
L(a)ying in (Test)Bed

How biased datasets produce impractical results for actual
malware families’ classification

Tamy Beppler1, Marcus Botacin1, Fabŕıcio J. O. Ceschin1, Luiz E. S. Oliveira1,
and André Grégio1

Federal University of Paraná (UFPR), Curitiba, PR – Brazil {tebeppler,
mfbotacin, fjoceschin, lesoliveira, gregio}@inf.ufpr.br

Abstract. The number of malware variants released daily turned man-
ual analysis into an impractical task. Although potentially faster, auto-
mated analysis techniques (e.g., static and dynamic) have shortcomings
that are exploited by malware authors to thwart each of them, i.e., pre-
vent malicious software from being detected or classified accordingly.
Researchers then invested in traditional machine learning algorithms to
try to produce efficient, effective classification methods. The produced
models are also prone to errors and attacks. Novel representations of
the “subject” were proposed to overcome previous limitations, such as
malware textures. In this paper, our initial proposal was to evaluate
the application of texture analysis for malware classification using sam-
ples collected in-the-wild in order to compare them with state-of-the-art
results. During our tests, we discovered that texture analysis may be un-
feasible for the task at hand, if we use the same malware representation
employed by other authors. Furthermore, we also discovered that naive
premises associated to the selection of samples in the datasets caused the
introduction of biases that, in the end, produced unreal results. Finally,
our tests with a broader unfiltered dataset show that texture analysis
may be impractical for correct malware classification in a real world sce-
nario, in which there is a great variety of families and some of them make
use of quite sophisticate obfuscation techniques.

Keywords: Malware classification · Texture analysis · Malware visual-
ization.

1 Introduction

Malware is one of the biggest threats to networked systems. Despite the myriad
of defensive tools and techniques, malware writers constantly evolve their code
to prevent detection. A multitude of variants emerge from automated malware
creation toolkits that, even resulting in samples with few differences from each

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior - Brasil (CAPES) - Finance Code 001



T. Beppler et al.

other, are capable of accomplishing undetectable artifacts [2]. Due to that, secu-
rity researchers are stuck in an eternal arms race with malware developers, so as
to discover new ways for protection whereas understanding incoming menaces.

Classifying a file as malicious requires knowing its features. Analysis tech-
niques are used to extract features that can be used to further malware catego-
rization (by intent, functionality, damage etc.) and better understanding of the
threats they pose. However, current malware detection techniques are slow to
react to new attacks and threats, since they are based on overwhelming static
and/or dynamic analysis to obtain and match malicious patterns against files.
To gain speed, Nataraj et al. [20] proposed the use of texture analysis—fast,
accurate, and resilient to obfuscation techniques, according to the authors—to
change the malware classification problem into an image recognition one.

Image processing techniques are largely used in many fields because they ac-
complish high precision for pattern recognition [37] tasks. By converting a binary
file into a gray-scale texture, we can recognize a pattern for each family of files,
thus potentially allowing for malware classification. The goal of this paper is to
evaluate state-of-the-art texture analysis techniques for malware classification in
a real-life, larger dataset, as well as to validate the claim of resilience against ob-
fuscation. Our main contributions are threefold: (i) we analyze the literature on
texture-based malware classification; (ii) we evaluate texture analysis techniques
from literature in a publicly available malware dataset, and then in a private,
broader, imbalanced dataset composed of malware samples collected in the wild;
(iii) we compare these literature texture-based techniques for malware classifi-
cation regarding the dataset used and the setup of the experiment, in order to
discuss our discovery of biased results due to improper testing.

The remainder of this paper is organized as follows. In Section 2 we present
the background and related work on texture analysis and malware classification.
In Section 3, we show the methodology adopted for our experiments. In Section 4,
we describe our tests and analyze the obtained results. In Section 5, we discuss
our findings. Finally, in Section 6, we present the concluding remarks.

2 Background and Related Work

There are several ways to represent malicious software. Representation enables
the extraction of distinctive features, which allow further classification. It is ex-
pected that samples from the same family have similar features. One represen-
tation may be the source code or instructions’ flow, from which features can be
obtained by static analysis. Another representation possible is the malicious pro-
gram execution trace or the set/sequence of functions or system calls launched in
runtime, from which features are extracted by dynamic analysis. The former pre-
vents infection and evasion because the analysis is performed without execution
and, according to [20], offers more complete coverage. However, static analysis
may fail under binary obfuscation, such as the packing present in approximately
80% of malware samples [19]. Accomplishing wider code coverage may also be
difficult if the malware developer uses opaque constants [18]. Both anti-analysis



L(a)ying in (Test)Bed

techniques increase the processing and memory costs, making static analysis un-
feasible. The latter actually runs the sample in a controlled environment so as
to obtain the execution behavior. Thus, dynamic analysis does not suffer from
the same obfuscation techniques (packing, compressing, and encryption of orig-
inal binary) than static, becoming more effective in certain cases [20]. However,
it suffers from other evasion techniques, such as anti-emulation/virtualization,
stalling, sleeping, and others, being slower and higly resource consuming. Com-
bined, hybrid approaches were proposed to address the limitations of static and
dynamic analysis, but the achieved results were similar in quality and worse in
computational cost [6]. Therefore, a different way to extract malware features
should be used to avoid evasion and obfuscation techniques, and, in an ideal
case, be fast and cost less computing resources.

Malware Texture Analysis. Many applications use features extracted from
textures to improve classification and recognition problems [3] [5] [31]. Conti et
al. [4] mapped large binary objects by classifying regions using texture analy-
sis and claimed that it can be used for malware identification. Based on that,
Nataraj et al. [20] proposed an orthogonal approach using texture representa-
tions of malware for classification purposes. Similar to static analysis, texture
analysis examines the binary without execution, i.e., it does not suffer with in-
fection, evasion techniques, and obfuscation techniques, according to the claims
of [20]. The texture representation preserves similar features even in obfuscated
binary and, according to Zhang et al. [37], image recognition methods may im-
prove malware detection. An image texture is a block of pixels with repeated
patterns. In a malware texture representation, each byte of the binary file is
converted to its correspondent value in a gray-scale image with fixed width and
the binary’s size divided by the fixed width as height. In Figure 1, we show that
samples from the same family may be similar among themselves, but distinctive
from other families.

(a) Bancos
(b) Lmir

(c) Sdbot

(d) Bancos (e) Lmir

(f) Sdbot

Fig. 1: Malware variant textures of different families from our dataset.



T. Beppler et al.

Although textures seem promising, since many authors use their analysis
considering only similarities within families, not all samples produce textures
that allow their comparison with other family members. Indeed, many samples
neither are related to their families, nor distinguishable from other families’
samples. It clearly difficults correct malware classification, as we can observe in
Figure 2, which illustrates selected samples harder to distinguish from the same
dataset of Figure 1. This observation makes us realize that the overwhelmingly
great results presented in literature might have issues.

(a) Bancos (b) Lmir
(c) Sdbot

Fig. 2: Other textures of variants from already seen families from our dataset.

Classification Techniques. Nataraj et al. [20] first proposed texture analy-
sis for malware classification—they showed that it is possible to identify pat-
terns among samples from the same family after converting their binaries into
gray-scale textures. Using GIST descriptor and K-nearest neighbor (KNN) with
euclidean distance, achieve 98% of accuracy. The authors affirm that it is a
fast approach and agnostic to platform (while usually malware analysis tech-
niques are made for a specific operational system). The possible disadvantages
are binary section reallocation or insertion of amount redundant data. After
that, the authors used Host-Rx, Malheur, and VX Heaven datasets to compare
texture and dynamic analysis [22]. Texture analysis achieves similar accuracy
4,000 times faster than dynamic analysis. Additionally, this approach is said to
be resilient to obfuscation techniques. Following the same strategy, Makandar
and Patrot [15] use GIST and Gabor Wavelet Transform (GWT) descriptors to
select features, and Artificial Neural Network (ANN) for malware classification
with 96.35% accuracy rate on Malheur dataset. Makandar et al. [12] use Support
Vector Machine (SVM) on the same dataset with accuracy of 89.68%.

Nataraj [19] proposed texture and signal analysis to try to discover unknown
attacks due to the combination of orthogonal methods, since it is more dif-
ficult/expensive to build malware that evade all detection schemes. Applying
GIST descriptor and KNN classifier to different plataform datasets, the accu-
racy rate are 97.4%, 98.37%, 83.27% e 84.55% for Malimg (Windows), Malheur



L(a)ying in (Test)Bed

(Windows), VxShare (Linux) and Malgenome (Android) respectively. Kosmidis
and Kalloniatis [8] followed the same approach with different machine learning
classifiers (Decision Trees - DT, Nearest Centroid - NC, Stochastic Gradient De-
scent - SGD, Perceptron, Multilayer Perceptron - MLP and Random Forest -
RF) to find the best solution for texture analysis. All of them achieve more than
87% on Malimg Dataset (the best was Random Forest; accuracy: 91.6%).

Luo and Lo [11] compared GIST to LBP with different classifiers (SVM, KNN
and TensorFlow, a library for machine learning). LBP provided better accuracy
in all cases, achieving 93.17% with TensorFlow. Discrete Wavelet Transform
descriptor is used by Makandar and Patrot [14] with KNN and SVM classifiers.
On Malimg Dataset it produced 98.8% accuracy rate with SVM and 98.84% with
KNN. The authors changed the size of textures in [16] and with SVM classifier
achieve accuracy of 98.53% on Malimg Dataset and 91.05% on Malheur dataset.

Convolutional Neural Networks (CNN) were used for malware texture clas-
sification by Yue [36] and it results in 98.63% accuracy rate on Malimg Dataset.
Singh [30] used the Residual Networks (ResNet) architecture with 152 layers
on his own dataset achieving 98.21% accuracy rate and, on Malimg Dataset,
96.08%. Rezende et al. [27] utilize CNN with Visual Geometry Group with 16
layers (VGG-16) architecture pre-trained on the ImageNet Dataset to extract
features and, to classification, SVM that results in 92.97% of accuracy on Virus-
Sign Dataset. SVM was also used in Makandar and Patrot [17], but the features
were extracted with GWT on Malimg Dataset, the accuracy rate was 75.11%,
and 89.11% when using KNN at the same conditions. CNN was also used by
Yakura et al. [34] [35] on VX Heavens dataset, resulting on 49.03% of accuracy.
The same classifier was used by Kabanga and Kim [7] but they achieve 98%
of accuracy on Malimg Dataset. The authors affirm that a small change on the
image, even that invisible to a human, could cause a misclassification of image.

We observed that the descriptor affects accuracy rate [11]: the same dataset
and classifiers used in [20] and [14] with different descriptors resulted in distinct
accuracy rate. Although it is not possible to properly compare all research due to
differences in datasets and resizing, we show the accuracy rate per classifier using
GIST (Figure 3) and other descriptors (Figure 4). KNN performed better with
other descriptors than LBP and GWT, followed by RF (only tested with GIST).
SVM presented the worst results (except when applied in a reduced dataset) and
may be considered inadequate to classify textures of these datasets.

Furthermore, as mentioned earlier, some classifiers select features automat-
ically, i.e. do not need texture descriptors. Figure 5 displays the accuracy rate
of CNN used on literature in different datasets. CNN with more layers (increas-
ing depths) presents better accuracy, but exploding/vanishing of gradients and
degradation problem may appear in deeper CNN [30]. Before select features,
many authors resize the initial texture. Each malware binary has different size,
which request resizing to use some descriptors. This size of input texture could
interfere on classification results. Nataraj et al. (2013) [21] opt to set 64x64 as re-
sizing value because a lesser value do not result in a robust signature and larger,
increase computational complexity. However, this value is attributed empirically



T. Beppler et al.

Fig. 3: Classification accuracy using
GIST descriptor by classifier.

Fig. 4: Classification accuracy using dif-
ferent descriptors by classifier.

and there are none consent about the best one. The differences between worst
and best accuracy rate achieved with set values from literature are shown in
Figure 6. This graphic show us that, despite the better accuracy uses square of
64x64, it would be more prudent consider the resizing of 224x224 because it has
lower variation and maintain a high accuracy rate in all cases.

Fig. 5: Accuracy rate from different
CNN architectures.

Fig. 6: Best and worst accuracy by re-
sizing value.

For fair comparison, all studies should use the same dataset. We found eight
different datasets used to malware texture classification. The most used is Mal-
img [20] (9,342 samples converted to textures distributed in 25 malware families).
Table 1 exhibits basic information of each dataset and their achieved accuracy,
and shows that the dataset with more families has a decrease of accuracy rate. It
is worth to emphasize that each work applied different techniques, descriptors,
and classifiers, which interfere with obtained results.

Considering only the classifier: KNN was used in [20,22,19,13,11,14,17], achiev-
ing the best result of literature in [13]; SVM was used in [12,11,14,16,17], with
the same result as KNN in [14]; a comparison of many classifiers is in [8]; ANN
is used in recent research [15,30,26,35,7]. Table 2 shows the state-of-the-art in
malware texture classification and respective techniques and results.



L(a)ying in (Test)Bed

Table 1: Datasets from literature used for malware families classification.
Dataset Name Samples Families Accuracy (%) Dataset Name Samples Families Accuracy (%)
Host-Rx 393 6 95.14 MalGenome 1094 13 97.40
Malheur 3131 24 89.68 a 98.37 VXShare 568 8 83.27
VX Heaven 63002 531 72.80 Singh 2017 44945 20 95.24 a 98.21
Malimg 9342 25 75.11 a 98.88 VirusSign 10136 20 92.97

3 Methodology

To evaluate texture-based techniques, we follow Nataraj et al. methodology [9],
illustrated in Figure 7. The methodology steps are as folows.

Fig. 7: Steps for malware texture classification.

Step 1: Conversion of binary files into digital images: each byte from binary
file represents one gray-scale pixel (0, black; 255, white), following a defined
width[19], while the heights vary according to the file size. This step is really
fast, for instance to convert our dataset took 0.0163 seconds by sample.

Step 2: Dataset organization: before classification, we divide the samples into
families according to the labels from VirusTotal [32]. We select the labels
for our dataset with AVClass [29], similar to ??, in which the selected label
is a common label between six antivirus (AV) vendors (AVClass uses all AV
vendors).

Step 3: Extraction of feature vector: we compute the features from all samples
after re-sizing their produced images, as suggested in [19]. To do so, we com-
pared two descriptors (GIST and LBP) and performed a resize of 128x128,
since it presented better results in our preliminary experiments when com-
pared to the resize scales used in literature.

Step 4: Supervised classification: after the extraction of the feature vectors, we
can classify the produced textures. In this paper, we used the same tradi-
tional classifiers of literature, and for the CNN algorithm we used the ResNet
architecture from [26].

Step 5: Results visualization: we used common classification metrics to show the
obtained results. We opt to use accuracy rate, widely utilized in the litera-
ture, and confusion matrix, to better visualization of accuracy and error for
each family.



T. Beppler et al.

Table 2: Techniques used for malware classification based on texture analysis
(n/i : no information available; 7: no descriptor).

Ref. Scale Descriptor Classifier Accuracy (%) Dataset

[20] n/i GIST KNN 98.00 Malimg

[22] 64x64 GIST KNN
95.14 Host-Rx
97.57 Malheur
72.80 VX Heaven

[15] 64x64
GWT +

GIST
ANN 96.35 Malheur

[12] n/i GWT SVM 89.68 Malheur

[19] 64x64 GIST KNN

97.40 Malimg
98.37 Malheur
97.40 MalGenome
83.27 VXShare

[13] n/i
DWT,
GIST

KNN 98.88 Malimg

[8] 32x32 GIST

DT 88.00

Malimg

NC 85.60
SGD 87.00

Perceptron 90.50
MLP 87.80
RF 91.60

[36] n/i 7 CNN 98.63 Malimg

[11] n/i

LBP
CNN 93.17

Malimg

SVM 87.88
KNN 85.93

GIST
CNN 87.88
SVM 81.23
KNN 82.83

[14] 64x64 DWT
KNN 98.84

Malimg
SVM 98.88

[16] 256x256 DWT SVM
91.05 Malheur
92.53 Malimg

[30] 32x32 7

CNN 95.24 Malshare +
VirusShare +
VirusTotal.

CNN (ResNet) 98.21

CNN (ResNet) 96.08 Malimg

[26] 224x224 7 CNN (ResNet) 98.62 Malimg

[27] 224x224 7 SVM 92.97 VirusSign

[35] 64x64 7 CNN 49.03 VX Heaven

[17] 128x128 GWT
KNN 89.11

Malimg
SVM 75.11

[7] 128x128 7 CNN 98.00 Malimg



L(a)ying in (Test)Bed

Experimental setup. We performed all experiments, but CNN, on a desktop
computer (Ubuntu 16.04 LTS, Intel Core i5-650, 3.GHz 4MB Cache and 4GB
RAM). CNN ran on a server (Ubuntu 14.04.3 LTS, Intel Xeon E5620, 2.4GHz,
12MB Cache, 32GB RAM). An image descriptor is applied for extraction of
meaning features only. In this research, we use a global (GIST [24]) and a local
(LBP [23]) descriptor. The first is the most used in literature for malware texture
classification, but global descriptors may lose information and classify incorrectly
when redundant data is added or there is relocation of sections [20]. To address
that, a local descriptor is used, LBP, which is widely used and well-known local
descriptors due to its easy implementation and good results for texture-based
classification. Both descriptors are used to extract features in a feature vector of
textures with resizing of 128x128. We used pyleargist library to implement our
GIST descriptor with 20 filters and 320 as dimension, and scikit-image [33] to
our LBP descriptor, which is divided into 3x3 blocks (thus evaluating 8 neigh-
bors), and applies the uniform method (rotation invariant and gray-scale).

Regarding the classification algorithms used here, we set the same parameters
used in literature or, if not mentioned, the default from scikit-learn [25]. For
the CNN classifier, we opt to use the technique proposed by Rezende et al. [26],
since it achieves one of the highest accuracy rates and presents enough infor-
mation to replicate the experiment. Our classification metrics were implemented
with the sklearn.metrics module—accuracy rate and confusion matrices came
from the accuracy score and confusion matrix functions, respectively. We se-
lected data for training and testing with 10-fold cross-validation.

Datasets. We use two datasets, a publicly available one (Malimg) and a pri-
vate, locally collected in our lab along the years. We do that because, for fair
evaluation, we must have reliable, unbiased, not manipulated, correctly labeled
datasets. The only way to maximize our chances of meeting these requirements
is to use a public dataset already scrutinized and composed of few families to
validate our preliminary premises and, after that, confirm if the hypothesis still
holds when we use a private, bigger, unfiltered dataset closer to a real scenario.
For our dataset (collected along the years), we follow Rossow et al. recommended
practices for security experiments [28] and Li et al. advices on watching for biases
in data selection [10]. Malimg [20] consists of 9,342 textures distributed into 25
malware families, and the dataset description is shown in Table 3. We found thir-
teen related work that used this public dataset in their experiments. Our local
dataset consists of 19,979 unique malware distributed into 5,715 families, which
we re-labeled with AVClass [29] on VirusTotal [32] labels. These samples were
collected by a partner CSIRT and shared with our lab1 since 2007. In Table 4
we show an excerpt of our dataset containing the most representative families
(with at least 50 samples each). In our experiments, we used the whole dataset
as well as some of its subgroups.

1 Additional information about samples will be available after acceptance to do not
violate the conference blindness requirement.



T. Beppler et al.

Table 3: Malimg dataset. Notice that variants may be in distinct families and
that the two Allaple families correspond to almost half of the dataset.

Class Family Variants %

1 Worm Allaple.L 1591 17.03

2 Worm Allaple.A 2949 31.57

3 Worm Yuner.A 800 08.56

4 PWS Lolyda.AA 1 213 02.28

5 PWS Lolyda.AA 2 184 01.97

6 PWS Lolyda.AA 3 123 01.32

7 Trojan C2Lop.P 146 01.56

8 Trojan C2Lop.gen!G 200 02.14

9 Dialer Instantaccess 431 04.61

10 Trojan Downloader Swizzor.gen!I 132 01.41

11 Trojan Downloader Swizzor.gen!E 128 01.37

12 Worm VB.AT 408 04.37

13 Rogue Fakerean 381 04.09

14 Trojan Alueron.gen!J 198 02.12

15 Trojan Malex.gen!J 136 01.46

16 PWS Lolyda.AT 159 01.70

17 Dialer Adialer.C 125 01.34

18 Trojan Downloader Wintrim.BX 97 01.04

19 Dialer Dialplatform.B 177 01.89

20 Trojan Downloader Dontovo.A 162 01.73

21 Trojan Downloader Obfuscator.AD 142 01.52

22 Backdoor Agent.FYI 116 01.24

23 Worm:AutoIT Autorun.K 106 01.13

24 Backdoor Rbot!gen 158 01.69

25 Trojan Skintrim.N 80 00.86



L(a)ying in (Test)Bed

Table 4: Description of an excerpt of our dataset (families with samples >= 50).

Class Family Variants %

1 Backdoor Agobot 202 02,86

2 Backdoor Aimbot 73 01,03

3 Worm Bagle 138 01,96

4 Trojan Banker Banbra 75 01,06

5 Trojan Bancos 327 04,63

6 Trojan Downloader Banload 215 03,05

7 Backdoor Bifrose 128 01,81

8 Trojan Constructor 110 01,56

9 Trojan Downloader Dadobra 145 02,05

10 Trojan Delf 1267 17,96

11 Trojan Downloader Dyfuca 84 01,19

12 Trojan Goldun 58 00,82

13 Trojan Harnig 58 00,82

14 Virus Hllc 61 00,86

15 Virus Hllo 60 00,85

16 Backdoor Hupigon 332 04,71

17 Trojan Downloader Inservice 115 01,63

18 Backdoor Ircbot 151 02,14

19 Trojan Downloader Istbar 199 02,82

20 Worm Kelvir 82 01,16

21 Trojan PSW Ldpinch 123 01,74

22 Trojan PSW Lineage 101 01,43

23 Trojan Lmir 410 05,81

24 Trojan Lowzones 60 00,85

25 Worm Mytob 86 01,22

26 Trojan Nsanti 50 00,71

27 Backdoor Pcclient 79 01,12

28 Trojan PSW Qqpass 123 01,74

29 Trojan Qqrob 58 00,82

30 Backdoor Ranky 72 01,02

31 Backdoor Rbot 909 12,88

32 Virus Score 120 01,70

33 Backdoor Sdbot 685 09,71

34 Worm Spybot 122 01,73

35 Trojan Downloader Swizzor 56 00,79

36 Backdoor Wootbot 63 00,89

37 Trojan Zlob 59 00,84



T. Beppler et al.

4 Experiments and Results

In this section, we reproduce literature experiments using both publicized datasets
and our malware collection and evaluate classifiers resistance to obfuscation.
Reproducing Literature Results. To validate reported literature results, we
first reproduced their experiments using the same dataset (Malimg) and param-
eters described in the considered papers (GIST and LBP descriptors and 32x32,
64x64 and 128x128 (standard) texture’s scales). The first experiment consists on
identifying the best algorithm and feature extractors for texture classification.
Table 5 shows the accuracy rate for all algorithms and feature extractors applied
to the complete Malimg dataset. The higher accuracy rates (above 90%) for all
classifiers are achieved using the GIST descriptor. The CNN classifier without a
descriptor also achieves high accuracy.

Table 5: Texture Descriptors & Classifiers Accuracy Evaluation. GIST
descriptor achieves higher detection rates than LBP in most classifiers. (1: direct
mapping without texture descriptor; 2: resize from literature; 3: standardized scale).

Classifier CNN1 KNN DT RF NC SVM SGD Perceptron MLP

GIST2 N/A 96.97 93.06 95.23 91.33 95.23 91.44 90.03 95.99
LBP2 N/A 85.59 69.34 78.66 47.02 53.41 37.38 30.88 71.07
GIST3 N/A 97.94 96.32 97.83 96.42 95.88 94.58 91.33 96.42
LBP3 N/A 95.77 92.96 95.67 84.72 51.25 40.41 66.41 83.31
N/A 98.57 N/A N/A N/A N/A N/A N/A N/A N/A

Understanding Classifier’s Errors. While some combinations of feature ex-
tractors and classifiers achieve high accuracy results in the complete Malimg
dataset, most combinations do not present accuracy results high enough to be
considered practical in actual contexts, due to either the low TP rates or high
FP rates, which contradicts published literature results.

To understand classifier’s errors, we performed an in-depth investigation on
how they classified each malware sample. We discovered that all classifiers errors
occur on malware families that are very similar among themselves, thus produc-
ing very similar texture patterns. Table 6 shows that both RF and CNN classifier
confuse the families Swizzor.gen!E (Figure 8) and Swizzor.gen!I (Figure 9).

Table 6: RF & CNN Confusion
Matrices: Classifiers mix sam-
ples from Swizzor.gen!E and
Swizzor.gen!I families.
Samples S.gen!E S.gen!I Allaple

S.gen!E 99 48 0
S.gen!I 48 38 0
Allaple 0 0 100

Fig. 8: Swizzor.gen!E Fig. 9: Swizzor.gen!I



L(a)ying in (Test)Bed

The classifier’s confusion between similar families suggests that current texture-
based approaches are only able to detect completely distinguishable families, as
already pointed out by studies in other scenarios [10]. Therefore, we repeated
our experiments, but now limiting the dataset to the samples used in [13], with
no conflict between similar families. Table 7 shows accuracy rates for distinct
classifiers and feature extractors combinations. The GIST descriptor keeps over-
performing LBP for most scenarios, as in the complete dataset, but now achiev-
ing an accuracy of 100%. LBP classifiers also increased their rates, showing that
similar families is an issue for all types of classifiers and feature extractors.

Table 7: Texture Descriptors & Classifiers Accuracy Evaluation. GIST
descriptor achieves higher detection rates than LBP for most classifiers: 100% of
accuracy happens due to the selection of dissimilar families for the experiment.
(1direct mapping without texture descriptor; 2literature resizing; 3standard scale).

Classifier CNN1 KNN DT RF NC SVM SGD Perceptron MLP

GIST2 N/A 100.00 99.81 99.81 97.91 99.81 99.43 91.63 99.81
LBP2 N/A 99.24 96.77 99.05 71.10 78.90 73.76 86.50 90.87
GIST3 N/A 100.00 99.81 100.00 99.05 100.00 100.00 100.00 100.00
LBP3 N/A 99.43 98.67 99.43 94.68 78.52 78.33 87.26 91.44
N/A 99.87 N/A N/A N/A N/A N/A N/A N/A N/A

These experiments results show that current texture-based approaches present
best results when the considered malware families are clearly different, which is
not acknowledge in the literature, thus highlighting the need for more granular
and real-world considerations when developing and evaluating malware solutions.
Extending evaluations to other datasets. Given the previous findings that
the ability of existing texture-based classifiers is strongly tied to datasets having
no similar families, we hypothesized that classifiers would not perform well when
working with a real-world dataset, which is very imbalanced, thus presenting
some families with multiple samples and other with a very limited number of
samples. To test this hypothesis, we considered a dataset of Brazilian malware
samples daily collected from a CSIRT institution and submited all samples to
classification procedures by the same classifiers and feature extractors from the
previous tests. Table 8 shows accuracy results for all combinations of feature
extractors and classifiers and, as hypothesized, all of them resulted in very low
accuracy rates in this scenario closer to reality.

Table 8: Texture Descriptors & Classifiers Accuracy Evaluation. GIST
descriptor achieves higher detection rates than LBP in most classifiers. Accuracy
rate decreases significantly when using a scenario closer to reality. (1: resize from
literature; 2: standardized scale).

Classifier KNN DT RF NC SVM SGD Perceptron MLP

GIST1 34.36 14.46 18.87 04.10 27.90 11.08 10.05 29.85
LBP1 13.13 08.00 10.46 01.13 16.31 06.46 00.00 16.00
GIST2 35.08 19.49 23.18 03.69 28.51 13.33 04.10 29.54
LBP2 13.64 11.59 15.49 01.44 16.61 01.03 00.51 21.44

Since the experiments supported our hypothesis on the limits of applying
texture-based classification in real scenarios, we investigated further to under-



T. Beppler et al.

stand the practical factors limiting classification performance. We first discovered
that classification rates were underscored due to families’ clusters having too few
samples. To mitigate this effect, we limited our real-world dataset to a set of 37
families that have at least 50 different samples each. We highlight that such num-
ber of distinct families is still higher than the ones from the publicized datasets.
Table 9 shows classification accuracy for all algorithms and feature extractors
using this new dataset. As expected, accuracy increased for all classifiers, but it
is still not enough for operating in an actual scenario.

Table 9: Texture Descriptors & Classifiers Accuracy Evaluation. GIST
descriptor achieves higher detection rates than LBP in most classifiers. Accuracy
rate unsatisfying even when discarding small families. (1: direct mapping without
texture descriptor; 2: resize from literature; 3: standardized scale).

Classifier CNN1 KNN DT RF NC SVM SGD Perceptron MLP

GIST2 N/A 49.13 26.09 38.84 10.72 32.32 12.03 17.39 38.98
LBP2 N/A 23.77 15.51 23.77 07.10 20.43 13.19 03.48 22.46
GIST3 N/A 48.84 29.13 43.04 15.36 35.36 26.09 20.87 41.01
LBP3 N/A 30.43 22.90 31.16 12.46 21.88 10.29 08.26 26.67
N/A 45.52 N/A N/A N/A N/A N/A N/A N/A N/A

We also discovered that the number of families was also a factor for classifiers’
rates underscoring. Therefore, we limited our dataset to the 10 most prevalent
malware families, randomly choosing 100 samples from each one of them. Ta-
ble 10 shows accuracy for all combinations of classifiers and texture extractors.
In this new, limited dataset, classifiers achieved almost 80% of accuracy, which
is a significant accuracy rate (but limited in number of families).

Table 10: Texture Descriptors & Classifiers Accuracy Evaluation. GIST
descriptor achieves higher detection rates than LBP in most classifiers. Accuracy
rate increases with balanced dataset and fewer families. (1: direct mapping without
texture descriptor; 2: resize from literature; 3: standardized scale).

Classifier CNN1 KNN DT RF NC SVM SGD Perceptron MLP

GIST2 N/A 78.00 59.00 70.00 54.00 69.00 62.00 58.00 72.00
LBP2 N/A 63.00 37.00 46.00 43.00 43.00 11.00 13.00 41.00
GIST3 N/A 78.00 73.00 70.00 63.00 61.00 57.00 52.00 66.00
LBP3 N/A 67.00 52.00 64.00 32.00 34.00 12.00 10.00 43.00
N/A 76.50 N/A N/A N/A N/A N/A N/A N/A N/A

Finally, to highlight that current texture-based malware classifier’s effective-
ness is limited to few malware families, we again limited our dataset, now to only
the top 8 most prevalent malware families. Table 11 presents accuracy results
for distinct combinations of classifiers and feature descriptors. As hypothesized,
accuracy keeps increasing, now reaching scores greater than 84%.

Overall, our experiments indicate that: (i) KNN and CNN are the best mal-
ware texture classifiers; (ii) a 128x128 scale produces the greatest accuracy re-



L(a)ying in (Test)Bed

Table 11: Texture Descriptors & Classifiers Accuracy Evaluation. GIST
descriptor achieves higher detection rates than LBP in most classifiers. Accuracy
rate increases with fewer families. (1: direct mapping without texture descriptor; 2:
resize from literature; 3: standardized scale).

Classifier CNN1 KNN DT RF NC SVM SGD Perceptron MLP

GIST2 N/A 87.50 66.25 81.25 67.50 66.25 68.75 57.50 77.50
LBP2 N/A 62.50 42.50 50.00 37.50 53.75 23.75 27.50 47.50
GIST3 N/A 88.75 75.00 86.25 77.50 68.75 70.00 51.25 81.25
LBP3 N/A 76.25 67.50 77.50 47.50 46.25 35.00 66.25 52.50
N/A 84.75 N/A N/A N/A N/A N/A N/A N/A N/A

sults; and (iii) the use of GIST results in greatest accuracy rates. On the one
hand, our findings support the experiments conclusions from literature. On the
other hand, we highlighted that these results do not hold true for actual sce-
narios, since current approaches are not fully capable of handling imbalanced
dataset and a large number of families. Improving texture-based classifiers to
handle these cases and make them practical is currently an open research ques-
tion not acknowledge by the existing literature.

Evaluating Obfuscation Resistance. In addition to dataset imbalances, ap-
proaches tackling real-world scenarios will also face challenges to classify malware
samples due to sample’s characteristics themselves. For instance, statistics [1] re-
port that more than 80% of malware files use some obfuscation techniques to
avoid malware detection. The literature in texture-based malware classification
reports that these approaches are resilient to obfuscation techniques [20] (in [19],
UPX is used to demonstrate this resilience), but since they use static binary
information for classification, it is doubtful that these approaches are able to
correctly disambiguate obfuscated code. To test this hypothesis, we repeated all
experiments now considering obfuscated binary versions. Based in the previous
findings, we limited the dataset to the top 8 most prevalent malware families,
a malware family range which previous experiments showed that texture-based
malware detection is effective.

Evaluating Compression Resistance. In our first experiment we compressed
all binaries with the popular ZIP and TAR.GZ tools, since compression reduces
all redundancy that might allow family characterization. In addition, distribut-
ing compressed files via mail attachments is a popular strategy leveraged by
attackers during their phishing campaings, thus it constitute a real-world sce-
nario. Table 12 presents accuracy results for ZIP-compressed files and Table 13
presents accuracy results for TAR.GZ-compressed files.

All classifier were affected by binary compression and reduced their accuracy
rates. The best classifier score lowered from 88% in the previous evaluation
to 65% in the compressed dataset. The CNN classifier achieved only 45,75%
in the ZIP dataset and 42,13% in the TAR.GZ dataset. These results are even
more impacting when considered that we limited our evaluation to only the 8



T. Beppler et al.

Table 12: Texture Descriptors & Classifiers Accuracy Evaluation. GIST
descriptor achieves higher detection rates than LBP in most classifiers. Accuracy
rate decreases with ZIP. (1: direct mapping without texture descriptor; 2: resize from
literature; 3: standardized scale).

Classifier CNN1 KNN DT RF NC SVM SGD Perceptron MLP

GIST2 N/A 65.00 42.50 52.50 40.00 53.75 31.25 23.75 51.25
LBP2 N/A 28.75 23.75 32.25 30.00 18.75 16.25 12.50 30.00
GIST3 N/A 60.00 42.50 57.50 45.00 43.75 30.00 31.25 56.25
LBP3 N/A 30.00 35.00 35.00 30.00 26.25 13.75 12.50 20.00
N/A 45.75 N/A N/A N/A N/A N/A N/A N/A N/A

Table 13: Texture Descriptors & Classifiers Accuracy Evaluation. GIST
descriptor achieves higher detection rates than LBP in most classifiers. Accuracy
rate decreases with TAR.GZ. (1: direct mapping without texture descriptor; 2: resize
from literature; 3: standardized scale).

Classifier CNN1 KNN DT RF NC SVM SGD Perceptron MLP

GIST2 N/A 66.25 40.00 53.75 40.00 50.00 25.00 30.00 58.75
LBP2 N/A 27.50 23.75 31.25 31.25 22.50 12.50 12.50 37.50
GIST3 N/A 66.25 48.75 56.25 55.00 48.75 16.25 31.25 53.75
LBP3 N/A 31.25 36.25 40.00 30.00 25.00 12.50 12.50 21.25
N/A 42.13 N/A N/A N/A N/A N/A N/A N/A N/A

most well-classified families. Therefore, these results suggests that texture-based
classifiers are unable to distinguish armored samples, as following discussed.

Evaluating Packing Resistance. More than compression, malware samples
can be distributed in completely modified versions, which can be done, for in-
stance, by using a packer. To evaluate the impact of packing in texture-based
malware classifiers, we packed all samples usind The Ultimate Packer for eXe-
cutables (UPX), a popular and open-source packing solution. The compression
provided by UPX is greater than GZIP and it adds a decompression module to
the executable [1], which makes samples to look like even more similar.

Table 14 shows classification accuracy for the distinct combinations of clas-
sifiers and feature descriptors. As hypothesized, classification accuracy is signif-
icantly reduced, as the textures now represents the packing structure and not
the packed code. More specifically, the classification accuracy is almost the same
for all classifiers. Our exploratory analysis identified that it happens because
all samples are grouped to the same family, as shown in Figure 10. Therefore,
the percentage of correctly labeled samples refers to the only ones that truly
belong to the attributed family. In practice, malware samples can leverage pack-
ing solutions even more sophisticated than UPX, thus highlighting the need of
developing more obfuscation-resistant texture-based malware classifiers.



L(a)ying in (Test)Bed

Table 14: Texture Descriptors & Classifiers Accuracy Evaluation. GIST
descriptor achieves higher detection rates than LBP in most classifiers. It is
not possible to classify malware compressed with UPX. (1: direct mapping without
texture descriptor; 2: resize from literature; 3: standardized scale).

Classifier CNN KNN DT RF NC SVM SGD Perceptron MLP

GIST1 N/A 12.99 12.99 12.99 12.99 12.99 12.99 12.99 12.99
LBP1 N/A 12.99 12.99 12.99 12.99 12.99 12.99 12.99 12.99
GIST2 N/A 12.99 12.99 12.99 12.99 12.99 12.99 12.99 12.99
LBP2 N/A 12.99 12.99 12.99 12.99 12.99 12.99 12.99 11.69
N/A 12.50 N/A N/A N/A N/A N/A N/A N/A N/A

(a) Family Agobot (b) Family Bancos

(c) Family Rbot (d) Family Sdbot

Fig. 10: Variants texture from different families of compressed with UPX.



T. Beppler et al.

5 Discussion

In this section, we summarize our main findings and point future directions for
the development of texture-based malware classifiers.
Representing a file as a texture is challenging. Although the creation of
a new representation may ease some tasks, it creates new challenges. Represent-
ing a binary file as a texture requires defining: (i) an appropriate scale, which
directly affects classification results; (ii) a dimensional representation (1D, 2D,
3D), which may imply in information loss if the binary file is too large; and (iii)
padding texture, in the case where a binary file is too small. Therefore, future
developments in texture classification should also focus in advancing representa-
tions and pre-processing steps in addition to providing new texture descriptors.
Biased datasets cannot be generalized. Whereas we were able to repro-
duce literature results using the publicized datasets, we were not able to achieve
high accuracy in a dataset of malware samples collected in-the-wild, despite the
generalization claims made in literature reports. Further investigations revealed
that the described texture descriptors were able to classify only some malware
families. These families were present in the publicized datasets but not in our
real-world collection, which highlights the need of breaking down detection accu-
racy by malware families when reporting experiments results, otherwise reported
results cannot be generalized to other contexts, as here demonstrated.
Handling Obfuscation is still a challenge. Despite claims of approaches’
resistance to obfuscation, our experiments revealed that obfuscating malware
binaries is still an effective measure to bypass detection mechanisms. Even sam-
ples previously classified correctly were mistakenly classified after being packed
with popular packers, such as UPX. The major reason for classifiers wrongly
labelling samples is that packing solutions produce similar code patterns re-
gardless of the embedded payload, thus leading to the same textures. Therefore,
future work should consider packed code in their developments and evaluations,
otherwise the developed solutions might be impractical in actual scenarios.

6 Conclusion

Texture-based malware classification can be performed leveraging multiple ap-
proaches, with multiple scales, descriptors and classifiers. In this paper we pre-
sented an evaluation of the effectiveness of these approaches to identify the usage
scenarios for which they are most suited. Our experiments considered both global
(GIST) and local (LBP) descriptors and a multitude of classifiers (e.g., KNN,
DT, RF, CNN). We were able to reproduce literature experiments using their
publicized datasets and identified that the 128x128 scale produces higher results
than other scales and that the GIST detector achieves higher detection rates
than LBP. However, we were not able to achieve similar detection rates when
evaluating a real dataset of malware samples collected in-the-wild. Further in-
vestigations revealed that the reported literature results hold true for only some
malware families, which are prevalent in publicized datasets but not on our real



L(a)ying in (Test)Bed

collection, thus reinforcing the need of presenting detection results broken down
by malware families. Moreover, we notice that despite literature claims, obfus-
cation is still an effective technique to bypass detection. As a future work, we
plan to develop new malware representation strategies, such as considering 3D
textures instead of 2D ones to reduce information loss in conversion procedures,
towards making texture-based malware classifiers practical in actual scenarios.

References

1. Al-Anezi, M.M.K.: Generic packing detection using several complexity analysis for
accurate malware detection. Int. Journal Adv. Comp. Science 5(1) (2014)

2. Awad, R.A., Sayre, K.D.: Automatic clustering of malware variants. In: Intel. and
Sec. Informatics (ISI). pp. 298–303. IEEE (2016)

3. Bertolini, D., Oliveira, L.S., Justino, E., Sabourin, R.: Texture-based descriptors
for writer identification and verification. Expert Systems with Applications (2013)

4. Conti, G., Bratus, S., Shubina, A., Sangster, B., Ragsdale, R., Supan, M., Licht-
enberg, A., Perez-Alemany, R.: Automated mapping of large binary objects using
primitive fragment type classification. digital investigation (2010)

5. Costa, Y.M., Oliveira, L., Koerich, A.L., Gouyon, F., Martins, J.: Music genre
classification using lbp textural features. Signal Processing (2012)

6. Damodaran, A., Di Troia, F., Visaggio, C.A., Austin, T.H., Stamp, M.: A com-
parison of static, dynamic, and hybrid analysis for malware detection. Journal of
Comp. Vir. and Hack. Tech. (2017)

7. Kabanga, E.K., Kim, C.H.: Malware images classification using convolutional neu-
ral network. Journal of Comp. and Communications (2017)

8. Kosmidis, K., Kalloniatis, C.: Machine learning and images for malware detection
and classification. In: Pan-Hellenic Conf. on Inf. ACM (2017)

9. Laks: Sarvam blog. http://sarvamblog.blogspot.com.br (2014)
10. Li, P., Liu, L., Gao, D., Reiter, M.K.: On challenges in evaluating malware clus-

tering. In: Jha, S., Sommer, R., Kreibich, C. (eds.) RAID. Springer (2010)
11. Luo, J.S., Lo, D.C.T.: Binary malware image classification using machine learning

with local binary pattern. In: IEEE Big Data (2017)
12. Makandar, A., Patrot, A.: Malware analysis and classification using artificial neural

network. In: I-TACT (2015)
13. Makandar, A., Patrot, A.: An approach to analysis of malware using supervised

learning classification. In: Int. Conf. on Rec. Trends in Eng., Science Tech. (2016)
14. Makandar, A., Patrot, A.: Malware class recognition using image processing tech-

niques. In: ICDMAI (2017)
15. Makandar, A., Patrot, A.: Malware image analysis and classification using support

vector machine. Int. Journal of Trends in CS and Eng. (2015)
16. Makandar, A., Patrot, A.: Wavelet statistical feature based malware class recogni-

tion and classification using supervised learning classifier. Oriental Journal of CS
and Tech. (2017)

17. Makandar, A., Patrot, A.: Trojan malware image pattern classification. In: Guru,
D.S., Vasudev, T., Chethan, H., Kumar, Y.S. (eds.) Int. Conf. on Cogn. and
Recogn. Springer (2018)

18. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: 23rd Annual Computer Security Applications Conference (2007)

19. Nataraj, L.: A Signal Processing Approach To Malware Analysis. UCSB (2015)

http://sarvamblog.blogspot.com.br


T. Beppler et al.

20. Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.: Malware images: visual-
ization and automatic classification. In: Int. Symp. on vis. for cyber sec. ACM
(2011)

21. Nataraj, L., Kirat, D., Manjunath, B., Vigna, G.: Sarvam: Search and retrieval of
malware. In: ACSAC NGMAD (2013)

22. Nataraj, L., Yegneswaran, V., Porras, P., Zhang, J.: A comparative assessment
of malware classification using binary texture analysis and dynamic analysis. In:
Workshop on Sec. and AI. ACM (2011)

23. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. Trans. on Pattern Anal-
ysis and Machine Intelligence (2002)

24. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation
of the spatial envelope. Int. Journal of Comp. Vision (2001)

25. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of ML Research (2011)

26. Rezende, E., Ruppert, G., Carvalho, T., Ramos, F., de Geus, P.: Malicious software
classification using transfer learning of resnet-50 deep neural network. In: ICMLA
(2017)

27. Rezende, E., Ruppert, G., Carvalho, T., Theophilo, A., Ramos, F., Geus, P.d.:
Malicious software classification using vgg16 deep neural network’s bottleneck fea-
tures. In: Latifi, S. (ed.) Inf. Tech. - New Gen. Springer (2018)

28. Rossow, C., Dietrich, C.J., Grier, C., Kreibich, C., Paxson, V., Pohlmann, N., Bos,
H., Steen, M.v.: Prudent practices for designing malware experiments: Status quo
and outlook. In: SP. IEEE (2012)

29. Sebastián, M., Rivera, R., Kotzias, P., Caballero, J.: Avclass: A tool for massive
malware labeling. In: RAID. Springer (2016)

30. Singh, A.: Malware Classification using Image Representation. Master’s thesis,
Indian Institute of Technology Kanpur (2017)

31. Thakare, V.S., Patil, N.N., Sonawane, J.S.: Survey on image texture classification
techniques. Int. Journal of Adv. in Tech. (2013)

32. VirusTotal: Virustotal. https://www.virustotal.com/#/home/upload (2017)
33. van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D.,

Yager, N., Gouillart, E., Yu, T., the scikit-image contributors: scikit-image: image
processing in Python. PeerJ (2014)

34. Yakura, H., Shinozaki, S., Nishimura, R., Oyama, Y., Sakuma, J.: Malware analysis
of imaged binary samples by convolutional neural network with attention mecha-
nism. In: Conf. on Data and App. Sec. and Priv. ACM (2018)

35. Yakura, H., Shinozaki, S., Nishimura, R., Oyama, Y., Sakuma, J.: Malware analysis
of imaged binary samples by convolutional neural network with attention mecha-
nism. In: CODASPY. CODASPY ’18, ACM (2018)

36. Yue, S.: Imbalanced malware images classification: a CNN based approach. CoRR
(2017), http://arxiv.org/abs/1708.08042

37. Zhang, J., Qin, Z., Yin, H., Ou, L., Xiao, S., Hu, Y.: Malware variant detection
using opcode image recognition with small training sets. In: ICCCN. IEEE (2016)

https://www.virustotal.com/#/home/upload
http://arxiv.org/abs/1708.08042

	L(a)ying in (Test)Bed

