposure values for
the distinct queue capacities in a scenario analo-
gous to the previously presented but now consider-
ing pseudo-labels for delay mitigation. In this new
scenario, the exposure is still highly correlated with
the inverse of the queue capacity. However, we no-
tice that the relation is not linear, but quantized, i.e.,
the growth happens in blocks. This phenomenon is
expected by the fact that pseudo-labels can mitigate
the label delay effect to a significant extent within
a given range of queue size. Therefore, all exposure
curves tend to cluster around the same values. Af-
ter a given reduction in the queue size, the power of
the pseudo-label classifier is not enough anymore to
keep exposure on the previous level, however, it can
also mitigate delay effects to a given extent within
the new range, until the reduction in the queue size
is too big for the classifier to keep up with the same
exposure level, then a new growth is observed. This
phenomenon resulted in the three different clusters of
exposure levels shown in the figure.

Table 1: Queue size to epochs of delay mapping.
Comparing the scenarios with and without pseudo-
labels.

Oracle Only
Size 10% 20% 30% 40% 50%
Epochs 100+ 100+ 81 71 51
Size 60% 70% 80% 90% 100%
Epochs 41 31 21 11 1

Pseudo-Labels
Size 10% 20% 30% 40% 50%
Epochs 71 71 71 71 41
Size 60% 70% 80% 90% 100%
Epochs 41 1 1 1 1

How much delay does a limited queue size im-
pose? The reason why reducing queue capacity in-
creases exposure is that more samples have their true
labels identified only in future epochs, causing a delay
of some epochs in the drift identification and model
retraining, leaving users exposed for longer. The de-
lay in the label delivery is exactly the scenario studied
in Sec. 5.5. Thus, we can map the equivalent delay
each queue capacity causes.

Table 1 presents the mapping between queue ca-
pacities and delay epochs for the scenarios with and
without label delay mitigation. All epochs are iden-
tified within a 10% margin of error on the exposure
value. When the queue presents the same size as the
number of samples per epoch (100%), the exposure
value is within the range of the scenario with no delay
(or a single epoch of delay due to the error margin).
However, for the scenario without delay mitigation,
the growth is almost simultaneous, as every sample
not immediately removed from the queue causes a
delay. The growth in the delay is directly propor-
tional to the capacity. When the capacity is reduced
to 10%, the equivalent delay is more than 100 epochs.
The delay is significantly mitigated by pseudo-labels.
The queue size could be reduced by 30% (to 70%) and
kept presenting the same exposure value. The delay
could not be mitigated when the queue was short-
ened to 40%, where the classifier presented the same
exposure as having no pseudo-labels.

Is queuing all samples the best strategy? The
second major non-realistic assumption of most archi-

15



tectures is to assume that all samples will be queued
and analyzed by the oracle. If all samples are added
to the queue, including those whose main classifier
has high confidence in the result, it creates an unnec-
essary overhead for the oracle. In this case, the queue
will be full of samples whose classification by the ora-
cle does not result in additional detection power. The
best strategy would be to add to the queue only sam-
ples with the potential to cause drift, i.e., the ones
with low classification confidence, thus making the
best use of limited queue size.

Table 2: Queue Size vs. Classification Confi-
dence. Analyzed samples per epoch. Comparing
the scenarios with and without exposure mitigation
via pseudo-labels.

Oracle Only
Confidence 60% 70% 80% 90% 100%
Samples 5 41 48 261 500

Pseudo-Labels
Confidence 60% 70% 80% 90% 100%
Samples 2 13 27 175 500

In this experiment, we verified how long the queue
size must be to fit the samples whose confidence level
is smaller than a given threshold. Table 2 shows the
average number of samples in the queue according to
the threshold set for the main classifier’s confidence
level. When the threshold is 100% (our experimental
ground truth), all of the 500 samples are added to the
queue. Reducing the target confidence significantly
reduces the number of samples that must be added
to the queue. Therefore, it is a suitable strategy for
limited queue sizes. The scenarios with pseudo-labels
result in even fewer samples being added to the queue
due to the delay mitigation.

The experiment shows that if we only send to the
queue samples with very low confidence, a very small
queue is required. for instance, if only samples clas-
sified with less than 60% confidence are queued, less
than 10 samples per epoch must be analyzed by Ora-
cle, which is suitable for almost any technique. How-
ever, as a trade-off, if only a few samples are re-
labeled, there is only a minimal chance of drift re-
training, thus the scenario degrades back to the sce-
nario with no drift mitigation shown in Section 5.3.

Table 3: Maximum Exposure Vs. Architectural
Constraints. The true oracle decreases more the
exposure when there is space available in the queue.
The pseudo-labels mitigate more the exposure growth
when queue size is a constraint.

True Oracle
Confidence

60% 70% 80% 90% 100%
Size
10 175% 175% 153% 173% 172%
50 174% 158% 150% 147% 139%
200 173% 143% 124% 125% 114%
300 172% 140% 131% 116% 104%
500 173% 129% 125% 105% 100%

Pseudo-Labels
Confidence

60% 70% 80% 90% 100%
Size
10 175% 173% 144% 144% 143%
50 175% 173% 147% 144% 137%
200 176% 176% 150% 122% 122%
300 173% 172% 144% 127% 124%
500 173% 170% 134% 123% 111%

Is there an ideal amount of samples to be
added to the queue? The previous results show
a trade-off between the queue size and the ability to
learn about new malware. Thus, a detection engineer
might wonder what is the best design decision among
keeping short/large and empty/full queues. We elab-
orate on this reasoning by evaluating all combinations
of queue sizes and confidence thresholds in the archi-
tectures with and without pseudo-labels.

Table 3 shows exposure values for the scenarios
with and without pseudo-labels. The values are nor-
malized by the ground-truth scenario (Oracle, Full-
confidence, No queue size constraint). We represent
the queue sizes corresponding to the average num-
ber of samples queue for each threshold (based on
the results from Table 2). The diagonals of the table
represent the best scenario for each classifier in terms
of constraints, i.e., the queue size is of the same size
as the average number of queued samples for that
threshold. Thus, the rows above a given cell repre-
sent more limited queue sizes, thus causing greater
delay. The rows below a given cell represent larger
queue sizes, greater than what is needed in the av-

16



erage case. The columns on the left of a cell rep-
resent lighter thresholds, alleviating the pressure on
the queue. The columns on the right indicate laxer
thresholds, that will queue more samples than the
queue size, thus causing delays.

When directly comparing the scenarios with and
without pseudo-labels, we notice that the use of ora-
cles is always advantageous, since it presents a greater
classification power. Queue size-wise, the effects are
one-way. Decreasing the queue size while keeping the
same threshold increases the exposure, as it causes la-
bel delays. In turn, increasing the queue size beyond
the average number of samples does not significantly
decrease the exposure (it happens only in the spe-
cific epochs that queue more samples than the aver-
age). Confidence threshold-wise, in turn, the effects
are two-way. On the one hand, increasing the thresh-
old while keeping the same queue size causes more
samples’ labels to be delayed, In this case, the use of
pseudo-labels can at least mitigate the delay effect.
On the other hand, decreasing too much the thresh-
old to fit the queue size causes the oracle to have too
few data points to retrain, thus also increasing the
coverage.
Summary. it is desired to keep the queue closer to
its full capacity. It is better to use the Oracle if addi-
tional queue space is available. Pseudo-labels must be
used if the threshold must be increased and the queue
size kept the same. The rationale here is that the ex-
tended use of the true oracle ensures that the primary
model is not poisoned by incorrect labels generated
by the pseudo-classifier [24].

7 Discussion

In this section, we discuss the implications of our find-
ings and how they relate to the real world.
Extending the exposure metric concept. The
exposure metric is non-decreasing and suppose its
use in a controlled environment, which is suitable
for testing purposes. For open scenarios, such as
observational studies, we propose to use the actual

exposure metric, which can have decreasing values.
Exposure decrease happens in practice when a sample
stops working (e.g., because its C&C was sinkhole) or

is not distributed anymore (e.g., attackers shifted dis-
tribution campaigns). In these scenarios, these sam-
ples do not pose a threat anymore and should not
be considered for the definition of the maximum ex-
posure possible. The challenge to counting for the
actual exposure is to identify if a sample is still ac-
tive or not, which might be possible only based on
other observational studies or AV companies’ inter-
nal knowledge.
From experimental epochs to real epochs. A
challenge faced in developing this research is to find
reliable data from the field about how much delay
is currently accepted by the detection industry (e.g.,
AV companies). To avoid making unrealistic assump-
tions, we adopted a simulation approach, varying the
range of the number of epochs (see Appendix A).
While this strategy allows us to perform varied ob-
servations, it is important to put them in a real-world
context. The interpretation of the specified epochs
might vary from days to hours, depending on the
application scenario. Whereas all results are exper-
imentally valid, their extrapolation to reality might
be more plausible in some scenarios than others. For
instance, if epochs are mapped to days, delays of
300 days might not be relevant, as attackers tend
to quickly change their campaigns [10]. On the other
hand, if epochs are mapped to processing jobs, multi-
ple epochs might be considered in a day, and scenarios
with thousands of epochs become realistic.
Future Works. We believe that our approach
can be generalized to operate in any scenario that
presents concept drift. Therefore, in future works,
we will deploy it in other domains, such as IoT net-
works [37].

8 Related Work

In this section, we present related literature works to
better position our contributions and to support our
claim that many assumptions made by many litera-
ture works are too ideal for application in real-world
scenarios.
Realistic Pipelines. All research works have to
make assumptions about the study’s non-core as-
pects. However, it is hard to draw a line on to which

17



extent assumptions are realistic. The security litera-
ture only recently started to question with a greater
emphasis its assumptions [5, 12], a research effort
this paper is part of. In this sense, the closest re-
lated work to ours is the proposal for a more realistic
dataset [27], that questions many common assump-
tions (e.g., no presence of obfuscated samples). Our
work extends over it by shifting the focus from the
dataset to the security pipeline, emphasizing more
previously uncovered aspects, such as the delay in-
herent to limited analysis queue sizes.
Global vs. Local views. Our work differenti-
ates from previous solutions by not supposing that
the AVs can have an unlimited, centralized view of
the malware operation [39]. Instead, we assume that
the AV front-end and back-end are different and that
each one has its own constraints.
Security metrics. Multiple metrics have been pro-
posed over time to evaluate systems’ detection capa-
bilities [16]. Their major drawback is not (i) consid-
ering the effect of time and (ii) cumulative counting
misdetection effects, thus resulting only in a partial
view of the risk a user has been facing. We mitigated
this problem by proposing the exposure metric. We
are the first to propose a single-score metric to ac-
count for the entire detection risk a user faces.
Dataset balances. Despite being a known issue,
a minority of research works consider that datasets
will be imbalanced [32]. When they do so, they
often do not consider drift occurrences. Concept
drift is mostly considered on balanced datasets. The
few works that consider drift effects on imbalanced
datasets [19] typically consider a single classifier with
the same imbalance over the whole pipeline. How-
ever, modern AVs are multi-stage [13] and their mod-
els might have different imbalances at the userland
and the cloud. We here associate different imbalances
with different pipeline stages to show that there is no
one-size-fits-all balance ratio.
Concept drift. Although many works in the lit-
erature propose to handle concept drift and evolu-
tion [23, 15], it is still possible to find many propos-
als of newer pipelines without drift detection capa-
bilities [28]. Drift detection usually comes along with
active learning capabilities [4]. A major drawback of
these proposals is to suppose that an unconstrained

number of samples will be available for drift detec-
tion. In reality, AVs can keep a limited queue of pre-
viously seen samples in their drift detection pipelines.
Delayed labels. Drift detection requires to have
actual labels to compare with the predicted ones.
Whereas most works assume these labels are imme-
diately available, these labels must arrive at a much
later point than the drift point. Label delays might
occur due to: (1) Sandbox queues [20]. Sandboxes are
of limited scalability in comparison to the number of
samples daily received by AV companies, such that it
is common for samples to wait a large time for an ex-
ecution slot; and (2) Human analysis queues [33, 9].
Human analysts are even more scarce than sandbox
time. If a malware sample depends on human ana-
lysts to be correctly labeled, it might take a long time
until a drift is noticed. Most works in the literature
do not account for the label delay problem and just
assume that labels are immediately available, which
does not correspond to reality. This unrealistic as-
sumption can be seen even in modern active learning-
based pipelines [31, 30].

Whereas some works try to argue that detection
latency is not a problem [2], others acknowledge it
is [34], but do not provide a concrete measure to han-
dle it. Information from AV companies state that
human analysts can only handle around 80 queries
a day [26], which is a significant limitation. De-
spite that, the information about how much delay it
caused in the actual AV pipeline is not available and
the same study assumes that ground-truth labels are
immediately available. A complementary study sug-
gests that a 1-week delay is an acceptable trade-off
by AV companies [1]. Longitudinal studies of AV de-
tection behaviors state that for 50% of the AV, the
response time is around 19 19 days [11]. In this work,
we present simulation results to understand the im-
pact of different amounts of delay over a detection
pipeline, including the scenarios compatible with the
ones reported in these previous works.
Pseudo-labels. The use of pseudo-labels in the de-
tection context has been proposed before, but it is
mostly focused on accuracy aspects, not on label de-
lay mitigation. For instance, previous work leverag-
ing pseudo-labels was concerned about assigning mal-
ware to unlabelled families [35]. Using pseudo-label

18



along with drift detection is often more seen from the
poisoning effect perspective [24] than for label delay
mitigation, as here proposed.

9 Conclusion

In this work, we investigated how current research
assumptions of most ML-based malware detection
pipelines do not resemble real-world constraints.
More specifically, we shed light on the label delays
problem, i.e., on the fact that the ground truth la-
bels used by online retraining solutions are not im-
mediately available, which is often neglected by these
approaches. We here demonstrated and measured
how label delays affect all the multiple pipelines pro-
posed in the literature (up to 75% detection decrease
in our experiments). In particular, we highlight the
problems of: (1) Using metrics that do not account
for the effect of time–which causes results to display
smaller discrepancies in experiments than they cause
in the real world (20% rather than 50%, in our exper-
iments); (2) Ideal assumptions about the amount of
drift data a system can handle–which is much smaller
in the real world than in experimental settings; and
(3) Ideal assumptions about the availability of Oracle
data for drift detection–which are not immediate in
the real world. To mitigate these phenomenons, we
claim the need for relying on pseudo-labels for mit-
igating drift-related delays, which allows recovering
the detection rates in the scenario with delayed la-
bels to values closer to the ones proposed in the orig-
inal pipelines (30% loss rather than 70% loss, in our
experiments). To foster more realistic evaluations,
we proposed a new exposure metric that accounts by
the effect of time–which can be used in future works–
, and we made the source code of our experimen-
tal framework available to foster more experiments
in this research direction.

Reproducibility. All developed codes for this
research is available at: https://github.com/

marcusbotacin/ML.delay.experiments

Acknowledgments. Marcus Botacin thanks NSF
for the support via the CNS 2327427 grant. Heitor
Gomes thanks the Marsden Fund for the award num-
ber VUW2213.

References

[1] S. Afroz and R. Gupta. How to build realistic
machine learning systems for security. San Fran-
cisco, CA. USENIX Association, 2020.

[2] G. Andresini, F. Pendlebury, F. Pierazzi,
C. Loglisci, A. Appice, and L. Cavallaro. Insom-
nia: Towards concept-drift robustness in net-
work intrusion detection. In Proceedings of the
14th ACM Workshop on Artificial Intelligence
and Security, AISec ’21, page 111122, New York,
NY, USA, 2021. Association for Computing Ma-
chinery.

[3] G. Apruzzese, H. Anderson, S. Dambra, D. Free-
man, F. Pierazzi, and K. Roundy. Position:real
attackers dont compute gradients: Bridging the
gap between adversarial ml research and prac-
tice. In IEEE Conference on Secure and Trust-
worthy Machine Learning. IEEE, 2022.

[4] G. Apruzzese, P. Laskov, and A. Tastemirova.
Sok: The impact of unlabelled data in cy-
berthreat detection. In 2022 IEEE 7th European
Symposium on Security and Privacy (EuroS&P),
pages 20–42, Los Alamitos, CA, USA, jun 2022.
IEEE Computer Society.

[5] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke,
F. Pierazzi, C. Wressnegger, L. Cavallaro, and
K. Rieck. Dos and don’ts of machine learning
in computer security. In 31st USENIX Security
Symposium (USENIX Security 22), pages 3971–
3988, Boston, MA, Aug. 2022. USENIX Associ-
ation.

[6] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gas-
con, and K. Rieck. Drebin: Effective and ex-
plainable detection of android malware in your
pocket. In NDSS. The Internet Society, 2014.

[7] M. Bahri, A. Bifet, J. Gama, H. M. Gomes, and
S. Maniu. Data stream analysis: Foundations,
major tasks and tools. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discov-
ery, 11(3):e1405, 2021.

19



[8] F. Barbero, F. Pendlebury, F. Pierazzi, and
L. Cavallaro. Transcending transcend: Revisit-
ing malware classification in the presence of con-
cept drift. In 2022 IEEE Symposium on Security
and Privacy (SP), pages 805–823, 2022.

[9] A. Beaugnon, P. Chifflier, and F. Bach. End-
to-end active learning for computer security ex-
perts. In Workshops at the Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[10] M. Botacin, H. Aghakhani, S. Ortolani,
C. Kruegel, G. Vigna, D. Oliveira, P. L. D. Geus,
and A. Grégio. One size does not fit all: A lon-
gitudinal analysis of brazilian financial malware.
ACM Trans. Priv. Secur., 24(2), jan 2021.

[11] M. Botacin, F. Ceschin, P. de Geus, and A. Gr-
gio. We need to talk about antiviruses: chal-
lenges & pitfalls of av evaluations. Computers &
Security, 95:101859, 2020.

[12] M. Botacin, F. Ceschin, R. Sun, D. Oliveira, and
A. Grgio. Challenges and pitfalls in malware re-
search. Computers & Security, 106:102287, 2021.

[13] M. Botacin, F. D. Domingues, F. Ceschin,
R. Machnicki, M. A. Zanata Alves, P. L. de
Geus, and A. Grgio. Antiviruses under the mi-
croscope: A hands-on perspective. Computers &
Security, 112:102500, 2022.

[14] V. Cerqueira, H. M. Gomes, A. Bifet, and
L. Torgo. Studd: a student–teacher method for
unsupervised concept drift detection. Machine
Learning, pages 1–28, 2022.

[15] F. Ceschin, M. Botacin, H. M. Gomes, F. Pinag,
L. S. Oliveira, and A. Grgio. Fast & furious: On
the modelling of malware detection as an evolv-
ing data stream. Expert Systems with Applica-
tions, 212:118590, 2023.

[16] F. Ceschin, H. M. Gomes, M. Botacin, A. Bifet,
B. Pfahringer, L. S. Oliveira, and A. Grgio. Ma-
chine learning (in) security: A stream of prob-
lems, 2020.

[17] Y. Chen, Z. Ding, and D. Wagner. Continuous
learning for android malware detection, 2023.

[18] N. Daoudi, K. Allix, T. F. Bissyandé, and
J. Klein. A deep dive inside drebin: An ex-
plorative analysis beyond android malware de-
tection scores. ACM Trans. Priv. Secur., 25(2),
may 2022.

[19] D. Escudero Garca, N. DeCastro-Garca, and
A. L. Muoz Castaeda. An effectiveness analysis
of transfer learning for the concept drift prob-
lem in malware detection. Expert Systems with
Applications, 212:118724, 2023.

[20] I. Finder, E. Sheetrit, and N. Nissim. A time-
interval-based active learning framework for en-
hanced pe malware acquisition and detection.
Computers & Security, 121:102838, 2022.

[21] H. M. Gomes, M. Grzenda, R. Mello, J. Read,
M. H. Le Nguyen, and A. Bifet. A survey on
semi-supervised learning for delayed partially la-
belled data streams. ACM Computing Surveys,
55(4):1–42, 2022.

[22] H. M. Gomes, J. Read, A. Bifet, J. P. Barddal,
and J. a. Gama. Machine learning for streaming
data: State of the art, challenges, and opportu-
nities. SIGKDD Explor. Newsl., 21(2):622, 2019.

[23] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang,
D. Papini, I. Nouretdinov, and L. Cavallaro.
Transcend: Detecting concept drift in malware
classification models. In 26th USENIX Security
Symposium (USENIX Security 17), pages 625–
642, Vancouver, BC, Aug. 2017. USENIX Asso-
ciation.

[24] Z. Kan, F. Pendlebury, F. Pierazzi, and L. Cav-
allaro. Investigating labelless drift adaptation
for malware detection. In Proceedings of the
14th ACM Workshop on Artificial Intelligence
and Security, pages 123–134, 2021.

[25] Kaspersky. Machine learning for mal-
ware detection. https://media.

kaspersky.com/en/enterprise-security/

20



Kaspersky-Lab-Whitepaper-Machine-Learning.

pdf, 2022.

[26] B. Miller, A. Kantchelian, M. C. Tschantz,
S. Afroz, R. Bachwani, R. Faizullabhoy,
L. Huang, V. Shankar, T. Wu, G. Yiu, A. D.
Joseph, and J. D. Tygar. Reviewer integration
and performance measurement for malware de-
tection. In Proceedings of the 13th International
Conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment - Volume
9721, DIMVA 2016, page 122141, Berlin, Hei-
delberg, 2016. Springer-Verlag.

[27] B. Molina-Coronado, U. Mori, A. Mendiburu,
and J. Miguel-Alonso. Towards a fair compar-
ison and realistic evaluation framework of an-
droid malware detectors based on static analysis
and machine learning. Computers & Security,
124:102996, 2023.

[28] H. Na and H. Jingsha. Malware detection us-
ing an improved active learning approach. In
2021 7th International Conference on Computer
and Communications (ICCC), pages 1309–1313,
2021.

[29] A. Narayanan, M. Chandramohan, L. Chen, and
Y. Liu. Context-aware, adaptive, and scalable
android malware detection through online learn-
ing. IEEE Transactions on Emerging Topics in
Computational Intelligence, 1(3):157–175, 2017.

[30] N. Nissim, A. Cohen, R. Moskovitch, A. Shab-
tai, M. Edry, O. Bar-Ad, and Y. Elovici. Alpd:
Active learning framework for enhancing the de-
tection of malicious pdf files. In 2014 IEEE
Joint Intelligence and Security Informatics Con-
ference, pages 91–98, 2014.

[31] N. Nissim, R. Moskovitch, L. Rokach, and
Y. Elovici. Novel active learning methods for
enhanced pc malware detection in windows os.
Expert Systems with Applications, 41(13):5843–
5857, 2014.

[32] R. Oak, M. Du, D. Yan, H. Takawale, and
I. Amit. Malware detection on highly imbal-

anced data through sequence modeling. In Pro-
ceedings of the 12th ACM Workshop on Arti-
ficial Intelligence and Security, AISec’19, page
3748, New York, NY, USA, 2019. Association
for Computing Machinery.

[33] T. Ongun, J. W. Stokes, J. B. Or, K. Tian,
F. Tajaddodianfar, J. Neil, C. Seifert, A. Oprea,
and J. C. Platt. Living-off-the-land command
detection using active learning. In 24th Inter-
national Symposium on Research in Attacks, In-
trusions and Defenses, RAID ’21, page 442455,
New York, NY, USA, 2021. Association for Com-
puting Machinery.

[34] F. Pendlebury, F. Pierazzi, R. Jordaney,
J. Kinder, and L. Cavallaro. TESSERACT:
Eliminating experimental bias in malware clas-
sification across space and time. In 28th
USENIX Security Symposium (USENIX Secu-
rity 19), pages 729–746, Santa Clara, CA, Aug.
2019. USENIX Association.

[35] Q. Qiao, R. Feng, S. Chen, F. Zhang, and X. Li.
Multi-label classification for android malware
based on active learning. IEEE Transactions on
Dependable and Secure Computing, pages 1–18,
2022.

[36] E. Raff, R. Zak, G. Lopez Munoz, W. Flem-
ing, H. S. Anderson, B. Filar, C. Nicholas, and
J. Holt. Automatic yara rule generation using
biclustering. In Proceedings of the 13th ACM
Workshop on Artificial Intelligence and Secu-
rity, AISec’20, page 7182, New York, NY, USA,
2020. Association for Computing Machinery.

[37] M. Roopak, S. Parkinson, G. Y. Tian, et al. An
unsupervised approach for the detection of zero-
day ddos attacks in iot networks. Authorea, Jan-
uary 14 2024.

[38] A. Shostack and A. Stewart. The New School
of Information Security. Addison-Wesley Pro-
fessional, first edition, 2008.

[39] G. Stringhini, Y. Shen, Y. Han, and X. Zhang.
Marmite: Spreading malicious file reputation

21



through download graphs. In Proceedings of
the 33rd Annual Computer Security Applications
Conference, ACSAC ’17, page 91102, New York,
NY, USA, 2017. Association for Computing Ma-
chinery.

A Results for multiple times-
pans

To present a more comprehensive evaluation of the
exposure metric and the effects of time when the clas-
sification is drifting and delaying, we repeated the
experiments from Section 5 now varying the number
of samples per epoch (and thus the number of total
epochs).

Figures 20 to 29 show the absolute exposure val-
ues for the curves for the multiple detection strate-
gies presented in this paper. For the delayed label
evaluation, we present (i) an intermediate result to
provide a sense of the average case and (ii) the last
delay value possible before the delay occurrence com-
pletely mitigates the drift retraining effect. We show
absolute values and limit results to the DDM method
to simplify reading the presented results.

In all scenarios, we still consider the samples in
the dataset ordered in a temporal manner based on
their labels to ensure that new features are seen by
the models in the same order as in the real world.
However, we now vary the temporal distancing be-
tween these features by distributing all samples in the
dataset inside different epochs. We opted to vary the
number of samples per epoch from 100 (Figure 20)
to 1000 (Figure 29) to cover effects observed for dif-
ferent magnitude orders, given the size of the tested
dataset.

By varying the number of epochs we can vary the
distance between two features appear. With fewer
epochs to fit the entire dataset, a greater number
of samples is seen per epoch, making new features
appear closer, which tends to cause more drift points,
but alleviates the effect of wrong classifications in the
long term. With more epochs, fewer samples are seen
per batch, reducing drift detection ability, and thus
causing a higher impact on the final exposure result.

We notice that for all numbers of epochs, the
graphs presented very similar curves, keeping the ex-
ponential characteristic of the exposure metric. In all
scenarios, retraining on drift occurrence produced a
significant gain, usually decreasing the exposure by
half (50%). We state relative terms for comparison
here because the exposure values are absolute and
depend on the number of epochs. With more epochs,
the exposure grows more because a misdetected sam-
ple is evaluated over a longer period.

In all cases, detection delay causes a significant im-
pact on the detection, but it is a less significant effect
than concept drift. In all scenarios, the advantage of
retraining on drift occurrence is only nullified by the
delay effect when a significant portion of the dataset
is considered (e.g., more than 300 epochs for the sce-
nario with more than 1000 epochs, as shown by Fig-
ure 20). In reality, it is unlikely that a sample will
wait for so long in the analysis queue. A more prob-
able and significant effect is the limited data view for
concept drift detection. This phenomenon is more
noticeable the more epochs the scenario presents, as
it highlights the minor differences caused in the long
term by missing a few samples in a specific epoch.
For the scenario with more than 1000 epochs (Fig-
ure 20), the limited view of the drift detector causes
a relative exposure increase of the same proportion
(6%) as delaying the delivery of the labels by 200
epochs.

0 128 256 384 512 640 768 896 1024 1152 1280 1408
Elapsed Epochs (#)

0
364100
728200

1092300
1456400
1820500
2184600
2548700
2912800
3276900
3641000
4005100

Ex
po

su
re

 (#
)

Malware Exposure over time

No Detection
50%/6:1
50%/6:1 (DDM+400)
50%/6:1 (DDM+200)
50%/6:1 (DDM/Partial)
50%/6:1 (DDM)

Figure 20: 100 samples per epoch (≈1400 epochs).

22



0 64 128 192 256 320 384 448 512 576 640 704
Elapsed Epochs (#)

0
182466
364932
547398
729864
912330

1094796
1277262
1459728
1642194
1824660
2007126

Ex
po

su
re

 (#
)

Malware Exposure over time

No Detection
50%/6:1
50%/6:1 (DDM+160)
50%/6:1 (DDM+100)
50%/6:1 (DDM/Partial)
50%/6:1 (DDM)

Figure 21: 200 samples per epoch (≈640 epochs).

0 43 86 129 172 215 258 301 344 387 430
Elapsed Epochs (#)

0
121731
243462
365193
486924
608655
730386
852117
973848

1095579
1217310

Ex
po

su
re

 (#
)

Malware Exposure over time

No Detection
50%/6:1
50%/6:1 (DDM+150)
50%/6:1 (DDM+130)
50%/6:1 (DDM/Partial)
50%/6:1 (DDM)

Figure 22: 300 samples per epoch (≈430 epochs).

0 32 64 96 128 160 192 224 256 288 320
Elapsed Epochs (#)

0
91374

182748
274122
365496
456870
548244
639618
730992
822366
913740

1005114

Ex
po

su
re

 (#
)

Malware Exposure over time

No Detection
50%/6:1
50%/6:1 (DDM+110)
50%/6:1 (DDM+40)
50%/6:1 (DDM/Partial)
50%/6:1 (DDM)

Figure 23: 400 samples per epoch (≈320 epochs).

0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000
550000
600000
650000
700000
750000

Ex
po

su
re

 (#
)

Malware Exposure over time

No Detection
50%/6:1
DDM+81
DDM+41
50%/6:1 (DDM/Partial)
50%/6:1 (DDM)

Figure 24: 500 samples per epoch (≈250 epochs).

0 21 42 63 84 105 126 147 168 189 210 231
Elapsed Epochs (#)

0
61009

122018
183027
244036
305045
366054
427063
488072
549081
610090

Ex
po

su
re

 (#
)

Malware Exposure over time

No Detection
50%/6:1
50%/6:1 (DDM+80)
50%/6:1 (DDM+40)
50%/6:1 (DDM/Partial)
50%/6:1 (DDM)

Figure 25: 600 samples per epoch (≈210 epochs).

0 18 36 54 72 90 108 126 144 162 180 198
Elapsed Epochs (#)

0
52639

105278
157917
210556
263195
315834
368473
421112
473751
526390

Ex
po

su
re

 (#
)

Malware Exposure over time

No Detection
50%/6:1
50%/6:1 (DDM+70)
50%/6:1 (DDM+50)
50%/6:1 (DDM/Partial)
50%/6:1 (DDM)

Figure 26: 700 samples per epoch (≈180 epochs).

0 16 32 48 64 80 96 112 128 144 160
Elapsed Epochs (#)

0
46121
92242

138363
184484
230605
276726
322847
368968
415089
461210

Ex
po

su
re

 (#
)

Malware Exposure over time

No Detection
50%/6:1
50%/6:1 (DDM+60)
50%/6:1 (DDM+40)
50%/6:1 (DDM/Partial)
50%/6:1 (DDM)

Figure 27: 800 samples per epoch (≈160 epochs).

0 14 28 42 56 70 84 98 112 126 140 154
Elapsed Epochs (#)

0
40948
81896

122844
163792
204740
245688
286636
327584
368532
409480
450428

Ex
po

su
re

 (#
)

Malware Exposure over time

No Detection
50%/6:1
50%/6:1 (DDM+50)
50%/6:1 (DDM+20)
50%/6:1 (DDM/Partial)
50%/6:1 (DDM)

Figure 28: 900 samples per epoch (≈140 epochs).

23



0 13 26 39 52 65 78 91 104 117 130
Elapsed Epochs (#)

0
37039
74078

111117
148156
185195
222234
259273
296312
333351
370390
407429

Ex
po

su
re

 (#
)

Malware Exposure over time

No Detection
50%/6:1
50%/6:1 (DDM+60)
50%/6:1 (DDM+40)
50%/6:1 (DDM+10)
50%/6:1 (DDM/Partial)
50%/6:1 (DDM)

Figure 29: 1000 samples per epoch (≈130 epochs).

B Results for Pseudo-Labels

To present a more comprehensive evaluation of the ef-
fects of the delay mitigation via the pseudo-labels, we
repeated the experiments from Section 5 now varying
the number of epochs of label delays.

Figures 30 to 37 show the absolute exposure value
curves for the multiple epochs of delay. We notice
that for the scenario with 11 epochs of delay, the
impact of the delay is fully mitigated by the use of
pseudo-labels. The reason for that is that the ora-
cle quickly updates the secondary model, which also
fast discovers deviations in the main model; predic-
tion errors for being too aggressive are also quickly
mitigated.

The delay starts to be each time less mitigated over
time until the mitigation effect was null in our tests
for the scenario with 45 epochs of delay. In this case,
using or not pseudo-labels caused the same exposure.
This is explained by the fact that the oracle was de-
laying the labels for a significant time and that the
pseudo-labels were not powerful enough to cause re-
trains.

However, delay mitigation starts to be effective
again for greater delay values, because in these sce-
narios the oracle takes too long to provide the correct
labels to the point that the classification power of
the secondary classifier becomes relevant once again.
This result holds for all delay values.

0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000
550000
600000
650000
700000
750000

Ex
po

su
re

 (#
)

Malware Exposure over time

DDM+11 epochs
50%/0:1 (Pseudo)
50%/6:1 (DDM/Partial)

Figure 30: 256 epochs. 11 epochs of oracle delay.

0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000
550000
600000
650000
700000
750000

Ex
po

su
re

 (#
)

Malware Exposure over time

DDM+21 epochs
50%/0:1 (Pseudo)
50%/6:1 (DDM/Partial)

Figure 31: 256 epochs. 21 epochs of oracle delay.

0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000
550000
600000
650000
700000
750000

Ex
po

su
re

 (#
)

Malware Exposure over time

DDM+31 epochs
50%/0:1 (Pseudo)
50%/6:1 (DDM/Partial)

Figure 32: 256 epochs. 31 epochs of oracle delay.

0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000
550000
600000
650000
700000
750000

Ex
po

su
re

 (#
)

Malware Exposure over time

DDM+41 epochs
50%/0:1 (Pseudo)
50%/6:1 (DDM/Partial)

Figure 33: 256 epochs. 41 epochs of oracle delay.

24



0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000
550000
600000
650000
700000
750000

Ex
po

su
re

 (#
)

Malware Exposure over time

DDM+51 epochs
50%/0:1 (Pseudo)
50%/6:1 (DDM/Partial)

Figure 34: 256 epochs. 51 epochs of oracle delay.

0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000
550000
600000
650000
700000
750000

Ex
po

su
re

 (#
)

Malware Exposure over time

DDM+61 epochs
50%/0:1 (Pseudo)
50%/6:1 (DDM/Partial)

Figure 35: 256 epochs. 61 epochs of oracle delay.

0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000
550000
600000
650000
700000
750000

Ex
po

su
re

 (#
)

Malware Exposure over time

DDM+71 epochs
50%/0:1 (Pseudo)
50%/6:1 (DDM/Partial)

Figure 36: 256 epochs. 71 epochs of oracle delay.

0 30 60 90 120 150 180 210 240
Elapsed Epochs (#)

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000
550000
600000
650000
700000
750000

Ex
po

su
re

 (#
)

Malware Exposure over time

DDM+81 epochs
50%/0:1 (Pseudo)
50%/6:1 (DDM/Partial)

Figure 37: 256 epochs. 81 epochs of oracle delay.

C Comparing Temporal Met-
rics

A key contribution we propose is the use of a tem-
poral metric (exposure) to account for the cumula-
tive results of malware misdetection over time. In
this sense, the closest proposition to ours is the Area
Under Time (AUT) [34] metric, which proposes the
trapezoidal sum of typical metrics, such as the F1-
score, over time. For comparison, exposure is com-
puted as the sum of the False Positives in a given
period. Whereas operating with FPs rather than F1,
precision, or recall, exposure might be understood as
an extension of the AUT metric, even though it is a
conceptionally non-trivial expansion.

A significant difference between the metrics is their
focus. Whereas AUT focuses on the classifier, expo-
sure focuses on the user. It leads to interpretation
differences. Whereas AUT measures how good a clas-
sifier is, exposure measures how exposed to risk the
user is. Exposure is a metric with a natural inter-
pretation, as it refers to the FP, whereas the AUT
might not have a proper meaning when applied to
some metrics (e.g., recall). In practice, AUT and ex-
posure tend to go in different directions. Whereas a
classifier’s AUT is better as closer to 1, the user is
more protected as the exposure is closer to zero.

Table 4: Metrics Comparison. Comparing AUT
and Exposure.

Delay AUTPrec AUTRec AUTF1 Exposure 1-Exp
0 0.71 0.42 0.52 0.49 0.51
10 0.68 0.39 0.49 0.55 0.45
20 0.66 0.32 0.43 0.56 0.44
30 0.65 0.35 0.45 0.65 0.35
40 0.65 0.24 0.35 0.69 0.31
50 0.63 0.22 0.32 0.72 0.28
60 0.62 0.20 0.30 0.73 0.27
70 0.62 0.16 0.25 0.79 0.21
80 0.58 0.11 0.18 0.87 0.13
90 0.57 0.01 0.01 0.90 0.10

Table 4 illustrates the difference in the use of AUT
and exposure metrics for the case of classification
under delay. The scenario with 500 samples/epoch
is taken as the reference. The AUT is capable of
demonstrating the classification power degradation
over time, as the metric decreases over time. This

25



finding is true regardless if AUT is computed for pre-
cision, accuracy, or F1-score. However, the results are
not coherent for the metrics, because precision scores
degrade less than recall ones. Exposure is also ca-
pable of showing degradation over time, as exposure
increases. Since each metric goes in the opposite di-
rection, we defined the inverse of exposure (1-Exp) to
be able to compare them in the same ground. In the
provided example, the inverse of exposure presents
values compatible with the AUT F1 scores, but the
easiness of interpretation is more favorable to the
first. For instance, for 80 epochs of delay, it is hard to
understand how good is an AUT(F1) = 0.18 classifier,
but it is possible to understand that one is protected
against 13% of the historical threats.

D Extending to other datasets

This paper’s key point is to discuss how the ML
pipeline architecture affects malware detection re-
sults. More specifically, we evaluate the impact of
label delays in the classification process. To this end,
any malware dataset that presents the drift effect
would suffice, as we focus more on the drift occur-
rence as a phenomenon rather than on its prevalence
in actual samples. Thus, our claims that label delays
affect drift mitigation retrain should be agnostic to
the dataset. Despite the theoretical support for this
claim, we stepped further and evaluated the gener-
alization of these claims and findings for a different
dataset.

We repeated all the previous experiments for the
Androzoo dataset, which contains 213,928 goodware
and 70,340 malware samples collected in 2016 and
2017. The samples were labeled using Virustotal and
temporally ordered, the same way as the DREBIN
dataset. Figure 38 shows exposure curves for repre-
sentative scenarios (selected for didactic purposes).
We considered the scenario closer to 250 epochs as a
reference, as used in most of the paper. The dataset
required, in fact, ≈ 270 epochs to fit, given its imbal-
ance.

We notice that the curves exhibit a characteristic
very similar to the DREBIN scenario, but the abso-
lute values are significantly higher, as the dataset is

0 30 60 90 120 150 180 210 240 270
Elapsed Epochs (#)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

Ex
po

su
re

 (#
)

1e7 Malware Exposure over time

No Detection
50%/6:1
50%/6:1 (DDM+81/Partial)
50%/6:1 (Pseudo+81/Partial)
50%/6:1 (DDM/Partial)

Figure 38: Androzoo experiments. The effects
observed in the Androzoo dataset are analogous to
the ones observed for the DREBIN dataset, but at
a different scale, as the Androzoo dataset is much
larger and complex.

bigger. There is a ≈ 10% exposure reduction if no
drift detection is used, and ≈ 50% if drift is used. In-
termediate cases appear when label delays are consid-
ered. The maximum delay allowed before complete
performance degradation is achieved with 81 epochs,
the same as for DREBIN.

26


