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Abstract. Malware and other suspicious software often hide behaviors and
components behind logic bombs and context-sensitive execution paths. Uncov-
ering these is essential to react against modern threats, but current solutions
are not ready to detect these paths in a completely automated manner. To bridge
this gap, we propose the Malware Multiverse (MALVERSE), a solution able
to inspect multiple execution paths via symbolic execution aiming to discover
function inputs and returns that trigger malicious behaviors. MALVERSE au-
tomatically patches the context-sensitive functions with the identified symbolic
values to allow the software execution in a traditional sandbox. We implemented
MALVERSE on top of Angr and evaluated it with a set of Linux and Windows
evasive samples. We found that MALVERSE was able to generate automatic
patches for the most common evasion techniques (e.g., ptrace checks).

1. Introduction

Reverse engineering is one of the most common tasks of malware’s binary analysis. Se-
curity experts invest a lot of time trying to infer the goals of a malicious binary and
how to bypass anti-analysis code. Logic bombs—malware reliance on specific conditions
to be triggered—are one of the most challenging techniques to counter (e.g., context-
sensitive malware run only under a given machine, timezone, and with/without a debug-
ger [GIAC 2004]), and have been often seen in the wild [Wired 2015, TheRegister 2017].
However, there is still a lack of automated solution to defuse them.

A promising (and often used) technique to identify logic bombs is symbolic analy-
sis, since it allows the execution of multiple paths to eventually discover those that
trigger malicious behaviors. Symbolic executors work by replacing concrete execu-
tion values with symbolic values that can be constrained according to the followed
path. Several research works propose to assist malware analysis with symbolic execu-
tion [Li et al. 2018, Alsaleh et al. 2019, Brumley et al. 2008], but none provides a com-
pletely automated solution for this task. Therefore, significant challenges have to be over-
come before the successful development of an automated symbolic execution-based tool
for logic bombs handling, such as: (i) automatically identification of entry and exit points
of the analyzed application (most previous work rely on human analysts to it); (ii) tracking
information among multiple processes (most symbolic executors do not support forking or
Inter Process Communication–IPC [Xu et al. 2018], both commonly used by malware);
(iii) time issues, as even if the tools supported forking/IPC, symbolic analysis of whole bi-
naries tend to be extremely long (hours); and (iv) intent inference, as once multiple paths
are discovered, there is no automated way to claim which one is particularly malicious.



Aiming to develop an automated solution for the analysis of malware samples armored
with logic bombs, we propose MALVERSE (the Malware Multiverse). The main goal of
MALVERSE is to allow efficient symbolic execution on malware samples and traverse
their multiple paths (or “universes”) to identify logic bombs, and then generate patches to
these malware to allow for binary inspection on typical sandbox solutions. With MAL-
VERSE, we intend to provide a fully automated solution that mitigates the cost of symbolic
analysis, whereas allowing the inspection of complex, modular binaries.

MALVERSE is developed on top of Angr [Shoshitaishvili et al. 2016], relying on its
premise that the whole control flow is defined by function returns, either internal (bi-
nary) or external (library) calls. Upon that premise, MALVERSE speeds up analyses by
hooking all function calls and replacing them with newer versions that returns a symbolic
variable instead of actually executing the native function (both for libraries and for in-
ternal binary’s calls): it makes analyses much faster and considers the actual decision
nodes. After enumerating all paths, MALVERSE applies a Bayesian decision model to
each function in a given path to filter the potentially malicious ones. This model is trained
with multiple traces of malware samples and allows the identification of malicious-related
functions (e.g., what is the probability that the binary function X is associated to malicious
activities given that it originally was programmed to invoke socket and send?). After
selection, MALVERSE restarts the analysis procedures only for the filtered functions until
all symbolic values are identified.

After the retrieval of all symbolic values, MALVERSE produces patches for func-
tions invoked on nodes that lead to the malicious paths (e.g., making that
IsDebuggerPresent always returns False to force the execution through a non-
evasive path). The patching mechanism is implemented on top of Angr ’s decompiler, but
instead of decompiling the original function, it replaces the function body with new state-
ments to reflect the identified symbolic values. The decompiler generates fully functional
code that might be directly compiled into a library to be injected in the original process
(e.g., via LD_PRELOAD or DLL Injection). This way, MALVERSE reaches mali-
cious states identified in the symbolic execution while running the binary in traditional
sandbox solutions, consequently overcoming existing limitations of symbolic executors,
such as handling forking and IPC.

Our experiments show that MALVERSE is able to produce patches that overcome many
popular logic bombs and context checks, such as skipping debuggers (e.g., via ptrace
and IsDebuggerPresent) and stalling code (e.g., bypassing sleep functions).

In summary, our contributions are threefold: i) We revisit the problem of logic bombs
identification and pinpoint the challenges to the automation and the escalation of malware
analysis using symbolic executors. We expect that their identification and discussion
might guide future developments to overcome them; ii) We introduce MALVERSE, a so-
lution that automatically identifies malicious execution paths through symbolic execution
and produces patched libraries to allow the binary inspection in standard tracing solu-
tions (e.g., sandboxes); iii) We evaluate MALVERSE with Linux and Windows evasive
malware, showing its effectiveness in discovering multiple infection paths.

The remainder of this paper is organized as follows: in Section 2, we revisit the logic
bombs identification problem in the context of malware evasion attempts, and delve into



the challenges faced to automatically overcome those threats; in Section 3, we introduce
MALVERSE’s design and implementation; In Section 4, we evaluate MALVERSE with
real malware samples; In Section 5, we discuss the impact of our findings and the MAL-
VERSE’s limitations; In Section 6, we present the related work so as to better position our
contributions to the literature; finally, we draw our conclusions in Section 7.

2. Logic Bombs & Symbolic Execution

During an infection, modern malware samples do not immediately proceed to their mali-
cious steps. Instead, they probe the environment to verify whether it is safe to run or not
(e.g., if they are running inside an analysis environment, such as a virtual machine, emu-
lator, debugger). If so, they refuse to execute or exhibit a non-malicious behavior, thus not
revealing their real intents to analysts. This way, malware go on performing their actions
on victims machines without being noticed by the security companies. Modern malware
also fingerprint the environment before executing malicious actions. This allows them
to have unique identifiers to account the number of successful infections, identify which
payloads will be used to exploit specific software versions, and even attack only targeted
users and/or machines (e.g., by checking the system language, the local IP addresses, the
system architecture, so on). All verification routines like those, which trigger a malicious
execution only in specific cases, are known as logic bombs, and their identification is
essential to allow analysts develop countermeasures against armored malware.

Identifying these logic bombs may not be trivial. The more time an analyst spends
reverse engineering this type of sample, the greater the attack opportunity window
for malware affecting users in-the-wild. Therefore, the development of tools to auto-
matically defuse these logic bombs is essential to reduce security solution’s response
time. The first attempts to automatically defuse logic bombs were through fuzzing ap-
proaches, which generate multiple distinct inputs to force malware execution via multiple
paths [Wang et al. 2019], then trace further execution. The major drawback of these so-
lutions is that they depend on “luck” to find the malicious paths, and very specifically
targeted malware might still remain hidden in hard-to-find paths. In addition, these ap-
proaches are not fully able to provide guarantees about how many paths can lead to a
malicious state. If an analysis stops right after the first path is found, it might skip im-
portant secondary paths to a target. Those secondary paths can often be found via addi-
tional search time. In some cases, those skipped paths might not be armored with any
anti-analysis technique, thus they would allow an analyst to circumvent the anti-analysis
techniques present in the main/first path by forcing the flow via those secondary paths.

The most promising current approach for logic bomb detection is the use of symbolic
executors. They lift a binary to an intermediate representation so as to mathematically
model the possible execution paths. This kind of model makes the execution aware of the
number of possible paths and allows one to clearly explain how a input that reached the
found path was generated. Unlike fuzzers, symbolic executors do not operate on concrete
values, but on symbolic values that will assume a concrete value only in the end of the
execution. According to the executed instructions over a path, the symbolic executor adds
constraints to the possible values that these symbolic variables can assume. The set of
constraints that a symbolic executor is operating on a given path is called state. Modern
symbolic executors can execute multiple states in parallel by forking states each time a



branching condition is found.

As an example for the case of logic bombs, consider the symbolic execution of a
context-sensitive malware from its initial state. When a context-sensitive function
is invoked (e.g., IsFeaturePresent), the symbolic executor supplies a symbolic
value as return of this function. This symbolic variable has no concrete value or
constraints at this point. As the execution proceeds, this value will be further ref-
erenced in a comparison (e.g., if processor feature is present, then
malicious; else evade). When the symbolic executor finds this branching condi-
tion, it creates two new states. The first state has the symbolic variable with the condition
feature is present. The second state has the symbolic variable with the condi-
tion feature not present. The two states are then independently analyzed. If new
branching conditions are found, new constraints are added (to the same or new symbolic
variables).

Modern symbolic executors require analysts to specify a target execution point. In this
sense, three scenarios might take place for the above example: (i) both states reached the
same breakpoint, which means that the value returned by that function did not effectively
affect the execution control flow; (ii) one of the states reached the breakpoint, which
means that the control flow was dependent of the return value assigned by that function;
and (iii) none of the states reached the breakpoint, which means that the specified execu-
tion path was unfeasible. This might happen, for instance, when contradictory constraints
are imposed (e.g., x should be greater than 0, and x should be smaller or equal to zero).

Logic bombs can be identified by repeating the aforementioned procedure for all function
calls that an analyst identifies as prone to be used for context identification. This was pro-
posed by many previous work [Li et al. 2018, Alsaleh et al. 2019, Brumley et al. 2008],
with the drawback of all of them being semi-automated solutions [Papp et al. 2017,
D’Elia et al. 2020]. With MALVERSE, we aim to develop a fully automated solution
to identify logic bombs, whereas addressing some of the significant challenges (C) of
performing symbolic execution on a binary:

C1. Identifying Entry and Exit Points: Current symbolic executors require the ana-
lyst to specify the execution entry point (initial state) and exit points (execution target).
Specifying an improper entry or exit point might lead to unsuccessful analysis results,
such as unreachable paths and the hidden execution paths. Current binaries present mul-
tiple functions and possibilities and previously proposed solutions relied on the analyst’s
knowledge for this task.

C2. Overcome Unsupported Methods: although fuzzing solution actually execute the
function calls, symbolic executors have to model the interactions performed by the calls.
This results in the fact that many functionalities are often unsupported by these solutions
due to the required modeling complexity. For instance, interactions such as creating a
new process and Inter-Process Communication (IPC) are often not supported by many
symbolic executors [Xu et al. 2018]. Unfortunately, these are techniques very common in
malware samples, thus a malware analysis solutions need to overcome this limitation.

C3. Performance Bottlenecks: even if all malware required functionalities are supported
by the symbolic executor, analysis are challenging due to their expensive computational



cost, both in terms of processing time as well as in resource requirements. Symbolic ex-
ecutors have to analyze an exponential number of states, often in parallel, storing deep
constructions in memory, and interpreting functions without actually executing them.
This makes analysis to take a significant time. It is not rare to observe cases in which
analysis takes multiple minutes [Li et al. 2018] or even hours. This is a major limitation
for solutions aiming to reduce the security solution’s response time. The solution would
not be competitive if it takes the same time than an analyst to perform the task.

C4. Identifying Suspicious Paths: after the analysis is finished and the symbolic ex-
ecutor provided all possible execution paths to reach a target, there is also the remaining
challenge of identifying what paths are malicious, since reaching the same final state
does not mean that the actions performed in the path had all the same side-effects in the
system. This task is often guided by the analyst’s knowledge and no previous solution
automatically classified found states as malicious or benign.

3. Design and Implementation of MALVERSE

Threat Model. MALVERSE’s goal is to automate the main tasks performed by analysts
to bypass evasive malware checks. We are aware that there are multiple ways to deceive
analysis, making some techniques not bypassable at all. However, saving analysts time
already helps in incident response, and to accomplish that, we automated some of the
most common classes of evasion techniques. In this sense, we believe that a divide-and-
conquer strategy is the best approach to follow in the long-term to solve the complex
automatic patching problem. In this work, we tackle the case in which we are able to
control function returns, both internal (binaries) and external (libraries) ones. Therefore,
MALVERSE assumes that all control flow decisions are due to function return values.
MALVERSE was developed on top of Angr , due to the latter being a very extensible
solution, but it can be implemented on top of any symbolic execution solution. Similarly,
for the sake of simplicity, we exemplify our patching mechanism using standard tracing
solutions (e.g., strace), but it can be applied to any debugger or sandbox.

Design. Previously, we presented the challenges involved in the development of a fully
automated solution to defuse logic bombs within malware samples. Our key insight to
overcome those challenges is that it is not necessary to handle the whole complexity of
binary analysis to provide a first look on malware behavior. Therefore, we introduce a set
of heuristics, methods, and strategies that allows automated triage of logic bomb-armored
malware samples, inspired by the observation present in [Botacin et al. 2019], i.e., that
malware decompilation could be eased if only the actually executed code during an ana-
lyst’s debugging session were considered. In this work, we extend this idea by decompil-
ing the symbolic values that make a function to actually reach targeted code portions, and
executing them on a typical sandbox solution to retrieve more precise execution traces.
We overcome logic bombs defusing challenges with the following design (D) choices:

D1. Identifying Entry and Exit Points. We leveraged Angr ’s analysis capabilities
to generate a Call Graph (CG) of the inputted binary. We identify in this CG the first
function of the binary that invokes other functions as the main function. The address of
this function is set as the analysis entry point. Similarly, we identify the return sites of
this function as target addresses. If any of the return addresses is reached, we consider
that the function was executed.



D2. Automatic Function Modeling. Library’s function calls were modelled via Angr ’s
SimProcedures, which were all set to return symbolic values. Manually coding/adapt-
ing Angr ’s SimProcedures for all APIs is laborious, thus we developed an automated pro-
cedure to help in this task. We developed a Web crawler that identifies function prototypes
through the Internet and automatically generates SimProcedures for them (discussed
below).

D3. Keeping Invocation History. We need to keep track of function invocations dur-
ing a given path to be able to compare two paths and identify in each point the execu-
tion diverted. To do so, we added a SimInvocationHistory to the Angr state.
It complements already-existing events and action histories with invocation information.
Therefore, each time a procedure is invoked, it adds itself (and its symbolic values) to the
history. In the end of the execution, we can compare whether two invocations concretize
to the same values or not.

D4. Overcoming Performance Bottlenecks. We rely on the hypothesis that the whole
control flow is due to function returns to speed up analysis procedures. Once we identify
a main function, we replace all functions invoked by them (according to the CG) by a pro-
cedure that only returns a symbolic value, that can assume any value originally returned
by this function. This does not break the execution flow if our premise is valid and speeds
up analysis by avoiding the analyzer to effectively dig into that function. If one of these
functions is identified as the root cause of a control flow diversion, the analysis restarts
only for that function, recursively performing this strategy until the actual root cause is
identified.

D5. Identifying Suspicious Paths. The symbolic executor often finds multiple different
paths to reach the return condition. In this case, we need to identify which ones are
suspicious and/or malicious. Once we identify them, we force our analysis to proceed
via them, thus ensuring that we are inspecting malicious cases and not error conditions.
We identify whether our execution flow should go through a given function present on
the CG by applying a Bayesian decision procedure. We trained a model with multiple
malware traces, as presented in a previous study [Galante et al. 2019], and applied this
model to each function on the CG. We query if a given function should be considered on
not (e.g., Should a malicious path goes through X given that X invokes fork+exec?).
We discard the paths that seem to not exhibit malicious behaviors. Once two similar
paths that traverse the sames functions are identified, they are aligned via the concretized
values for each state. The first unmatched and/or mismatched function is considered as
the diversion root cause.

D6. Overcoming Unimplemented Features. We are aware that some constructions,
such as IPC, are hard to model in symbolic executors. Therefore, we did not try to do
that. Instead, we focused on discovering whether the path that contains an IPC should be
traversed or not, and what are the conditions that trigger that execution. After this path is
identified, we opted to run it on a standard sandbox, with full support to IPC. Therefore,
each time a diversion point is identified, we produced a patch for that function. This patch
may then be compiled into a library and injected in the binary while running in a sandbox,
which forces the execution through the identified path and allows the sandbox to collect
full binary information about the complex behaviors.



D7. Code Decompilation. We developed our patching system on top of the Angr de-
compiler. However, since it was originally designed to decompile actual code (and our
goal is to produce a patch based on the found symbolic values), we have to adapt it to gen-
erate code in distinct manners: when a patch is requested to the decompiler, it replaces
the original function variables with the concretized values from symbolic variables; it also
replaces the function body with new instructions that reference the new variables. Since
the compiler preserves the original function prototypes and arguments, the output is a
working code that can be compiled into a library.

Implementation. MALVERSE required a lot of engineering work on Angr ’s internal
code to support the newly added capabilities (MALVERSE’s code is available to anyone
interested in checking these modifications). Below, we describe the changes performed
to directly support MALVERSE’s approach. A key part of MALVERSE operation is its
interaction with Angr Simprocedures. We developed an automated solution to gen-
erate Simprocedures: it crawls Internet websites for function prototypes, parses them,
creates symbolic variables to be returned, and produces fully functional code.

Code 1 shows the generation solution in action. It takes the ptrace function as argument
and generates a procedure for it. Notice that the function protype was parsed so as to add
the function arguments to the procedure. The returned variable rval is symbolic, thus
allowing Angr to decide whether it should return or false according to the context. Line
4 shows that the procedure adds itself to the history of invoked procedures. It allows
MALVERSE querying this list at any time to check what were the parameters provided to
and returned by this function at any time.

1 python3 simprocgen.py -t Linux -a ptrace --symbolize
2 class ptrace(angr.SimProcedure):
3 def run(self, request, pid, addr, data):
4 self.state.history.add_simproc_event(self)
5 return self.state.solver.BVS(ptrace, 64, key=(’api’, ptrace))

Code 1. API Crawler. Simprocedure is automatically generated.

Bayesian Model. We trained a Bayesian classifier with traces obtained from the execu-
tion of 5,000 benign samples (from fresh OS installations of Windows 8/System32 files
and Ubuntu 18/bin files) and malware samples. The goal of this classifier is to identify
the probability that a given function import is related to malicious behavior. For instance,
the import of the socket function is largely more prevalent (more than 70%) in mal-
ware samples than in benign samples. Therefore, a binary function that references the
socket function will be flagged as required to be traversed. We considered a threshold
of 70% for the Bayesian classifier confidence, having the socket API as reference, as
network communication is a key step for a malware infection process. If a binary func-
tion references more than one library function, we use the highest calculated probability
to consider whether the binary function is required to be traversed or not.

4. Evaluation

MALVERSE operation through examples. A popular return-based method used by mal-
ware to evade analysis is to check if a debugger is attached to the running process and, if
true, abort the execution. In the Linux environment, it can be done by trying to attach



the debugger to itself via the ptrace call, which is denied if a debugger was previously
attached [tobyxdd 2018], as shown in Code 2.

1 if(ptrace(PTRACE_TRACEME)==-1){
2 evade();

Code 2. Debugger Evasion.
Analysis evadade if debugged.

1 long ptrace(int request, ...){
2 return 0x0;

Code 3. Patched Ptrace. The
debugger check will always fail.

If the ptrace Simprocedure is instrumented to return a symbolic value, as shown
in Code 1, it will be constrained by Angr to a value different of -1 (debugger present).
Thus, MALVERSE can them decompile a patched version of the function returning the
identified value, as shown in Code 3.

While patching a single function might be effective in specific cases, evasive malware
might employ nested techniques in practice. In those cases, MALVERSE identifies the
distinct functions to be patched and decompiles them together, as shown in Code 4 (re-
garding to the bypass of the DEBUGME sample [kirschju 2018]).

1 long ptrace(int request, pid_t pid, void *addr, void *data){
2 return 0x0;
3 int memcmp(const void *s1, const void *s2, size_t n){
4 return 0x0;

Code 4. Nested Patched Functions. Multiple functions are decompiled
together.

The same debug evasion techniques can also be implemented in Windows. Samples may
query the IsDebuggerPresent API directly to verify if they are being debugged, as
shown in Code 5.

1 if(IsDebuggerPresent()==TRUE ||
2 IsProcessorFeaturePresent(RANDOM_FEATURE)==FALSE){
3 evade();

Code 5. Checks on Windows. Sample evades debugger or
checks for an specific processor feature.

MALVERSE can identify this debugger check and produce a patch that allows its bypass,
as shown in Code 6.

1 BOOL IsDebuggerPresent(){
2 return 0x0;

Code 6. Debugger is
never present.

1 long IsProcessorFeaturePresent(long v){
2 return 0x1;

Code 7. Secondary Path. The processor
feature should always be present.

The sample exemplified in Code 5 presents a secondary path that leads to evasion: it
happens when a debugger is not present, but a given processor feature is missing. In this
case, MALVERSE also identifies the secondary path and decompiles the patched version,
as shown in Code 7.

In addition to the distinct paths that can be traversed independently, some samples
present evasion paths that depends on the nested invocation of the same function. Code 8



illustrates the double ptrace technique [Auberger 2017], in which the ptrace
function is invoked twice to ensure that the bypass previously presented does not succeed.
In this case, during a run outside a debbuger, the first ptrace will succeed on attaching
the sample, but the second should fail. If the sample runs under a patched version that
always return zero, the check for the second call will fail, incurring into an evasion.

1 if(ptrace(PTRACE_TRACEME)==0 && ptrace(PTRACE_TRACEME)==-1){
2 evade();

Code 8. Double Ptrace. This check relies on internal function states and
side-effects.

MALVERSE must keep track of the invocation order to bypass this type of check. To do
so, it creates a global variable to count the number of invocation and associates a distinct
return value to each invocation, as shown in Code 9. For the first invocation, MALVERSE
returns that the function call succeeded (returning 0), whereas for the nexto one, it returns
that the function call failed (return value of -1). We highlight that all the control flow
code (counter variables and IFs) are automatically generated by a version of the Angr
decompiler instrumented with MALVERSE code.

1 #include<sys/types.h>
2 static int angr_global_var = 0;
3 long ptrace(int request, pid_t pid, void *addr, void *data){
4 angr_global_var = angr_global_var + 1;
5 if (angr_global_var == 1){
6 return 0;
7 }if (angr_global_var == 2){
8 return -1;

Code 9. Stateful Patches. Each function return is associated to a
distinct invocation.

This same strategy can be applied to bypass samples that make use of stalling code to
cause sandbox timeouts. Code 10 illustrates a sample that checks CPU ticks to ensure the
call of the sleep function was not replaced by a fake one that does not stall the execution.

1 int main()
2 {
3 clock_t t0 = clock();
4 sleep(SLEEP_TIME);
5 clock_t t1 = clock();
6 if((t1-t0)>SLEEP_CLOCKS){
7 malware();
8 }else{
9 goodware();

10 }
11 }

Code 10. Stalling Code. The code
checks if the process really spent
cycles sleeping.

1 unsigned int sleep(unsigned int
seconds){

2 return 0;
3 int angr_global_var = 0;
4 clock_t clock(void){
5 angr_global_var =

angr_global_var + 1;
6 if (angr_global_var == 1){
7 return 0x0;
8 if (angr_global_var == 2){
9 return 0xb;

Code 11. Patched Stalling Code.
Both the sleep and clock functions
reflect the imposed constraints.

To bypass this type of technique, MALVERSE patches the sleep function to immediately



return, and the clock functions to reflect the constraints expected by the malware sample,
as shown in Code 11. This allows the inspection of the sample without waiting for the
stalling code execution time.

Finally, in some cases, values returned by functions only indirectly control the execution
flow. Code 12 exemplifies a context-sensitive malware that is only activated when exe-
cuted from a given path. Although it relies on the value returned by getcwd, it is stored
on a memory position indeed returned as a pointer by this function.

1 int main(){
2 if(strcmp(getcwd(NULL,0),"BOMB")==0){
3 malware();
4 }else{
5 goodware();

Code 12. Context-Sensitive Malware. It is only
malicious when executed from a given path.

This type of stateful function requires implementing internal logic in the
Simprocedure, as shown in Code 13. The function should allocate a memory
buffer to return a valid pointer, whereas the allocated memory should host a symbolic
variable that stores the actual path.

1 class getcwd(angr.SimProcedure):
2 def run(self, buf, size):
3 self.state.history.add_simproc_event(self)
4 val = self.state.solver.BVS(’getcwd’, 64, key=(’api’, ’getcwd’))
5 malloc = angr.SIM_PROCEDURES[’libc’][’malloc’]
6 addr = self.inline_call(malloc, 100).ret_expr
7 self.state.memory.store(addr, val)
8 return addr

Code 13. Simprocedure Code. The procedure allocates memory and stores a
symbolic value there.

In this case, it is ineffective to naively leverage MALVERSE to decompile the getcwd
function with the obtained concrete values, since the return value would point to an invalid
memory region if run out of the scope of the symbolic executor (as shown in Code 14).

1 int getcwd(char* var0, unsigned long var1){
2 return 0xc0000f20; //needs to point to "BOMB"

Code 14. Naive Decompilation. The code points to an
invalid memory value.

To allow the decompilation of a fully functional piece of software, MALVERSE produces
a patch for the targeted function and for the main function, in order to preload it with
code that allocates valid memory (as shown in Code 15).



1 #define STR "BOMB"
2 void *addr;
3 static void init (void){
4 addr = (char *) malloc (100);
5 strcpy (addr, STR);
6 char * getcwd (char *buf, size_t size){
7 return addr;

Code 15. Smart Patching. In addition to
patching the function, the main function is
also preloaded with code to allocate valid
memory.

5. Discussion

Hidden paths in distinct Operating Systems. Since MALVERSE was developed on top
of Angr , it can be applied to binaries targeting multiple OSes, as presented in Section 4.
Despite this fact, we noticed that MALVERSE application to some OSes might be more
effective than others, due to their very nature. In particular, applying MALVERSE to
Windows might be more effective than to Unix-based OSes: Windows presents a myriad
of APIs to query context-specific information (e.g. IsDebuggerPresent(), whereas
Unix-based systems often perform context acquisition by directly querying the filesystem
(e.g., /proc), consequently requiring an alternate approach (e.g., a model of the accessed
file) than MALVERSE’s to be applied in these cases.

The impact of API models. MALVERSE relies on Angr ’s Simprocedures to model
API behavior, and the better you model these behaviors, the obtained results will be less
inaccurate. Currently, MALVERSE instruments Simprocedures to return symbolic
values, but we plan to also instrument function argument to increase the analysis capabil-
ities (left as future work).

Premises and Heuristics. MALVERSE’s major assumption is that the whole control flow
is due to function returns. Although we showed in this paper that it allows the bypass
of many evasion techniques, we are aware that internal function states can also affect the
control flow. Therefore, we intend to consider these cases in a future version, aiming at
a more complete treatment of evasion cases. Similarly, although our heuristic approach
has shown to be effective on the identification of malicious paths, we are aware that they
can be evaded by attackers (e.g., with the addition of suspicious functions to all deci-
sion nodes, causing a path explosion). To address that, we will start to investigate the
robustness of MALVERSE heuristic procedures.

6. Related Work

Discovering malware secrets. Multiple authors proposed distinct approaches that lever-
age symbolic execution and control flow analyses to discover hidden paths in malware
execution, such as forcing the malware to take a given path [Wang et al. 2019]. This
might be useful not only to discover intentionally-covered paths but also to reconstruct
Control Flow Graphs (CFG) [Phu et al. 2019] when a binary’s control flow is obfus-
cated [Yadegari and Debray 2015]. A major problem is that the symbolic executors lever-
aged for such executions are vulnerable to anti-analysis tricks [Ollivier et al. 2019] that



might hinder the analysis procedures. To mitigate this problem, symbolic execution is
often performed along other techniques, such as fuzzing [Stephens et al. 2016]. In this
work, we also present a dual-step approach, in which symbolic execution is first em-
ployed to discover control flow conditions and further analyses are scaled via the appli-
cation of traditional sandbox-based execution. Scaling analyses is important because it
allows the inspection of real malware samples. The closest work to ours shows that it
is possible to recover even C&C’s control parameter from the symbolic execution of a
bot sample [Baldoni et al. 2017]. The major limitation of the existing approaches is that
they are at most semi-automated [Papp et al. 2017, D’Elia et al. 2020], still requiring the
analyst to assist in their operation. Our goal in this work is to present a fully-automated
approach for hidden path discovery and trace analysis.

Symbolic Execution at Scale. A major drawback of symbolic executors is that they are
very slow in comparison to traditional sandboxes, which makes large-scale analysis hard.
The academic literature reports a case in which the analysis of each one 60 thousand
samples considered in a study required an average of 28 minutes [Li et al. 2018]. This
often limits studies to few samples, such as 50 [Alsaleh et al. 2019]. Even when analysis
are scaled, such as in the Minesweeper’s case [Brumley et al. 2008], the provided ana-
lytic’s data fast become outdated as these studies are hardly ever repetead to cover newly
developed logic bombs.

Angr is an open-source powerful tool for binary analysis [Shoshitaishvili et al. 2016],
thus being selected as basis for the MALVERSE development. Angr was also used
as basis for other research work in multiple aspects, such as for: tracing disjoint bi-
nary functions [Ma et al. 2019] (a technique presented in [Caballero et al. 2010]), fix-
ing binary loading [Xu et al. 2017], or in concolic executions [Gritti et al. 2020]. De-
spite powerful, Angr has some limitations, as pointed in previous work [Yin et al. 2018,
Wang et al. 2018]. Consequently, these are also MALVERSE’s drawbacks.

Other Symbolic Executors. Besides Angr , other symbolic executors and ana-
lyzers could provide similar support for MALVERSE, such as Metasm [jjyg 2020],
Miasm [Miasm 2020], and Triton [Quarkslab 2020]. A detailed comparison of binary
analysis frameworks is presented in [Poeplau and Francillon 2019].

7. Conclusion

In this work, we investigated the problem of logic bomb detection and the inspection of
context-sensitive malware. We observed a lack of automated solutions for these tasks and
designed a system for assist analysts to tackle them. We proposed MALVERSE, a solution
able to inspect multiple execution paths via symbolic execution, whose goal is to discover
triggers of malicious behaviors (in the form of function inputs and returns). We designed
and implemented MALVERSE on top of Angr so it was able to decompile functions that
may be patched with the discovered symbolic values. These patched functions then be-
come ready to be injected in the monitored process while the patched subject runs on
analyses sandboxes. We evaluated MALVERSE using a set of Linux and Windows eva-
sive samples. MALVERSE was able to produce automatic patches for the most common
evasion techiniques (e.g., ptrace and/or IsDebuggerPresent checks).

Reproducibility. All code pieces considered in this work are available in the repository:



https://github.com/marcusbotacin/MalVerse
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