
Challenges and Pitfalls in Malware Research

Marcus Botacin1 Fabricio Ceschin1 Ruimin Sun2 Daniela Oliveira2

André Grégio1

1Federal University of Paraná (UFPR) – {mfbotacin,fjoceschin,gregio}@inf.ufpr.br
2University of Florida – gracesrm@ufl.edu – daniela@ece.ufl.edu

Abstract

As the malware research field became more established
over the last two decades, new research questions arose,
such as how to make malware research reproducible, how
to bring scientific rigor to attack papers, or what is an ap-
propriate malware dataset for relevant experimental re-
sults. The challenges these questions pose also brings pit-
falls that affect the multiple malware research stakehold-
ers. To help answering those questions and to highlight
potential research pitfalls to be avoided, in this paper, we
present a systematic literature review of 491 papers on
malware research published in major security conferences
between 2000 and 2018. We identified the most common
pitfalls present in past literature and propose a method
for assessing current (and future) malware research. Our
goal is towards integrating science and engineering best
practices to develop further, improved research by learn-
ing from issues present in the published body of work.
As far as we know, this is the largest literature review
of its kind and the first to summarize research pitfalls
in a research methodology that avoids them. In total,
we discovered 20 pitfalls that limit current research im-
pact and reproducibility. The identified pitfalls range
from (i) the lack of a proper threat model, that compli-
cates paper’s evaluation, to (ii) the use of closed-source
solutions and private datasets, that limit reproducibility.
We also report yet-to-be-overcome challenges that are in-
herent to the malware nature, such as non-deterministic
analysis results. Based on our findings, we propose a set
of actions to be taken by the malware research and de-
velopment community for future work: (i) Consolidation
of malware research as a field constituted of diverse re-
search approaches (e.g., engineering solutions, offensive
research, landscapes/observational studies, and network
traffic/system traces analysis); (ii) design of engineering
solutions with clearer, direct assumptions (e.g., position-
ing solutions as proofs-of-concept vs. deployable); (iii)
design of experiments that reflects (and emphasizes) the
target scenario for the proposed solution (e.g., corpora-
tion, user, country-wide); (iv) clearer exposition and dis-
cussion of limitations of used technologies and exercised
norms/standards for research (e.g., the use of closed-
source antiviruses as ground-truth).

1 Introduction

As the malware research field has grown and became
more established over the last two decades, many re-
search questions have arisen about challenges not yet
completely overcome by the malware research commu-
nity. For example, How to make malware research re-
producible? ; Does papers based on attacks strictly require
scientific rigor?; What constitutes a well-balanced and
appropriate dataset of malware and goodware to evalu-
ate detection solutions? ; How to define a relevant, ap-
propriated ground-truth for malware experiments? ; and
What criteria should be used to evaluate offline and on-
line defense solutions? are important questions for cur-
rent and future research that cannot be left unanswered
in further papers on the field. Failing in answering those
questions may lead to pitfalls that cause delays in anti-
malware advances, such as: (i) offensive research are not
scientific enough to be published; (ii) the development
of offline and online engineering solutions being devel-
oped and evaluated under the same assumptions; (iii)
the adoption of unrealistic and biased datasets; (iv) con-
sidering any AV labeled samples as ground-truth without
measuring their distribution and relevance, among oth-
ers.

As pointed out by Herley and P. C. van Oorschot [82] in
their survey of the security research field: “The science
seems under-developed in reporting experimental results,
and consequently in the ability to use them. The research
community does not seem to have developed a generally
accepted way of reporting empirical studies so that peo-
ple could reproduce the work”. In this blurry scenario, all
stakeholders are affected: beginners are often not aware
of the challenges that they will face while developing their
research projects, being discouraged after the first unex-
pected obstacles; researchers facing those challenges may
not be completely aware that they are falling for a pitfall;
industry experts often do not understand the role of aca-
demic research in security solutions development; paper
reviewers end up with no guidelines about which project
decisions are acceptable regarding the faced challenges,
making it difficult to decide what type of work is good
work.

Although understanding malware research challenges

1

and pitfalls is crucial for the advancement of the field and
the development of the next generation of sound anti-
malware security solutions, a few work have focused on
attempting to answer those questions and shedding some
light on these pitfalls. Previous works have only consid-
ered isolated malware research aspects, such as informa-
tion flow [34] or sandbox limitations [127]. Therefore,
in this paper, we decided to investigate such phenomena
scientifically: we conducted a systematic review of the
malware literature over a period of 18 years (2000-2018),
which encompasses 491 papers from the major security
conferences. Based on this systematization, we discuss
practices that we deemed scientific, thus reproducible,
and that should be included in the gold standard of mal-
ware research.

Overall, malware research integrates science and engi-
neering aspects. Therefore, we describe “malware re-
search” in terms of a malware research method, accord-
ing to the following steps (see Figure 2): (i) Common
Core (from the Scientific Method); (ii) Research Ob-
jective Definition; (ii) Background Research; (iii) Hy-
pothesis/Research Requirements; (iv) Experiment De-
sign; (v) Test of Hypothesis/Evaluation of Solution; and
(vi) Analysis of Results. Based on this framework, we
reviewed the selected literature and identified 20 falla-
cies about malware research, which were described and
organized according to their occurrence in the Malware
Research Method. The identified pitfalls range from the:
(Reasoning Phase) unbalanced development of research
work, which is currently concentrated on engineering so-
lution proposals, with a scarcity of research on threat
panoramas, which should provide the basis for support-
ing work on engineering solutions; (Development Phase)
the lack of proper threat model definitions for many so-
lutions, which makes their positioning and evaluation
harder; and (Evaluation Phase) the use of private and/or
non-representative datasets, that do not streamline re-
producibility or their application in real scenarios.

In addition to pitfalls, we also identified challenges that
researchers face regarding practical considerations, a step
we modeled in our proposed Malware Research Method.
For example, when developing a malware detection so-
lution, researchers soon realize that many stakeholders,
such as AV companies, do not disclose full information
about their detection methods due to intellectual prop-
erty issues, which limits solution’s comparisons. More-
over, researchers working on dynamic analysis or detec-
tion also soon realize that a non-negligible percentage of
their collected samples may be broken due to the lack
of a required module, library, collaborating process, or
because a domain was sinkholed, which also limits their
evaluations. Therefore, we present a discussion about the
root of each identified challenge and pitfall, supported by
statistics from the literature review. Despite this strong
supporting statistics, we do not consider all presented
claims as definitive answers, but we acknowledge that

others may have different understandings. Thus, we in-
tend to stimulate the security community to discuss each
pitfall and how they should be approached.

From the lessons learned, we proposed a set of recom-
mendations for different stakeholders (researchers, re-
viewers, conference/workshop organizers, and industry),
aiming at the next generation of research in the field
and to discuss open challenges that the community has
yet to tackle. For example, we propose for researchers:
clearly state their assumptions about malware and good-
ware repositories to allow for bias identification and re-
search reproducibility; for reviewers: be mindful of the
Anchor bias [64] when evaluating the appropriateness of
a dataset, since the representativeness of the environ-
ment in which an engineering tool is supposed to oper-
ate (corporate, home, lab) might be the most important
evaluation criteria, despite the dataset size; for con-
ferences/workshop organizers: increase support for
the publication of more research on threat landscape, as
they establish a foundation for new defense tools; and for
AV companies: disclose the detection engines and/or
methods leveraged for detecting samples as part of the
AV labels. We do not expect that all of our proposed
guidelines be fully addressed in all papers, since it can
be almost impossible in some circumstances due to re-
search/experiment limitations. However, our goal is to
position them as a statement of good research practices
to be pursued.

To the best of our knowledge, this is the first comprehen-
sive systematization of pitfalls and challenges in almost
two decades of malware research, and in which the pitfalls
and challenges have been placed in the context of differ-
ent phases of a proposed Malware Research Method, with
a concrete actionable roadmap for the field. We limited
our critical evaluation to the malware field, because it is
the field we have experience as authors, reviewers and PC
members. However, we believe that many of the points
here discussed might be extrapolated for other security
domains (along with the proper reasoning and adapta-
tions), also providing a certain level of contribution to
their scientific enhancement.

In summary, the contributions of our paper are threefold:

1. We propose a Malware Research method that inte-
grates the scientific and engineering methods, which
also addresses practical challenges of current tech-
nologies and industry practices.

2. We identify and discuss 20 Pitfalls in malware re-
search, based on a systematization of 18 years (2000-
2018) of malware literature (491 papers), with each
pitfall placed in the phase they occur in the method.

3. We present a set of actionable recommendations for
the field, researchers, reviewers, conference organiz-
ers, and industry, based on the lessons learned dur-
ing the systematization performed.

2

This paper is organized as follows: Section 2 describes
the methodology used in the literature systematization;
Section 3 introduces the Malware Research method, a
method for malware research integrating both scientific
and engineering methods. Section 4 discusses 20 pitfalls
in malware research contextualized according the phase
they occur in the Malware Research method; Section 5
proposes actionable recommendations, based on learned
lessons during systematization. Section 6 reviews related
work and Section 7 concludes the paper.

2 Methodology

We systematized the knowledge of malware research to
identify challenges and pitfalls during research develop-
ment, whereas conducting research in the field. To avoid
reporting anecdotal evidences, we support our discus-
sion points with statistical data from the academic litera-
ture. To do so, we relied on PRISMA [159], an evidence-
based minimum set of items for reporting in systematic
reviews and meta-analyses, commonly used in the so-
cial sciences (see steps in Figure 1). Our goal is not to
present a comprehensive survey of malware literature,
which keeps growing at a fast pace [11, 163], but to sys-
tematize the most relevant pitfalls of the field in a scien-
tific and reproducible fashion. Our search encompassed
the most reputable repositories of peer-reviewed security
papers (IEEE, ACM, USENIX, and Springer) published
between 2000 and 2018.
There are multiple definitions of malicious behaviors [79,
116] that can be considered when performing malware
research. In this work, we adopted the malware defini-
tion proposed by Skoudis and Zeltser [174]: “Malware
is a set of instructions that run on your computer and
make your system do something that an attacker want it
to do”, thus covering a broad range of threats, from self-
contained apps to exploits. Therefore, the search focused
on scholarly work indicating the keywords “malware” or
“malicious software” in their titles, abstracts, or key-
words. As each query resulted in a large number of pa-
pers (approximately 4,700 for IEEE, 2600 for ACM, 100
for USENIX, and 3,000 for Springer), we defined addi-
tional filtering criteria, such as paper’s number of cita-
tions, and conference, workshop or journal ranking. As
expected, papers in highly ranked conferences are signif-
icantly more cited than papers in other conferences or
journal papers. Therefore, we selected the most cited
papers in the set of top-ranked conferences.
We filtered out papers whose techniques could be em-
ployed by malware, but the contributions would not be
mainly characterized as malware research, such as side-
channel data exfiltration, hardware Trojans, and formal
theorem proofs. In Table 1, we provide the distribution
of the 491 selected papers by year and conference, high-
lighting the increasing pace of published papers over the
years.

Figure 1: PRISMA methodology. Literature review
steps.

The long-term observation period allows to spot trends
and evolution in the malware research procedures. In
this sense, it is important to highlight that our goal is not
to point fingers to past research practices but to identify
when they changed and if such changes produced positive
results.

3 The Malware Research Method

In this work, we discuss malware research challenges and
pitfalls based on the definitions of scientific methodol-
ogy [157] and engineering design [149]. These principles
introduce large commonalities and aim to evaluate the
validity of a hypothesis or a solution to a given problem.
However, the strategies and criteria for both methods
differ in some aspects, for instance, there is no consen-
sus on whether malware research falls into the science or
engineering category. We propose that such characteriza-
tion depends on the type of research, but in most cases,
it is science and engineering. For example, the main
goal of observational studies is science and not engineer-
ing, since there is no solution proposal for a problem. A
framework to detect malware, on the other hand, aims
at both science and engineering.
Currently, there is no consensus on a methodology for
conducting malware experiments, with some work evalu-
ated exclusively according to one of the aforementioned
methods. This view can lead to many derived pitfalls,
as computer science presents many paradigms [52] which
cannot be evaluated in a complete manner using a sin-

3

Table 1: Selected Papers. Distribution per year (2000 – 2018) and per venue.
Venue/Year 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Total

USENIX (Security, LEET & WOOT) 1 0 0 0 0 1 1 6 2 3 7 8 10 12 9 7 9 13 6 95
CCS 0 0 0 0 0 0 0 2 4 6 6 7 11 9 11 14 2 11 6 89

ACSAC 0 0 0 0 2 3 2 4 4 1 3 8 10 7 10 6 3 7 8 78
IEEE S&P 0 1 0 0 0 1 3 2 1 0 0 10 17 12 3 6 4 5 3 68

DIMVA 0 0 0 0 0 4 4 3 8 2 3 0 8 4 8 7 7 5 4 67
NDSS 0 0 0 0 1 0 2 0 3 3 3 3 2 4 5 4 9 7 3 49
RAID 0 0 1 0 0 1 3 0 0 0 0 0 3 5 5 3 4 3 3 31

ESORICS 0 0 0 0 0 1 0 0 2 1 0 0 2 3 3 0 1 1 0 14
Total 1 1 1 0 3 11 15 17 24 16 22 36 63 56 54 47 39 52 33 491

gle metric (e.g., a validated engineer prototype that does
not ensure scientific proof for all scenarios, or a scientif-
ically proved theorem that cannot be implemented as a
prototype).
As mentioned in the Introduction, we propose that mal-
ware research should follow an approach as effective as
NASA’s, i.e., one that combines and benefits from both
methods (scientific and engineering). Whereas NASA’s
ultimate goal is to promote research exploration by sci-
entific means [143], most of its efforts (and budget) are
spent on developing technology to overcome the practical
challenges involved in such discoveries [144]. Therefore,
we here propose that malware research should be con-
ducted integrating the scientific and engineering methods
in what we call the Malware Research Method.
In Figure 2, we illustrate this integrated proposal, detail-
ing the typical research workflow for developing malware
research, which is composed of the following steps:

1. Common Core: This step is common to both
scientific and engineering methods, and consists of
defining what type of research will be conducted and
how the research will proceed.

(a) Research Objective Definition (What do
you want to do?): This step consists of es-
tablishing the goals of the proposed research.
For example, does the research consist of
proposing a new anti-malware solution, a new
attack, or a new tool to aid malware analysis?

(b) Background Research (What have al-
ready been done in previous work?): This
step consists of gathering background informa-
tion to support hypothesis formulation and so-
lutions requirement identification. It also al-
lows the research to be placed in the context of
prior literature to assert the type of its contri-
bution, e.g. novel work, incremental research,
reproducibility work, etc.

(c) Hypothesis Definition & Research Re-
quirements (What are the proposed hy-
pothesis or requirement steps to test
them?): Depending on the type of research,
this step consists of formulating hypotheses to
be tested and/or defining the requirements to

test the hypothesis, which may include devel-
oping an engineering solution.

2. Engineering: This step is required only for re-
search that proposes practical/empirical solutions to
problems, whose results do not fit into the classic
scientific method [157]. However, we chose to in-
clude it to cover the bulk of malware research that
consists of the development of tools that, in the end,
support further scientific advances. Non-engineering
research (e.g., observational studies, analysis of sam-
ples) will skip these steps and proceed directly to
“Experiment Design”.

(a) Solution Requirements: This step consists
of reasoning and stating the functional, secu-
rity, operational, performance, and/or usabil-
ity requirements of the proposed solution.

(b) Solution Design (What are the solu-
tion requirements and how to implement
them?): This step consists of reasoning about
design aspects of the proposed solution, such as
the definition of a threat model, assumptions,
target platform (e.g., Linux, Windows, An-
droid, IoT) and public (e.g., corporate, home
users, mobile users, researchers, etc.), and def-
inition of whether the solution is a proof-of-
concept prototype or is proper for deployment
into production.

(c) Solution Development/Prototyping
(How to develop the proposed solu-
tion?): This step consists of effectively
implementing the proposed solution.

3. Scientific Method: This step consists of testing
hypotheses and analyzing the results obtained (for
non-engineering malware research) or performing an
empirical evaluation of the proposed solution.

(a) Experiment Design (How will you eval-
uate what you did?): This step consists
of designing an experiment to test hypotheses
or to verify whether the established require-
ments of the proposed solution were met or
not. For purely scientific studies, it involves de-
termining the methodology for data collection

4

or performing an attack, sample sizes, experi-
ment conditions, and dependent and indepen-
dent variables. If the study involves humans,
the researcher also needs either to obtain insti-
tutional review board (IRB) approval for data
collection or to justify the reason behind the
lack of need to seek such approval. For engi-
neering solutions, it involves determining eval-
uation criteria (e.g., functionality, security, per-
formance, usability, accuracy) and defining the
test environment, benchmarks, and datasets.

(b) Tests of Hypothesis/Evaluation of Solu-
tion (What happens in practice?): This
step consists of testing hypotheses or effectively
conducting experiments to evaluate an engi-
neering solution by leveraging the developed
or existing tools and considering the peculiari-
ties, limitations, and idiosyncrasies of support-
ing tools, technologies, environments, operat-
ing systems, and software repositories. De-
pending on the type of research, it may leverage
statistical methods to test hypotheses, or the
use of AV solutions, benchmarks, and virtual
machines/sandboxes. Practical considerations
of evaluation procedures are often neglected in
most research works. In addition, whereas we
highlight the importance of considering practi-
cal aspects for performing experiments, we ad-
vocate for practical considerations to be con-
sidered in all research steps.

Once we have discussed our method for malware re-
search, it is important to highlight that such dichotomy
between science and engineering has not been restricted
to malware analysis, but, in fact, extends to the whole
computer science field [58]. However, in this work, we
limit the discussion to the malware subject since our lit-
erature review is limited to it.

In the following section, we discuss the major challenges
and pitfalls of malware research, which we identified af-
ter applying the aforementioned steps, and based on our
extensive review of the last (almost) two decades of lit-
erature in the field, as well as during our practice devel-
oping malware analysis and detection malware research
experiments.

4 Challenges & Pitfalls

This section presents the challenges and pitfalls of mal-
ware research according to our proposed Malware Re-
search Method and the literature review. Each pitfall
is discussed as a self-contained issue, although some of
them might also relate to others. An overview of the
discussed challenges and pitfalls is depicted in Figure 3.

4.1 Research Objective Definition

“Malware research” is a term used in the literature to de-
scribe a wide field of work that embraces multiple goals.
Therefore, before digging into any detail about how re-
search is conducted, we need to understand which types
of research are developed under the malware “umbrella”.
To provide a summary of the paper’s goals, our research
team read and (manually) classified all papers. Accord-
ing to our understanding (cross-checked by the research
team’s members), malware research can be categorized as
follows (see Table 2 for examples of representative work
in each category):

1. Engineering Solutions: Research proposing
mechanisms to counter malware, such as signature-
based and behavioral-based detectors and tools and
frameworks to aid malware analysis (e.g., static ana-
lyzers, sandboxes, reverse engineering frameworks).

2. Offensive Techniques: Research exposing gaps
and/or security breaches to inform the development
of future effective security solutions. It involves pre-
senting exploits and proofs-of-concept (PoCs) at-
tacks against specific targets.

3. Observational Studies: Research focusing on an-
alyzing samples from a family of malware, specific
platform (e.g., desktop, mobile), or ecosystem land-
scape (e.g., a country, corporation), to inform the
development of future security solutions develop-
ments tools and malware trends. This type of re-
search usually falls exclusively under the scientific
method, therefore, skipping the steps from the engi-
neering method.

4. Network Traffic: Research analyzing and propos-
ing solutions for detecting malicious payloads in net-
work traffic. It might or not involve the execution
of malware samples, because malicious traffic can
be obtained from multiple sources (e.g., honeypots,
corporation, etc). Despite not directly investigat-
ing malware samples, such work advances under-
standing in malware detection via network behavior
characterization. Most network traffic research work
skips typical malware analysis research issues, such
as system interaction, packing, and anti-analysis, to
focus on the traffic generated by successfully exe-
cuted samples. Therefore, we do not consider this
type of study for system statistics pitfalls to not
bias our analyses (e.g., with their lack of malware
threat models), but we considered them as malware
research for the sake of dataset size definition eval-
uation.

These categories are not an exhaustive enumeration of all
types of malware research, but a summary of the most
popular research types. First, because some types of

5

Hypothesis
Definition &

Research
Requirements

Background
Research

Solution
Requirements

Solution
Design

Solution
Development /

Prototyping

Research
Objective
Definition

Engineering MethodCommon Core

Experiment
Design

Test of
Hypothesis /
Evaluation of

Solution

Analysis of
Results

Results align with
Hypothesis /

Requirements?

Communicate
Results

Non-Engineering Research

Yes

Scientific Method

No

Figure 2: The Malware Research Method. Integration of the scientific and engineering methods.

P19:
Assessing

Sample
Execution in
a Sandbox

P17:
Comparing
Apples to
OrangesP16:

Non-reproduc
ible

Methodology

P15:
Evaluating
Analysis/
Detection

Approaches

P12:
Crawled
Apps as
Benign

P11:
Standardized

Malware/
Goodware

Repositories

P1:
Engineering
Solutions &
Observation

Studies

C4:
Increased

Complexity
of Malware

Research

Malware
Research Method

Research
Objective
Definition

Hypothesis
Definition &

Research
Requirements

Solution
Design

Experiment
Design

Test of
Hypothesis /
Evaluation of

Solutions

C5:
Prototypes

and
Real-World
Solutions

P2:
Engineering
Solutions &
Offensive
Studies

P3:
Engineering
Solutions &

Threat
Models

P4:
Too Broad

Threat
Models

P5:
Too Narrow

Threat
Models

P6:
Consider

Real-world
Connection

P7:
“One-size-

fits-all”
Solutions

P8:
Developing
Real-time &

Offline
Solutions

P10: Anchor
Bias &

Datasets

P9:
Biases in

Definition &
Evaluation

P20:
Relying on
AV Results
as Ground-

truth

P18:
Using

Broken, Raw
Samples

C3:
Understand
Roles for a
Technology

C2:
Defining
Threat
Models

C1:
Balanced

portfolio of
malware
research

P13:
Evaluating

app’s
installers

P14:
Evaluating
Real-time

and Offline
& Solutions

Figure 3: Overall Paper Organization. Challenges (blue) and Pitfalls (red).

6

Table 2: Representative papers for each research type.

Objective Representative Papers
Desktop Malware [13], [14, 54, 147, 125, 113, 29, 187]

Observational Mobile Malware [126], [213, 74, 59, 211, 62, 100]
Studies Web Malware [165], [4, 138, 142, 140]

Sandbox [104] [203, 19, 137, 21, 26, 209, 92, 136, 75]
Engineering Malware Detector [150], [44, 47, 180, 202, 84, 65, 208, 114]

Solutions Family Classifier [86], [57, 212, 151, 107, 155, 77, 97, 206, 106, 181]
Targeting System Design: [71], [32, 198, 55, 108, 12, 28, 204, 93, 6]

Offensive Targeting Firmware: [27], [158, 117, 81, 40, 15, 175]
Research Adversarial Machine Learning [42], [78, 115, 207, 91, 45, 43, 210, 102, 2, 96]

Domain Generation Algorithms [182], [195, 148, 134, 17, 83, 169, 197, 120]
Network Honeypots [10], [119, 94, 214, 177, 88, 205, 118, 51, 70, 76, 89]
Traffic Network Signatures [161], [200, 156, 162, 141, 160, 146, 123]

research might not be represented by the papers pub-
lished in the conferences during the considered period
(e.g., malware propagation models). Second, because, in
practice, many research work outside the system secu-
rity field exemplifies their solutions via PoCs dubbed as
malware. However, their main contributions are placed
outside the malware domain, therefore we do not clas-
sify them here as malware research. For instance, we
did not include work on cryptographic side-channels or
attacks to air-gap systems as malware research, because
the primary goal of these proposals are not to present
new ways of infecting systems but to discuss information
theory-based techniques for data retrieval.

It is also important to notice that these categories are
technology-agnostic, i.e., their goals might be accom-
plished using distinct techniques. For instance, machine
learning and deep learning techniques are often associ-
ated with malware detection tasks, but they can also be
considered for traffic analysis or even attack purposes.

Challenge 1: Developing a balanced portfolio of
types of malware research. Considering the Mal-
ware Research method, it is plausible to hypothesize that
observational studies would be the most popular type
of malware research, given that understanding malware
(characteristics, behavior, invariants, targets, trends)
should precede the development of solutions. Insights
from such studies can inform the impact of vulnerabili-
ties, the evaluation of defense solutions, and the under-
standing of context and real-world scenarios. Similarly,
one would expect a greater number of offensive research
to be proposed because such type of research helps in
anticipation of threats, identification of gaps in obser-
vational studies, development of sound defense solutions
for novel threats. However, from 2000 to 2004, only en-
gineering solutions were published in the literature. Fig-
ure 4 presents research type distribution after 2005.

Engineering Solutions have been the most popular

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

P
a
p
e
r

P
re

va
le

n
ce

 (
%

)

Published papers distribution per research type

Engineering Offensive Observational Network

Figure 4: Prevalence of published paper as a func-
tion of research type. For most years, Engineer-
ing Solution has been the most prevalent research type,
whereas Observational Studies has been the less popular.

research type over the years, thus indicating the
consolidation of this research type. Network Traffic
research is the second most popular research type in
almost all years, thus also suggesting its consolidations
as a long-term research line. Observational Studies
and Offensive Research, in turn, have been the least
popular, although having recently (2014 and 2016)
started to grow, suggesting that this kind of research is
not consolidated yet as a long-term research line. On
one hand, it is desirable that the community prioritizes
fighting malware with concrete solutions to the multiple
threats targeting user’s security. On the other hand, this
significant disparity between the prevalence of papers
on Engineering Solutions vs. the remaining types (e.g.,
observational and offensive research work combined
account for less than 50% of all published Engineering
Solutions papers) raises concerns about the effectiveness

7

of such approaches—they might address less relevant
aspects, factors, and problems due to a lack of insights
about real-world malware trends. How can one be sure
about the effectiveness of proposed solutions without
long-term evaluations of their impact? Therefore, it is
essential for the community to diversify and understand
the impact of the distinct types of malware research
work, as following discussed.

Pitfall 1: Engineering Solutions Not Informed by
Observation Studies Data. The current paucity of
observational studies in the academic literature led us
to investigate whether this comes (i) from few existent
observational studies being enough to inform multiple
engineering solutions or (ii) engineering solutions being
developed without considering observational studies find-
ings, which would consist in a pitfall since engineering so-
lutions developed without a good understanding of con-
text and prevalence of families may not reflect real-world
scenarios. Further, this might challenge the definition
of appropriate dataset sizes (e.g., how many different
samples, on average, target a user within a given period
and in a given environment?), malware family1 balanc-
ing (e.g., are corporations more targeted by Trojans or
Ransomware?), and threat model definition (e.g., what is
the prevalence of kernel rootkits vs userland malware?).
Lack of reliance on observational studies as foundations
for developing engineering solutions may also cause pa-
per reviewers to acquire biases. For example, if the study
does not leverage the development of a practical solution,
some reviewers might claim that the contribution is lim-
ited.

Although our literature review revealed the existence of
observational studies (e.g., malware packer [187], Win-
dows malware [13], and Android malware [126]) that
could be used to back many project decisions (e.g., based,
for instance, on the threat prevalence data presented by
these research work), their use is very limited in prac-
tice. Whereas each one of these papers is cited by more
than 10 other papers among the considered top confer-
ences, their citations are placed in the context of related
work for many engineering solutions [80, 46] and not on
project decision’s support.

In our view, a good usage of previous observational stud-
ies is when their findings are used to support project de-
cisions. Although no good example of this phenomenon
was identified among the considered malware papers, we
can identify this good practice in the study of Levesque
and Fernandez [121], which presents an experiment to
assess the effectiveness of an anti-malware solution for a
population of 50 users via clinical trials. They describe
their assessment steps as follows: They (i) first describe
the dataset size definition challenge (“The challenge is
then to identify the desired effect size to be detected before
conducting the experiment”); (ii) identify that the chal-

1set of samples with similar goals and/or implementations

lenge can be overcome by relying on previous data (“the
effect size can be estimated based on prior studies”); and
(iii) finally, leverage this prior data for the task at hand
(“Based on the results of our previous study...we know
that 20% of the participants were infected even though
they were protected, and that 38% of the total population
would have been infected if they had not been protected
by an AV product.”).

Whereas the lack of longitudinal studies was already
acknowledged for some research subjects (e.g., Luo et
al. [129] claiming “there is no longitudinal study that
investigates the evolution of mobile browser vulnera-
bilities”), we here extend those claims for the general
malware research subject.

Pitfall 2: Engineering Solutions Not Informed
by Offensive Studies Data. As for the observational
studies, the paucity in the number of offensive papers
published in the academic literature led us to question
whether (i) few studies were enough to support engineer-
ing solution’s developments or (ii) solutions have been
developed without being informed by such type of work.
We discovered that, as for observational studies, offen-
sive papers have been mostly referred as related work
and not as a basis for developments.

A first hypothesis for the lack of reliance on offensive
papers is a generalization of the reasons for the lack of
reliance on observational studies, with researchers be-
coming used to develop a hypothesis in an ad-hoc man-
ner. Another plausible hypothesis for the relatively low
number of published and referred offensive work are re-
search biases. Previous work have already discussed the
existence of possible biases in favor and against offensive
papers [82]; Some researchers consider that vulnerability
discoveries (also called “attack papers”) are not scientific
contributions. On one hand, we agree that disclosing vul-
nerabilities without appropriate reasoning (and respon-
sible reporting to stakeholders) does not contribute to-
wards advancing the field. On the other hand, we believe
that the field (especially defense solutions) can greatly
benefit from more offensive work conducted in a scientific
manner (i.e., constructing hypotheses and theories in ad-
dition to presenting an isolated evidence). Examples of
open or only partially-addressed research questions for
offensive papers are: research exposing weaknesses in
existing defense solutions (e.g., malware classifiers eva-
sions), insights on attacks’ measurement in practice (e.g.,
how long do attackers take to exploit a vulnerability in
practice after a 0-day disclosure? [16]) insights to inform
the development of future defensive solutions (e.g., how
hard is it to find a Return Oriented Programming–ROP–
gadget in a program?).

The case of ROP attacks, in a general way, is an illus-
trative example of offensive papers developed in a sci-
entific manner according the Malware Research Method
proposed in this work. Whereas proposing exploitation

8

techniques, these research work [132, 33, 71] do not fo-
cus on exploiting specific applications but to investigate
a whole class of vulnerabilities abusing the same infec-
tion vectors (e.g., buffer overflows and code reuse). The
work by Goktas et all [71], for instance, reproduces and
investigates previous solutions proposed in the literature
to establish the limits of existing ROP defenses.

0

1

2

3

4

5

2
0

0
6

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

P
a

p
e

rs

Conference

Offensive papers per security conference

ACSAC
CCS

DIMVA
NDSS

RAID
SecPriv

Figure 5: Offensive papers per security conference.
Most malware research papers are published in USENIX
WOOT and not in the other top venues.

Regardless of the reason for the low number of offensive
malware papers, we advocate for the community to ac-
knowledge the importance of this type of study and also
focus its efforts on the development of more offensive re-
search. Currently, a first step towards acknowledging and
increasing the importance of the offensive security field
has been given by the establishment of targeted events as
USENIX Workshop On Offensive Technologies (WOOT).
However, the community efforts should still be extended
to other top venues, which do not present offensive mal-
ware papers published in most years, as shown in Fig-
ure 5.

4.2 Hypothesis Definition & Research
Requirements

The lack of reliance on malware landscapes and other
threat panoramas to support the proper design of mal-
ware research projects may end up in development pit-
falls that require additional reasoning to be overcome, as
following discussed:

Challenge 2: Defining Threat Models. Threat
modeling defines: (i) what will be protected (e.g., a sys-
tem against malware, a buffer against injection, etc.), (ii)
which methods will be leveraged for the task (e.g., static
analysis, runtime monitoring, machine learning classifi-
cation) and (iii) who the stakeholders are (e.g., user, an-
alyst, system administrator, an AV, company, attacker,
etc).

The threat model should reflect the decisions about the
question or problem at hand, for example, which problem
should be addressed first and which the most promising
strategies for testing the hypothesis or solving the prob-
lem.

A well-defined threat model allows researchers to bet-
ter position their work in the context of the literature
by clearly stating the question(s) that they want to an-
swer or the problem that they are trying to solve and,
therefore, streamlining the peer-review process evaluat-
ing whether the researcher’s goals were achieved.

Therefore, proposed research without clearly defined
threat models also makes the peer-review process harder
and raises concerns about the viability and limits of the
hypotheses and proposed solutions.

Threat model definitions should not be limited to papers
proposing defensive solutions, but should also cover
attack papers. In such a case, researchers are required
to clearly define what are the assumptions about the
attack (e.g., infection vector) and which type of defense
the attack is supposed to bypass (e.g., address space
layout randomization).

Pitfall 3: Engineering solutions and offensive re-
search failing to define clear threat models. Ide-
ally, all malware research papers should dedicate space
for addressing threat model definitions and/or papers as-
sumptions, either in the form of a dedicated threat model
section or as any other portion of the text clearly high-
lighting researcher’s reasoning on the subject. Unfortu-
nately, this is not observed in practice. Figure 6 shows
the ratio of engineering solutions and offensive research
papers published after 2007 presenting threat model def-
initions (Model line). In our review, we were not able
to identify any paper explicitly defining threat models
in a structured way (e.g., a section or paragraph exclu-
sively dedicated to the present researcher’s reasoning)
from 2000 to 2006 (which is likely due to the fact that
this concept was not well-established by that time).

We notice that, in practice, most papers do not present
a dedicated threat model section, either by distributing
solution presentation along with the entire text in a non-
structured manner or even by not reasoning about the
proposed solution threat model, assuming some implicit
model and/or standard, which is not always clear for
the reader. For instance, in some papers [103, 193], the
reader only discovers that Windows was the targeted OS
when a Windows API is referred, which indicates an im-
plicit assumption on the popularity of Windows malware
over that period, an important missing information to
motivate the work, evaluate their importance, and char-
acterize their results.

This lack of formalization is understandable, however,
when the field was establishing itself in the early 2000s,
but today, with the relative maturity of the field, crucial
that malware research follows a more rigorous scientific-

9

0%

10%

20%

30%

40%

50%

60%

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

P
a
p
e
r

P
re

va
le

n
ce

 (
%

)
Threat model analysis

Threat Model

Figure 6: Threat modelling. The number of papers
formalizing threat models have been growing, but it still
corresponds to roughly 50% of the published work (Pit-
fall 3).

engineering method. Fortunately, such a trend has been
observed, with an increase in papers including threat
model sections in the last decade (2008 to 2018). in com-
parison to the scarcity of definitions from the beginning
of the 2000s. We highlight that a significant fraction of
papers lacking a threat model section are offensive pa-
pers, with ≈50% of attack papers not describing clearly
what are the security mechanisms intended to be by-
passed.

Although defining a threat model is essential, there
is no “gold rule” for defining a precise threat model
and the malware field did not adopt any particular
approach (other security fields, such as cryptography,
have some popular threat modelling strategies [61, 122]).
Therefore, whereas making the correct decisions is hard,
making mistakes is easy and might lead to security
breaches, as following discussed.

Pitfall 4: Too broad threat models. Defining a
threat model is challenging, therefore pitfalls might arise
even when a threat model is clearly stated. For instance,
researchers and reviewers might exaggerate when defin-
ing and evaluating the required security coverage of the
proposed engineering solutions and/or attack proposals.

For instance, an important aspect of threat model defi-
nition is determining what entity will be protected or at-
tacked (e.g., userland vs kernel), i.e., what the solution
scope is. Typically, current systems will either protect
userland or kernel land. Therefore, researchers should
explicitly state their choices about their solution’s op-
erational scopes. Figure 7 shows the prevalence of so-
lutions and attack papers explicitly stating whether or
not their proposal addresses kernel space (Kernel line),
even if in an unstructured manner. From 2004 to 2010,
it was more common than in recent years (2010 to 2018)
for engineering papers to state Kernels somehow in their

0%

10%

20%

30%

40%

50%

60%

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

P
a
p
e
r

P
re

va
le

n
ce

 (
%

)

Threat model analysis

Kernel Cores

Figure 7: Threat modelling. The percentage of pub-
lished work whose threat model explicitly states the ad-
dressing of kernel issues is very low, oscillating in the
range below 20% in recent years (Pitfall 4). Also, the
number of papers explicitly stating, in their threat mod-
els, whether their solutions is intended for single or multi-
core is low, less than 20% in recent years.

scope.

One hypothesis for this early popularity is the lack of
consolidation of the practice of stating threat models in a
more structured fashion, where issues regarding porting a
solution to or conducting an attack at the kernel level are
directly confronted. When threat models are not defined,
authors address issues in a free,non-systematized way,
only mentioning that a solution port to a given scenario
was possible, but without discussing it in proper details.
We were able to find many examples in the literature
of this practice in multiple contexts: (i) “dynamic anal-
yses could be easily ported to X-Force” [154]; (ii) “the
techniques can be easily ported to support Linux” [56];
and (iii) “can be easily ported to handle PE binary on
Windows” [124]. In practice, porting a solution presents
multiple implications that should be discussed in details
(see Section 4.4).

In turn, when threat models are clearly defined, partic-
ularities, such as the feasibility of implementing a ker-
nel version of a given attack or solution, are omitted by
definition when they are out of scope, thus making the
researcher focus only on the proposed scenario, in a more
rigorous manner.

In recent years, after threat models started being more
clearly defined, the prevalence of userland solutions has
increased, which is hypothesized to be a more realistic
scenario since userland malware is easier to implement
than kernel threats. Although such a hypothesis is
plausible, it is hard to evaluate how close this trend
reflects real scenarios because of paucity of data sup-
porting the prevalence of userland threats in multiple
scenarios, which affects not only researchers defining
threat models, but also reviewers evaluating papers. For

10

example, a reviewer might be more prone to pinpoint as
a weakness for a particular solution to not addressing
kernel threats. However, why should it be necessary
for a proposed userland solution to also address kernel
space? The relevance of a threat model (e.g., addresses
only userland) should be backed by data indicating the
relevance of the proposed threat model. We are not
claiming that privilege escalation is not a significant
threat in some scenarios, but we consider that reviewers
questioning the contribution of a solution because it does
not address a variety of scenarios (e.g., userland and
kernel land, desktop and mobile) might still be a bias
derived from early years of poorly-defined threat models
and the current paucity of observational studies pro-
viding insights about prevalence and relevance of threats.

Pitfall 5: Too narrow threat models. If on the one
hand, researchers and reviewers might exaggerate the se-
curity coverage requirements for the developed solutions,
on the other hand, they might neglect important aspects.

For instance, another important threat model definition
is how a given scope will be protected. Modern architec-
tures have been evolving over years from single-core pro-
cessors to multi-core architectures. Therefore, it would
be natural for both attackers and defenders to target
this scenario. Many solutions, however, have still been
developed for the old single-core paradigm [172]. Fig-
ure 7 shows the prevalence of papers stating whether
their solutions are intended to operate on single or multi-
processed platforms (Core line). Most work does not
state their assumptions regarding the processor, which
made us assume that such solutions do not address
multi-core issues. Therefore, this (assumed) prevalence
of single-core solutions shows that, in the core aspect,
reviewers have not been challenging solutions to ad-
dress broader threat models, as observed in the case of
userland-kernel’s case.

In practice, it reflects the lack of supporting data
regarding the prevalence of threats in different archi-
tectures and the lack of evaluation of the real impact
of multi-core threats and solutions in actual scenarios.
Note that, we are not questioning the contribution of
single-core-based solutions, which are valid PoCs (see
Section 4.3), but actually pointing out that not properly
defined threat model may lead to development gaps,
such as the lack of incentives for the understanding of
the impact of distributed threats and the development
of multi-core-based security solutions, problems not
completely addressed by previous work [130, 90, 23].

Challenge 3: Understanding the Roles for a Tech-
nology. Although the discussion on solutions implemen-
tations is placed in another step of our proposed malware
research process, we believe that the adoption of a tech-
nology and/or approach is still part of the threat model
discussion, because the drawbacks of a technology must

be compatible with the scenario envisioned by the re-
searchers and/or users. If these are handled separately,
the greater the chances of solutions not fulfilling the re-
quirements and of research pitfalls emerging. Thus, re-
searchers must understand what is the role of each tech-
nology in the “big picture” of a security solution. It is
essential to understand and acknowledge the pros and
cons of each technology (e.g., signatures, heuristics, ma-
chine learning).

Considering the machine learning (ML) technique as an
example, due to its recent popularity in the field (in con-
junction with deep learning and other variations), re-
searchers must have clear in mind that it might be ap-
plied in distinct steps of a security process and for dis-
tinct tasks, with each own of them presenting their own
drawbacks. In the context of this work, ML technique is
mostly (but not only) referred to as malware detection
solutions, but the approaches for this vary significantly:
from the static classification of files using feature vec-
tors [36] to the dynamic monitoring of the whole-system
operation using outlier detection algorithms and tem-
poral series [99]. Therefore, each case presents its own
drawbacks to be evaluated, such as the distinct limita-
tions (e.g., packing in the first vs. performance in the
latter), and/or distinct competing technologies (e.g., sig-
nature in the first vs. hardware counters in the latter).

Section 6 points to distinct surveys on the drawbacks of
ML for security applications. In the following, we discuss
the most common pitfall derived from the comparison
of distinct technologies (including ML).

Pitfall 6: Failing to consider real-world connec-
tion. Ideally, academic research should introduce pro-
posals that can be further adopted by industry and/or
by home users. However, evaluating if a proposal
is ready to transition to practice is hard. For ex-
ample, consider the signature-matching malware detec-
tion paradigm. Whereas signature-based approaches
are generally proven evadable by morphing code tech-
niques [185], this paradigm is still widely used by AV
companies [48, 50, 18], as the fastest approach to re-
spond to new threats. Considering this scenario, should
signature-based detection research still be considered in
academia?2

We were not able to identify the ratio of defensive solu-
tions leveraging behavior-based and signature-based ap-
proaches for the papers published before 2005, as these
did not clearly state their detection methods. Figure 8
shows the prevalence of signature-based and behavioral-
based defensive solutions leveraging behavior-based and
signature-based approaches for the papers published af-
ter 2006. Most research work tackling malware detec-
tion leverage behavior-based techniques (60% of all pa-
pers proposing a malware detection solution and 70%
in the last eight years) instead of signature-based ap-

2In our view, it should.

11

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2006 2008 2010 2012 2014 2016 2018

P
a
p
e
r

P
re

v
a
le

n
c
e
 (

%
)

Papers leveraging signatures vs. behaviors in defensive solutions

Signatures Behaviors

Figure 8: Prevalence of papers proposing
signature-based vs behavioral-based detection.
Behavior-based approaches are more prevalent than
signature-based approaches.

proaches. Does this effort distribution reflect real-world
needs? This is a hard question, as the current under-
standing about AV detection methods and statistics is
limited (see Section 4.5 for a comprehensive discussion).

There are many pros and cons that should be con-
sidered when evaluating the appropriateness of signa-
tures and other behavior mechanisms (e.g., performance,
database size, so on). Table 3 exemplifies the compar-
ison of some selected research work to highlight their
multi-dimensional characteristics. However, despite the
distinct pros and cons of signatures and ML models,
the most frequent complaint about signatures seems to
be their low resistance to evasion attempts by mini-
mal morphing code patches (i.e., changing a few bits).
This is mentioned in almost all work proposing behavior-
based solutions. Whereas this is indeed a limitation of
signature-based approaches, this kind of attack is also
possible for other approaches, such as the ones based on
Machine Learning (ML), which is not mentioned by any
of the evaluated work. A recent research work demon-
strates that the simple fact of appending bytes to a bi-
nary might lead to classification evasion [36] (for a more
complete discussion on ML attacks, check [186]). Thus,
this evasion possibility should not be the only criteria to
consider or discard signature or ML approaches as detec-
tion mechanisms.

In practice, whereas some claim that “signatures are
dead” [170], some AV companies incorporate YARA sig-
natures as part of their solutions [133]. From our litera-
ture review, the academic community seems to be more
engaged in the first hypothesis, given the prevalence of
behavior-based research work. The community, however,
should care to not neglect the second scenario and ac-
quire a bias against new signature-based proposals. In
real scenarios, signatures and behavioral approaches tend
to be used complementary, and research work targeting

real-scenarios must reflect this setting.

4.3 Solutions Design

The research goals and considerations defined in the
previous steps directly affect the defensive solutions
developed to achieve them. Here, we discuss the pitfalls
derived from vague/imprecise research goals and design
assumptions in defense-based engineering tools.

Challenge 4: Handling the Increased Complexity
of Malware Research. Every research discovery offers
contributions to the security community, either by intro-
ducing a new technique, proving a security property, or
providing data about a given particular scenario. There-
fore, with the maturity of the malware research field, it
is plausible to hypothesize that research work has been
increasingly complex and proposing a greater number of
contributions.
To explore this hypothesis, we manually aggregated the
number of claimed contributions from all 491 papers re-
viewed as part of this systematization. Figure 9 shows
that the average number of claimed contributions per pa-
per per year has been increasing over time and seems to
have saturated in an average of three distinct contribu-
tions per paper since 2014.

1

2

3

4

5

6

7

8

2002 2004 2006 2008 2010 2012 2014 2016 2018

C
o
n
tr

ib
u
tio

n
s

(#
)

Published papers vs. claimed contributions

Average Maximum

Figure 9: Number of papers claimed contributions.
Papers are getting more complex and claiming an in-
creasing number of contributions.

On one hand, a growing number of contributions per pa-
per is a good indicator that the field has been tackling sig-
nificant challenges and addressing bigger problems. On
the other hand, this increasing number of claimed con-
tributions per paper raises the following question: are
solutions claiming multiple and diverse contributions at-
tempting to operate in a “one-size-fits-all” fashion”?
It is important to notice that we are not doubting these
researcher’s capabilities, but it seems that presenting
such a high number, such as six or seven, of multiple,
distinct contributions in a single paper is not reasonable

12

Table 3: Research Works Comparison. Research works relying on distinct approach must be evaluated according
to their multiple dimensions.

Work Gionta et al [69] Cha et al. [39] Shafiq et al. [173] Allen et al. [3]
Goal Triage Triage Detection Detection

Technique Signature Signature Model Model
Environment Cloud Linux Windows Android

Features 7 7 3 3
Performance (+) 87% 90% 0% 0%

Detection (+) 0% 0% 96% 97%

when aiming to provide a complete scientific treatment
of the investigated subject. We are also not suggesting
this metric to be used as definitive proof of the quality
of one’s work; it is not possible, distinct authors have
distinct writing styles when stating their contributions.
More specifically, we are concerned about the hypothet-
ical possibility of this “raising the bar” mentality on
claimed contributions creating a scenario of discoveries
being less in-depth explored than they should. It is
understandable that in the current very competitive
world researchers have to tune up their claims, but
it cannot be done at the charge of the discovery and
exploration feelings. Thus, authors should care to first
explore their discoveries in-depth and demonstrate
their potential for solving the tackled problem in the
stated scenario, despite limitations to operate in other
conditions, before attempting to extend their solutions
to other contexts.

Pitfall 7: Developing “one-size-fits-all” solutions.
To understand the problem regarding “one-size-fits-all”
solutions, consider an AV solution advertised as having
multiple operation modes: (i) a static-signature matcher,
which is fast, but vulnerable to morphing code samples;
(ii) a runtime, behavior-based monitor, which is effective,
but imposes significant performance overhead; and (iii) a
cloud-based agent, which is effective, presents low over-
head but incurs significant detection delays because of
its need to upload suspicious objects to AV company’s
servers. Whereas this “one-size-fits-all” solution may
claim that it has showcased that it can address all issues
at the same time, in practice it only brings new questions,
such as: (i) is static signature matching enough for most
cases or should the user turn on runtime monitoring per-
manently?; (ii) should runtime monitoring be enabled for
all processes or only for newly-launched ones?; (iii) which
fraction of suspicious objects should users outsource to
the cloud inspector?

These challenges are hardly ever tackled by “one-size-
fits-all” solutions, which end up transferring to users,
analytics, and system administrators the responsibility
to properly identifying the solution’s best parameters for
their use cases.

This mode of operation, where a solution attempts to
accomplish many goals instead of exploring a problem in-

depth is problematic because each claimed contribution
is not comprehensively explored and its implications are
not fully understood.

As discussed before, the feasibility of a solution for a
given scenario should be backed by data from prior obser-
vational studies. For example, many userland detection
solutions can potentially operate in kernel-mode. How-
ever, it is important to evaluate first to what extent the
solution addresses the problem in userland before making
it generic to both levels of abstraction. Similarly, whereas
an analysis solution can also operate in detection mode,
having it providing insights about an underexplored sce-
nario may be more scientifically significant than operat-
ing in a “2-in-1” fashion by integrating this approach to
build a detector enhanced by a marginal rate.

The scholarly work that closest investigated a side-effect
of “one-size-fits-all” solutions is the Android policy
evaluation by Chen et al. [41], where authors observed
that access control frameworks are often ineffective
because “existing Android devices contain a wide variety
of SEAndroid policies, depending on both the version of
Android as well as the device manufacturer” and even
user-defined policies are not enough to prevent privilege
escalation.

Pitfall 8: Developing real-time and offline solu-
tions under the same assumptions. Engineering so-
lutions are one of the most common types of proposed
malware research. A plausible reason for such preva-
lence is the pressing need to protect users and corporate
devices. Engineering solutions can be classified as real-
time and offline, according to their analysis/detection
timing approaches. In real-time solutions, the collected
data (e.g., API calls) is classified or flagged as mali-
cious as soon as it is captured (e.g., within a sliding
window). Offline solutions are usually used for analy-
sis, classify or flag an execution after all data (e.g., an
entire trace) is captured. Each type of approach presents
their own advantages and drawbacks, which in practice
are often mixed, resulting in flawed designs and evalu-
ations. Offline solutions present two major advantages
over real-time ones: simplicity of implementation and
whole-context view. The implementation is simpler be-
cause offline solutions: (i) do not need to concern about
monitoring overhead, a constant concern for real-time so-

13

lutions because of performance penalties affecting users,
who can affect user’s experience, potentially leading users
to turn off the solution; (ii) do not need to protect them-
selves against attacks, contrary to real-time solutions, be-
cause they operate in a protected environment; and (iii)
do not need to concern about knowledge databases (e.g.,
signature, training model, opposite to real-time solutions
which need to consider database size and updates), also
because they operate in controlled environments, which
no strict constraints.

In practice, despite most papers claiming the applica-
bility of their proposed solutions in real-time, all of the
132 papers proposing defense solutions considered in
our systematization are actually off-line detection tools
because they do not present either solutions or reasoning
about the aforementioned challenges, with only four
papers acknowledging that. A good example of an
article properly handling the differences between online
and offline detection approaches is observed in the work
of Khasawneh et. al [99], which not only acknowledges
both operation modes (e.g., “We also evaluate the
performance of the ensemble detectors in both offline
and online detection.”), but also acknowledges their
performance differences (e.g., “the detection success
offline: i.e., given the full trace of program execution”).

Challenge 5: Understanding Prototypes and
Real-World Solutions. The security field is very dy-
namic and new solutions are often being proposed and
the nature of these proposals is very diverse (see the
interesting case of an academic mobile malware detec-
tor transition to the market [72]). Academic researchers
tends to focus on novel proposals, whereas industry re-
searchers usually work on developing real-world solu-
tions. Ideally, these two types of research should be com-
plementary, with one providing insights for the develop-
ment of the other. This type of cooperation, however,
requires understanding of the pros and cons of each type
of proposal, which is often not clear for many researchers.

When prototyping, researchers are free to create novel
concepts without the constraints of the real world and
concerns about deployment. In prototype-based studies,
researchers are usually concerned in presenting a new
idea rather than to what extent the idea can be tran-
sitioned to practice. In general, prototyping assump-
tion is that once the idea is validated, some third party
(e.g., a system vendor) can later provide a real-world
implementation for the proposed solution. As a draw-
back, prototype-based solutions cannot be immediately
deployed for use.

Research on real-world solutions, in turn, focuses on
ready deployment, thus exerting actual benefits to users,
corporations, and analysts. These proposals usually
rely on previous approaches and focus on practical con-
straints, such as storage requirements, energy efficiency,
and interaction with OS and other applications. Due to

these constraints, which can impose high development
and maintenance costs, it is common that some aspects
of the original proposal are discarded to allow for feasible
implementation.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2006 2008 2010 2012 2014 2016 2018

P
a
p
e
r

P
re

v
a
le

n
c
e
 (

%
)

Year

Published papers presenting prototypes for defensive solutions

Prototypes

Figure 10: Prototypes and real-world solutions. Al-
though most academic research focus on prototype solu-
tions, labeling solutions as such is still not a common
practice.

We propose that both types of research are important
and that both should be considered equally valuable
by the community. However, due to the academic
community inclination of favoring highly innovative
work, academic researchers tend to propose more
prototypes than real-world solutions. On one hand,
science and engineering can only make breakthroughs if
highly innovative ideas are proposed, thus researchers
should keep investing in prototypes for presenting their
innovative ideas without constraints. On the other hand,
actual progress and broader impacts can only be made
if highly innovative ideas are transitioned to practice.
Going back to the NASA analogy, what progress would
have been made if no practical technologies had been
developed to actually reach outer space?

Our systematization revealed that many researchers do
not position their solutions as prototypes, despite none of
the 132 engineering solution papers reviewed presented a
solution that is mature enough to be deployed in practice.
Even solutions which were further transitioned to prac-
tice (e.g., the ROP mitigation KBouncer [150] become a
product [53]) could not be considered as ready-to-market
in the time of their publication since they lack even basic
functionalities such as Graphical User Interfaces (GUIs)
and configuration files.
One hypothesis for such a phenomenon is the lack of for-
malization on the role of prototypes and real-world solu-
tions. Figure 10 shows that from 2000 to 2005, when the
field was not well established, papers were not clearly po-
sitioned as either prototype or real-world solution (even
considering very lax definitions of prototypes, such as the

14

author’s self-positioning their creations as such). As the
field matured (2006-2012), most researchers positioned
their contributions as prototypes. In recent years (2013-
2018), the percentage of researchers positioning their so-
lutions as prototypes has oscillated. This oscillation does
not correlate to more real-world solutions being pro-
posed, but actually to researchers not clearly labeling
their proposed work as either prototype or real-world. It
may indicate that researchers are facing difficulties clas-
sifying their own work or might be concerned of biases to-
wards both types of classifications (e.g., prototypes seen
as “academic exercises” and real-world solutions labeled
as “incremental, engineering, or development work”).

Correctly positioning their work is important for re-
searchers because reviewer’s criticisms about their work
are also biased according to this positioning, as some
reviewers are more prone to accept prototyping work
whereas others to accept more real-world work. Posi-
tioning a solution also implies on acknowledging some de-
velopment trade-offs. For instance, malware researchers
are typically required to select an underlying platform to
support their solutions. When supported by virtual ma-
chines (VMs), malware experiments can be easily set up
and analysis procedures usually scale well, as reverting
VM snapshots is enough for restoring the system to a
clean state. VMs, however, can be detected by armored
malware samples, thus resulting in reviewers complain-
ing about evasion issues. Bare-metal-based solutions, in
turn, are free from side-effects, avoiding sample evasion
and being more suitable for the development of solu-
tions targeting more advanced threats. As a drawback,
bare-metal systems are hard to reset to a clean state, as
no native snapshot support is available, limiting exper-
iments scaling and inclusion of large datasets. Whereas
analysis experiments can leverage a combination of VMs
and bare-metal machines to overcome evasion, reviewers
should acknowledge that researchers proposing the de-
velopment of new solutions are required to opt for one
of these environments under the cost of having to im-
plement their solution multiple times only to prove their
proposed concept as feasible. Researchers, in turn, must
acknowledge the limitations of the selected environment
and point out development gaps.

Another typical design choice that malware researchers
face is the targeted OS to leverage for their solutions. An
open-source OS, such as a Linux streamlines instrumen-
tation, as its kernel can be recompiled with new struc-
ture’s definitions, thus constituting a good prototyping
platform for the proposal of new experiments. The Linux
OS, however, presents fewer malware samples available
for evaluation compared to targeting it in comparison to
the Windows OS. Developing a solution for Windows, on
the other hand, can be considered as aiming to provide
a real-world solution, as it is the OS most targeted by
attackers [7]. This OS, however, is closed source, thus
not allowing kernel recompilation for structures redefini-

tion, which limits solution scope [25]. On Windows, for
instance, instead of kernel modifications, many changes
must be deployed in userland, a more restrictive threat
model, but compatible with a real-world solution.
If the peer-review process does not fully acknowledge
this trade-off, the choice between the adoption of Linux
or Windows as base for a solution development would
turn into the choice about which experimental step would
be considered as limited: implementation (restricted in
Windows) or evaluation (restricted in Linux). Similarly,
researchers working in mobile environments are required
to adopt threat models that might be more or less in-
trusive. For example, approaches requiring jailbreaking
OS native protections (e.g., Android rooting) are more
comprehensive, but one may claim that their implemen-
tations are unfeasible in practice due to the vendor’s se-
curity policies of not allowing device rooting. On the
other hand, self-contained approaches are immediately
deployable, but one might claim that these hypotheti-
cal solutions can be defeated by privileged actors (e.g.,
kernel rootkits).
Further, we identified a possible conflict between proto-
types and real-world solutions in the emerging field of
hardware-assisted security, which encompasses both ma-
licious codes exploiting hardware vulnerabilities [191, 67]
as well as the development of hardware support for
software protection [24]. Whereas hardware is often
designed using simulators (e.g., Intel PIN [128]), security
evaluations are usually expected to be performed in
real systems (e.g., exploiting a real vulnerability). In
addition, as malware research is multi-disciplinary,
reviewers from distinct fields (system security vs.
computer architecture) might naturally exhibit different
biases and preferences according to their working
fields standards (see biases in computer architecture
research [109]). Therefore, researchers in the field might
expect some reviewer’s feedback sometimes complaining
more about the feasibility of the prototype whereas
others will complain more about the security evaluation.
For instance, computer architecture experts tend to be
more prone to accept prototyping, as this community
is more used to the challenges for modifying actual
processors and often assume that vendors can better
transition solutions to practice [73]. Security experts,
in turn, tend to be more prone to question the viability
of vendors adopting the proposed solutions due to the
practical nature of most security research work.

4.4 Experiment Design

As for the design of solutions, pitfalls originated from
unrealistic scenarios also appear in experiment design,
as following discussed in this section:

Pitfall 9: Introducing biases in definition and
evaluation of datasets. To perform experiments in

15

a significant scenario, researchers should balance their
datasets to avoid biases, i.e. experimental results being
dominated by a subset of all possibilities. Researchers
conducting experiments involving machine learning clas-
sification are particularly concerned with dataset biases.
For example, they do not want a single malware family
(e.g., Trojans) to dominate other malware families (e.g.,
worms, downloaders, bankers, etc). To avoid family rep-
resentation biases in malware experiments, researchers
strive to define datasets with equally represented mal-
ware samples counterbalanced by family type. Whereas
such choice seems reasonable, it also introduces biases
because equal representation of samples implies that all
scenarios (end-users, corporation sectors, countries) are
equally targeted by a balanced set of malware families, in
an “one-size-fits-all” fashion (see Section 4.3 for another
example where the “one-size-fits-all” pitfall applies). In
practice, no environment is known to be equally targeted
by all malware families. On the contrary, some environ-
ments may present unbalanced family prevalence, such
as the Brazilian scenario, which is dominated by banking
malware [35]. Therefore, targeted classifiers can poten-
tially outperform their “one-size-fits-all” counterparts for
a particular scenario. Unfortunately, most malware re-
search does not discuss this assumption and also does not
compare classifier results considering multiple datasets
having distinct family distribution.

Also, users are more prone to be targeted (and in-
fected) by malware distributed via phishing messages
than by automated worms [63], thus showing that
purely technical aspects (e.g. dataset with families
equally represented) has been trumping key cultural
and environmental aspects pertaining to the audience
of the solution. Ideally, a solution targeting a given
scenario should be evaluated with a dataset reflecting
the characteristic of that scenario. Unfortunately, there
is a scarcity of studies covering particular scenarios
(see Section 4.1, such as specific countries, industry
sectors, which makes the development of targeted solu-
tions harder. Among all defensive papers, only seven
discussed dataset distribution and its relevance to the
scenario where the solution should operate. Stringhini
et al. [183], for instance, proposes a system “able to
detect malicious web pages by looking at their redirection
graphs” and explain that their evaluation matches
real-world requirements because their evaluation dataset
was “collected from the users of a popular anti-virus
tool”.

Pitfall 10: Falling for the Anchor bias when defin-
ing datasets. Defining an appropriate sample dataset
(malware and goodware) is key to most3 malware re-
search. A dataset size too small might not be represen-
tative of a real scenario, thus characterizing results as
anecdotal evidence. Extremely large datasets, in turn,

3Offensive papers will present distinct requirements

might end up proving almost anything, given that even
statistically-rare constructions appear in the long tail,
but these might not be prevalent in any actual scenario,
thus limiting the application of researcher’s discoveries
as the expected conditions would be never met.

Ideally, to define a good dataset, researchers should first
identify the characteristics of the environments in which
their solutions are designed to operate, by leveraging
samples targeting such environment to avoid introducing
biases (see Section 4.4 for a more comprehensive discus-
sion). This two-phase requirement highlights the differ-
ences between observational studies and engineering so-
lutions(see Section 4.1). Whereas the first type usually
requires a large number of samples in the evaluation pro-
cess for appropriate environment characterization, the
second type can potentially leverage fewer samples once
previous studies have shown that the considered samples
are appropriate for the environmental characteristics and
present a significant threat model (see Section 4.2). As
pointed by Szurdi et al. []: “Investigating... behavior
longitudinally can give us insights which might general-
ize to traditional cybercrime and cybercriminals”. An-
other important factor in the dataset definition is the
type of research being conducted regarding targeted OS
(Windows, Linux, Android) and approach (dynamic vs.
static). Windows and Android environments provide re-
searchers with many more samples than Linux. Further,
static approaches can process a substantially larger num-
ber of samples per unit of time than dynamic approaches.

Because of the paucity in observational studies and lack
of dataset definition guidelines, researchers end up estab-
lishing datasets in an ad-hoc manner, adding challenges
to the peer-review process. More specifically both re-
searchers and reviewers end up falling for the Anchor
bias [64], a cognitive bias where an individual relies too
heavily on an initial piece of information offered (the
“anchor”) during decision-making to make subsequent
judgments. Once the value of this anchor is set, all fu-
ture decision-making is performed in relation to the an-
chor. Whereas this effect is present in many research ar-
eas (e.g., forensics [184]), its impact on malware research
is particularly noticeable. For example, consider a paper
proposing a new method to classify malware for Windows
using static methods and adopting a dataset with one
million samples. After publication, one million samples
implicitly become an anchor. Then, consider a researcher
proposing a novel real-time (dynamic) Linux framework
to detect malware via machine learning. Because the ap-
proach leveraged Linux (fewer samples available) and is
dynamic (i.e., requiring more time to run samples, pre-
pare the environment for samples, etc.), it will be nearly
impossible for this proposal to meet the “anchor require-
ments”: a dataset with one million or even hundreds
of thousands of samples. Next, after peer-review, it is
plausible to hypothesize that the proposal might receive
feedback pointing out the use of a “small” dataset.

16

Figure 11 shows dataset size distribution for all defen-
sive and observational malware research papers pub-
lished since 2000. As hypothesized, no pattern can be
identified in such distribution, with published papers pre-
senting both very small and very large dataset sizes in
all years. As a result, the malware research fields tends
to become completely fragmented, which implies difficul-
ties to develop the field in a scientific way as no standard
practice is established.

1

10

100

1k

10k

100k

1M

10M

2004 2006 2008 2010 2012 2014 2016 2018

S
a
m

p
le

s
 (

#
)

Year

Dataset size evolution over time

Dat aset Si ze
Medi an

Figure 11: Dataset size over time. Whereas the me-
dian number of considered samples has been continuously
growing, the dataset size definition is still an ad-hoc de-
cision, thus resulting in non-uniform evaluations.

Figure 11 also shows a growth both in the frequency of
papers evaluating very large datasets (million samples)
and in the median dataset size over time, indicating the
occurrence of the Anchor effect. This bias should be
avoided by the community when aiming to develop mal-
ware research in a stronger scientific field under the risk
of presenting contradictory results, such as a paper claim-
ing that 900K samples are enough to present a land-
scape of all malicious behaviors [13] and another one
claiming that more than 1M samples are required only
to train its detection procedure [86].

Table 4: Dataset size by platform. Some platforms
have more samples available than others, thus affecting
dataset establishment.

Platform Minimum Median Maximum
Windows 1 2.1K 6.5M
Android 2 10K 2M
Linux 3 72 10.5K

Relevant to this discussion, Herley and van Oorschot [82]
suggested that the security community “stop insisting
that quantitative is better than qualitative; both types of
measurement are useful”. We propose that dataset def-
inition decisions consider environmental and context as-
pects in addition to other currently used criteria (e.g.,

considering only the number of samples). The impor-
tance of context for dataset size evaluation is illustrated
in Table 4.4, which shows the clear difference between the
minimum, median and average dataset sizes considered
in papers targeting distinct platforms. Studies target-
ing Android present a dataset size median (10K) greater
than studies targeting Windows (2.1K), despite Android
being a relatively newer platform compared to Windows.
This can be explained by the higher availability of apps
for Android (malicious and benign), including both le-
gitimate software present in the apps stores, as well as
malware samples targeting mobile device users. The con-
solidated Windows research reflects in its largest research
dataset (6.5M) face to the largest Android one (2M).
When considering network traffic studies, the number of
evaluated malware samples grows up to ≈27M [120].

Another observation is that malware studies targeting
Linux present, as expected, both the lowest median (72)
and lowest maximum dataset size (10.5K) values. The
natural reason is Linux platform being less popular than
Android and Windows, thus, being less targeted by mal-
ware writers. Therefore, it should not be reasonable to
expect a Linux proposal to use sample sizes comparable
to a Windows or Android solution, thus reinforcing our
claim for considering contextual aspects in dataset size
definition procedures.

An example of a representative dataset despite its
size is the one presented in the Control-Flow Jujutsu
attack [31] (offensive research), which is exemplified
with a single exploit and demonstrated its impact to the
whole class of Control Flow Integrity (CFI) solutions
based in the CALL-RET policy.

Pitfall 11: Failing to develop uniform and stan-
dardized malware and goodware repositories. A
significant challenge for defining a dataset for malware
research is the sample collection procedure, mainly due
to the lack of uniform or standardized repositories, which
often results in introduced biases and limited evaluations.

Figure 12 shows that, for most current malware research,
malware samples have been retrieved mainly using one of
the three following methods: honeypots, blacklist crawl-
ing, or private partner data sharing. These sources
present distinct drawbacks for malware experiments. For
example, honeypots cover a limited attack surface, only
capturing samples targeting the same platform as the
honeypot platform and in the same network, thus often
yielding the lowest collection rate among all the three
methods. Blacklists usually yield a good number of sam-
ples, but sample quality (e.g., diversity, age) is dependent
on a particular user’s contributions for updating the list
and/or repository, thus offering the analyst no control
over the available samples. Private partners’ repositories
usually present a relevant and comprehensive amount of
information about the collected samples, which typically
cover a real scenario, thus explaining their prevalence in

17

network traffic research (Figure 13). However, due to
their private nature, (e.g., information shared by ISPs),
research-based on such repositories are often hard to re-
produce, as malware and traffic samples are almost never
shared with the community and their descriptions are
usually limited so as not to disclose much partner infor-
mation, sometimes even omitting the partner name itself.
We were able to find multiple occurrences of this prac-
tice in the academic literature: (i) “was installed at our
partner ISP” [38]; (ii) “botnet C&C servers provided by
industry partners” [201]; and (iii) “From a partner we
acquired a list of nodes” [152].

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

G
it
h
u
b

H
o
n
e
yp

o
t

M
a
rv

in
D

re
b
in

M
e
ta

s
p
lo

it
C

W
s
a
n
d
b
o
x

P
h
is

h
ta

n
k

M
a
lw

a
re

D
B

S
a
n
d
D

ro
id

M
a
lH

e
u
r

M
a
lfe

a
se

R
e
a
l U

s
e
rs

V
xH

e
a
ve

n
V

ir
u
st

o
ta

l
D

e
vi

ce
s

O
ff
e
n
si

v
e

U
n
iv

e
rs

iti
e
s

E
n
te

rp
ri
se

s
M

cA
fe

e
S

e
c.

 C
o
m

p
a
n
y

G
e
n
o
m

e
C

o
n
ta

g
io

S
ym

a
n
te

c
U

n
cl

e
a
r

A
n
u
b
is

B
la

ck
lis

ts

P
a
p
e
r

P
re

va
le

n
ce

 (
%

)

Repository

Prevalence of malware repositories

Figure 12: Considered Malware repositories in the
entire period. Most research rely on blacklists, private
or custom repositories.

0%

5%

10%

15%

20%

25%

30%

C
lo

u
d

 I
S

P
s

E
n

d
p

o
in

ts

C
is

co

H
o

n
e

yp
o

ts

O
th

e
rs

P
a

ss
iv

e
 D

N
S

E
n

te
rp

ri
se

s

U
n

iv
e

rs
iti

e
s

IS
P

s

P
a

p
e

r
P

re
va

le
n

c
e

 (
%

)

Repository

Prevalence of malware repositories in network research

Figure 13: Network repositories. Most research rely
on data shared by private partners.

A common drawback of most (if not all) malware repos-
itories (noticeably blacklists and public repositories) is
that they are polluted, i.e., present other data in addi-
tion to the malicious samples, such as misdetected legiti-
mate software and corrupted binaries (e.g, binary objects

derived from failed attempts to dump samples from in-
fected systems). For instance, by searching Virustotal’s
database, one can easily find artifacts triggering wrong
detection results [196], such as innocuous code excerpts
or binary blobs submitted by researchers (and even at-
tackers) as part of their detection evaluations. As these
object’s codes are unreachable or present incorrect en-
dianness, they are not useful for analysis purposes. To
create an appropriate dataset, such objects must be dis-
carded to avoid introducing bias in analysis procedures.
Unfortunately, none of the reviewed papers described this
step, which prevented our present analysis to identify
whether this step is implicitly assumed or simply disre-
garded by the researchers.

Another drawback of many malware repositories is that
they also store unclassified samples, which makes it hard
for researchers to identify families or the platform the
sample is targeting. Further, many repositories and
blacklists are unreliable (e.g., become offline after some
time), which adds obstacles to research reproducibility.

Even when researchers can classify the malware samples
from a given repository using some other method, they
quickly realize that most malware repositories are un-
balanced, i.e., some malware families are more prevalent
than others. More specifically, user-dependent reposito-
ries will be biased by the malware samples targeting the
top contributing users. Similarly, sample platforms are
biased by their market share (e.g., Windows vs Linux,
desktop vs mobile), which makes it harder, for instance,
to collect a significant amount of Linux malware than
Windows samples. Ideally, research work should ac-
knowledge these biases, as done by Le Blond et al. [20]:
“As a result of these biases, our VirusTotal dataset of-
fers a partial coverage of attacks where individuals and
NGOs are likely over-represented.”

Another challenge is the lack of sample identification
date, which places obstacles to the conduction of
longitudinal studies. Some proposals try to overcome
this challenge by making assumptions, such as consid-
ering VirusTotal submission dates as sample creation
date [85, 101]. This assumption can be misleading, as
it implicitly depends on AVs capacity of detecting the
samples. Therefore, when considering sample’s creation
date as the same as sample submission date, researchers
might not be evaluating when samples were created,
but actually when AVs detected or were notified about
them. This lack of proper temporal labelling affects
research focusing on sample evolution issues, such as
when machine learning-based malware classifiers start
experiencing concept-drift [95, 35].

Pitfall 12: Assuming crawled applications as be-
nign without validation. The collection of benign
software (goodware) to be used as ground truth for
security evaluations is also challenging. and the se-
lected samples directly affect evaluation results. Fig-

18

ure 14 shows that most papers proposing defense solu-
tions rely on crawling popular application repositories
(e.g., download.com for desktop and Google Play for
Android). After raw collection, researchers need to en-
sure that the applications are indeed benign and repre-
sentative of a given scenario.

0%

5%

10%

15%

20%

25%

30%

35%

O
th

e
rs

S
ys

3
2
/W

in

G
ith

u
b

P
o
p
u
la

r
S

ite
s

G
o
o
g
le

 P
la

y

P
a
p
e
r

P
re

v
a
le

n
ce

 (
%

)

Repository

Prevalence of goodware repositories

Figure 14: Considered goodware repositories in
the entire period. Most research rely on crawling pop-
ular application repositories. Downloaded applications
are not guaranteed to be benign.

One important consideration when defining goodware
datasets to assure the effectiveness of a proposed secu-
rity solution is including common applications, i.e., those
that are actually installed and used by users belonging
to the environment the solution is supposed to operate
(see Section 4.4). However, the current trend of leverag-
ing larger malware datasets creates, via Anchor bias (see
Section 4.4), expectations of comparable large and coun-
terbalanced goodware datasets. However, when leverag-
ing a large number of applications from software repos-
itories, researchers risk considering as ground truth ap-
plications that are not common (e.g., listed in the 100th

top downloaded apps page).

In addition to representativeness issues, considering
applications crawled from popular repositories as a
ground truth for goodware might also cause a solution
to include considering malicious entities as legitimate,
as these may be embedded in Trojanized applications
(e.g., an installer embedding an adware [22]) in the
dataset. Whereas many reputable websites and app
stores scrutinize their distributed payloads, the benign
characteristics of a dataset cannot be ensured without
proper inspection. In all defensive solution proposals
considered in this work, only 15 (≈ 10%) explained
whether and how they filtered goodware samples (e.g.,
Willems et al. [202] stating that “in 3 cases one or
more supported scanners returned a positive result. We
checked those samples by hand and did not find any
malicious content within them.”).

Pitfall 13: Evaluating the application’s installers
rather than the actual application’s components.

Another problem of considering applications crawled
from popular software repositories in research works is
that applications are usually distributed in the form of
installers, and not as standalone applications. Installers
usually compress all application components (e.g, bina-
ries, libraries, drivers, so on) into a single component that
does not present the same characteristics of any of the
embedded components individually, which might result
in research pitfalls if not methodologically handed.

For static procedures, the problem of considering applica-
tion installers is that the compression of files in a single
component might hide strings, imports, and resources
present in the embedded components from the inspec-
tion procedures. This might result, for instance, in “tro-
janized” components of an originally benign software be-
ing hidden from the evaluated security component, thus
influence the evaluation results.

For dynamic procedures, the challenge is to trigger the
target application behavior, since the application must
be first installed. The installation procedure must be
automated, which is usually done via clickers [22]. If
this task is not considered, the proposed security solu-
tion will be evaluating the installer application rather
than the target one. This might significantly bias evalu-
ations since the characteristics of an installer execution
are completely distinct from the characteristics of the
installed applications. For instance, installers will likely
interact more with the filesystem (to drop the files to
the correct folders) than to interact with other system
processes, as done by malware samples.

None of the papers we investigated that considered
applications crawled from software repositories specified
whether they considered the installed applications or
the installers, and how the installation procedures
were automated. Whereas this does not imply that
their experimental strategy is wrong, we consider
that reporting these factors is a good practice for the
evaluation and reproducibility of malware research work.

Pitfall 14: Evaluating real-time and offline so-
lutions under the same criteria. Offline solutions
present a significant advantage over their real-time coun-
terparts: they have the entire trace available to make de-
cisions, which naturally increases their detection rates.
Real-time solutions, in turn, usually have to make de-
cisions on-the-fly with less data (e.g. sliding windows
of data), a partial view from the system or, API calls
collected until the inspection moment, which naturally
limits their decision capabilities and increases their FP
rates. As a drawback, due to their nature of considering
the whole-data view, offline solutions applied to a real-
time scenario would only be able to detect a malicious
sample after the sample performed all its malicious ac-

19

download.com

tions (e.g., data exfiltration), and thus compromise the
system.

Thus, whereas offline solutions are evaluated almost ex-
clusively by their detection rates, the evaluation of real-
time solutions should also include additional criteria. An
important metric for a real-time solution is the detection
delay, i.e. how long it takes to flag a sample as malicious:
the earlier a threat is detected, the better, as the threat
is blocked before causing more harm to the system.

Despite detection delay is an important metric, a real-
time solution cannot adopt an aggressive policy and start
detecting any sample as malicious whenever it does not
have enough data to decide, as the false positives (FP)
rate is also an important metric. Whereas in offline so-
lutions a FP does not affect user experience, in real-
solutions, it might prevent a user to interact with a le-
gitimate application. In addition, the differences in the
amount of available data at decision time also affect the
classifier’s training strategy. Whereas classifiers for of-
fline approaches can be trained with entire traces, classi-
fiers for online solutions should be trained with multiple
sliding windows and strides derived from entire traces to
reflect their partial view. An online solution trained us-
ing complete traces would have a very low matching score
during runtime operation due to the lack of enough data
to be compared.

Unfortunately, detection solutions still do not clearly
distinguish these real-time and offline differences. None
of the evaluated work clearly pointed out the online
monitoring challenges that they proposed to tackle nor
evaluated the detection delay. Therefore, we can still
observe unreasonable claims, such as real-time classifiers
based on complete malware traces. For instance, Kwon
et al. [111] proposes an online detection method (“we
perform an experiment where we simulate the way our
classifier would be employed operationally, for detecting
malware in an online manner.”) and states that “We
train the RFC on the training set, with the same
parameters used on section 5.4.” (when all samples were
considered in an offline manner) and “Then we apply the
trained classifier on the testing set. We obtain 99.8% TP
rate”. Despite achieving a high accuracy result for the
presented experiment, it is unlikely that the same param-
eters for offline and online detectors would lead to the
best accuracy rates when operating in an actual scenario.

Pitfall 15: Evaluating analysis and detection ap-
proaches using the same criteria. More than differ-
ent goals, as presented in Section 4.1, analysis and detec-
tion work also require distinct approaches for their eval-
uations, and understanding these requirements is impor-
tant to properly develop and review these experiments.
Unfortunately, we can still identify research work mixing
analysis and detection concepts.

Analysis procedures aim to collect data for further re-
search steps (e.g., drawing a landscape, training a clas-

sifier, so on). Despite all challenges for tracing in-the-
wild collected malware (see Section 4.5), analysis stud-
ies usually do not suffer too much with these issues be-
cause they usually require only recording API calls at-
tempts for characterizing a malicious behavior, although
the malware couldn’t successfully complete the requested
action.

Detection approaches, in turn, involve actually observ-
ing a successful sample run. evaluate detection tech-
niques and unlike analysis studies, just monitoring API
calls despite their result is not enough for evaluating the
proposed solutions. Ideally, they must ensure that the
samples effectively run and trigger their detection invari-
ants, which can be challenging. Given the challenges
for reproducing malware experiments (see Section 4.5),
such as samples requiring legacy libraries to run, detec-
tion experiments should require analysts to first reverse
engineer the collected malware samples to identify their
execution requirements and later select the ones which
successfully executed, which naturally limits experiment
scale, as it implies on a limited dataset size due to the re-
quired manual interaction. To overcome the dataset size
challenge, detection studies could leverage fewer samples
than analysis ones once an analyst could prove that the
considered dataset is representative of a real scenario,
which can be done, for instance, by referring to previ-
ous studies, thus our claim of the importance of these
observational studies.

Unfortunately, most researchers do not describe
whether/how they reversed samples before testing
their solutions (among all considered detection papers,
only 13 (≈8%) acknowledged reversing samples before
testing), which did not allow us to identify whether
malware execution failures were due to the claimed so-
lution detection effectiveness or to missing components
required for execution.

Pitfall 16: Using non-reproducible methodology
for defining dataset and designing experiments.
Reproducibility is a key aspect to define some investi-
gation as scientific, since it allows other researchers to
disprove or confirm previous results, thus making predic-
tions and advancing the field. However, reproducibility is
hard to achieve due to both practical and theoretical is-
sues, and acknowledging reproducibility limitations helps
(i) preventing other groups from spending time attempt-
ing to reproduce limited experiments steps; (ii) shedding
light on the shortcomings of reproducibility of certain
types of research; and (iii) motivating researchers to ad-
vance reproducibility in further research work.

In practice, many malware research derives from data
shared by private partners, leverage proprietary solu-
tions, or depend on non-disclosure-agreements, which
prevents researchers from releasing their datasets.
Among all considered papers using datasets, only 33 (≈
7%) released their datasets (e.g., malware binaries or net-

20

work traffics), showing that only a small portion of them
is reproducible.

More than having access to a dataset, reproducing
malware research is also challenging due to theoretical
limitations. For example, non-determinism at OS
and environment levels can yield different execution
outcomes for a given malware sample. This phenomenon
is more frequently observed in network-based malware
experiments. For instance, modern botnets often
contact domains at runtime using a Domain Generation
Algorithm (DGA), which results in distinct DNS queries
and contacted IP addresses along with their multiple
runs. There is no guarantee that the execution outcome
of a given sample will be the same when run by distinct
research teams on different occasions. Further, even
for researchers that can track network communications,
there is no guarantee that malware’s C&C servers will be
always available (e.g., became sinkholed). Acknowledg-
ing these issues is particularly relevant for researchers
trying to reproduce experiments with samples from
previous studies, because their C&C may have been
sinkholed. In this case, samples would fail to retrieve
their malicious payload and prematurely abort their
executions, thus presenting smaller execution traces in
comparison to their original reports.

Pitfall 17: Comparing Apples to Oranges. It
is not unusual for proposals to compare their evaluation
results with those from prior literature tackling the same
problem, for instance, comparing the accuracy of two
detection approaches involving machine learning. Such
comparison, however, should be carefully performed to
avoiding misleading assertions.

As a consequence of the lack of standard repositories,
many works end up comparing their evaluation results
(e.g., classifiers accuracy) with other values reported in
the literature. Whereas comparing work seems to be
straightforward, authors should care to perform fair eval-
uations, such as comparing studies leveraging the same
datasets, thus avoiding presenting results deemed to out-
perform literature results but which do not achieve such
performance in actual scenarios.

As a didactic analogy, consider image classification chal-
lenges, whose objective is to identify objects represented
in images (e.g., buildings, animals, locations, so on). The
challenges often provide multiple datasets. For instance,
the CIFAR challenge [110] is composed of two datasets:
CIFAR-100, which has one hundred classes of images,
and CIFAR-10, which is a filtered version of CIFAR-100,
containing just ten classes. Imagine two research work
proposing distinct engineering solutions for image classi-
fication, one of them leveraging CIFAR-10 and the other
leveraging CIFAR-100. Although one of the approaches
present a higher accuracy than the other, is it fair to
say that this one is better than the other? Clearly not,
because the task involved in classifying distinct classes

is also distinct. The same reasoning is valid for mal-
ware research, especially those involving machine learn-
ing. Therefore, authors should care to not perform com-
parisons involving distinct classes of applications, such
as comparing, for instance, approaches involving Dy-
namic System Call Dependency Graphs, a computation-
ally costly approach, with static feature extraction ap-
proaches is misleading because each type of work presents
different nature and challenges.

4.5 Test of Hypothesis/Evaluation of So-
lutions

In addition to theoretical issues regarding the research
and solution design steps, research pitfalls may also origi-
nate from practical aspects, even when experimental pro-
cedures are properly defined, for example when leveraged
tools for data collection and analysis present (inherent or
technological) limitations, which are often not well un-
derstood and acknowledged.

Pitfall 18: Using broken, raw samples. Many re-
search work in computer science and engineering leverage
some type of dynamic analysis technique to inspect and
characterize applications (e.g., computer architecture pa-
pers profiling branch prediction rates). In common, all
these research work present an implicit assumption that
all samples are well-behaved and self-contained, thus run-
ning without problems in a sandbox solution.

Many malware research work uses dynamic analysis tech-
niques to study samples and/or evaluate the effective-
ness of defensive solutions. Unlike the computer archi-
tecture example on profiling branch prediction rates, the
sandbox execution feasibility assumption is sometimes
flawed, given peculiarities of malware samples when com-
pared to standard applications. For example, while com-
mon applications (e.g., browsers, text-editors) are self-
contained, modern malware (noticeably downloaders and
droppers) are composed of multiple sub-modules, which
makes their analysis challenging, as such modules can
not always be captured, allowing a holistic analysis of
the sample. Moreover, these sub-modules often present
inter-dependencies, which requires analysts to guess the
correct execution order of samples (e.g., loader, down-
loader, and persistence modules). Another challenge is
getting access to loaders (for infection launch) and li-
braries (including proper version), required for sample
successful execution. This also makes infection launch
harder because most of times analysts do not have mal-
ware loaders, which are required for injection of malicious
payloads in their target processes, and also for launching
malware samples with proper command line arguments.
Modular malware execution is also challenging because
the libraries that they require to run may become out-
dated in current systems, thus requiring analysts to in-
stall a previous library version in current systems under
the risk of prematurely aborting sample’s execution due

21

to version incompatibility. Further, shared libraries (e.g.
Windows DLLs) may fail to execute in automated anal-
ysis systems because of the need to manually identify
function entry points.

Unfortunately, none of the papers leveraging dynamic
analysis in our systematization described how they
handled such cases, which prevented us from discovering
why these cases are not being reported, either because
they were explicitly disconsidered from the evaluation
procedures or whether these aspects are being over-
looked by the community.

Pitfall 19: Failing to establish criteria for assess-
ing sample execution in a sandbox. Execution of
malware in sandboxed environments brings many chal-
lenges. When a sample runs in sandbox, even having a
standard entry point, there are no guarantees that exe-
cution was actually successful because the sample could
have applied anti-analysis techniques [194], or failed due
to multiple reasons, such as corrupted samples or OS’
incompatibilities.

Consider, for instance, an execution trace generating
only a few API calls. After sample execution the fol-
lowing questions arise: (i) are these APIs calls the only
ones supposed to invoked by the sample?; (ii) was the
execution aborted prematurely and the observed APIs
calls were just system cleanup routines?; or (iii) did the
sample evade analysis?

Therefore, establishing criteria for sample successful exe-
cution in sandbox (e.g., minimum number of invoked API
calls or exhibited behaviors) is crucial. Unfortunately,
none of the engineering, defensive papers considered in
this study that leveraged sandboxes presented either cri-
teria for a successful execution of samples in sandboxed
environments or percentage of samples that effectively
executed. We identified an example of a clear sandbox
criteria in the network study of Lever et al. [120], which
explicit that their study “excludes samples without any
valid or successful DNS resolutions.”

Only recently researchers started to systematically
investigate how much the distinct sandbox execution
timeouts affect malware analysis results [112]. We
expect this type of analysis to be considered in future
malware research work to better support experiment
design decisions.

Pitfall 20: Blindly relying on AV results as
ground-truth. When one thinks of malware detection,
Anti-Viruses (AVs) immediately comes up in most peo-
ple’s minds, as AVs are still the main defense line against
malware in all types of environments and given such im-
portance, AV research brings together academia and cor-
porate researchers, mixing prototyping and real-world so-
lutions (see Section 4.3), resurfacing the issues related to
misunderstandings of the challenges and limitations of
each type of work.

Many proposals rely on AV results as ground-truth for
their experiments (≈ 23% of all papers considered), ei-
ther for identification of sample families or for compari-
son of detection rates. Consequently, understanding the
implications of using AVs as ground-truth is essential to
understand research results.

The first challenge researchers face when relying on AVs
is that nobody really knows how commercial AVs work.
Whereas detection procedures such as signature match-
ing and heuristics are described in the literature, nobody
is able to identify which of these methods was applied
(and succeeded). When an AV solution reports a file as
malicious, a researcher is not informed about what spe-
cific methods contributed to this diagnosis (e.g., signa-
ture matching, heuristics, or a combination of methods),
which makes experiments considering AVs as ground-
truth challenging. Consider a new pattern matching
mechanism proposal, which reportedly performs 10%
worse than a given AV. Most would consider the impact
of this solution a small impact, thus not advancing the
state-of-the-art. However, the AV results might be based
on the use of a combination of detection approaches, such
as multiple heuristics and signatures, which makes the
comparison unfair. If the pattern matching engine of AV
could be isolated, researchers could discover, for instance,
that the new solution outperformed the commercial AV
static detection in 100%. As an example of this scenario,
consider the evaluation of the new signature schema pro-
posed by Feng et al. [66]. Their evaluation states that
“VirusTotal agreed with ASTROID on each of these 8
apps”, achieving the same results as commercial AVs.
However, since we have no guarantees that Virustotal’s
AVs leverage only signatures, the real conclusion might
be that this approach outperformed commercial AV
results.

Therefore, we advocate for the development and use of
more configurable AV solutions for the development of
more scientifically rigorous studies. While requiring com-
mercial AVs to adopt additional configuration schemes is
unrealistic, the community could set expectations for AV
companies practices such as providing detection results
metadata, so that researchers can cluster the samples de-
tected using the same technique. We acknowledge that
many AV companies would not be inclined to adopt such
proposal because of intellectual property issues. Alter-
natively, an interesting future work for the field is the de-
velopment of standardized AV evaluation platforms, such
as an academic, open-source AV which could be easily
instrumented for performing malware detection experi-
ments.

We highlight that while there are open source AV ini-
tiatives (e.g., ClamAV[49], they do not resemble a fully-
commercial AV, thus not being suitable as ground-truth
for malware detection experiments.

The impacts of the lack of understanding about AV’s in-
ner working are even more noticeable when one considers

22

that commercial AVs do not follow a standard operation
model. Therefore, distinct AVs may produce different
results, even when evaluated with the same dataset. A
noticeable example of such non-uniformity is samples la-
beling, where each AV solution follows their own rules
and adds internally created extensions to sample’s la-
bels. This non-uniformity makes research reproduction
hard, as a dataset labeled by one AV (e.g., all samples are
Trojans) cannot be compared to another dataset having
the same labels but attributed to another AV, as nobody
knows how the first AV would label these samples. In
practice, the literature has already demonstrated that
considering AV labels for sample classification may even
decrease classifier’s accuracy [30]. To overcome this chal-
lenge, recent research has proposed AVClass, to normal-
ize AV labels [171]. Whereas this proposal addresses the
non-uniformity issue, only ≈ 33% of papers using AVs
as ground-truth published after AVClass release adopted
such normalization procedure.
Finally, due to the lack of understanding about AV’s in-
ternals, AV feedback, in general, is limited. Although
AV companies periodically release reports, these publica-
tions cannot be interpreted as technically sound to drive
research. Academic studies have already shown that, in
practice, AV reports do not expedite malware infections
clean up [192].

4.6 Summary

Once we have discussed all challenges and pitfalls in de-
tails, we now recap the the most important findings of
our literature review and analysis (in no specific impor-
tance order).

1. Inbalance in research work types, with more
engineering solutions being proposed than any other
of kind of study.

2. Solutions developed not informed by previ-
ous study’s data, which derived from the lack of
observation studies and make solutions application
to real scenarios harder.

3. Most work still don’t clearly state threat
models, which limits their positioning among re-
lated work and complicates the evaluation whether
they achieved their goals or not.

4. Failure in positioning work as prototypes or
real-world solutions, which complicates evalua-
tion and future developments attempts.

5. Offline and online solutions developed and
evaluated using the same criteria, which leads
to impractical solutions and unfair comparisons.

6. No dataset definition criteria, with authors and
reviewers defining suitability on an ad-hoc manner,

which tends to lead to an anchor bias towards pre-
viously published work.

7. Few attention to dataset representativity,
with few work discussing the population targeted
by the considered malware samples.

8. Most studies are not reproducible, either due
to the use of private datasets or the absence of a list
of considered malware sample’s hashes.

9. Sandbox execution criteria are not explained,
which makes hard to understand if the samples re-
ally executed or evaded analysis.

10. Non-homogeneous AV labels are still a prob-
lem, with distinct AVs labeling samples distinctly
(in a non-comparable manner) and with researchers
not performing homogenization procedures.

5 Moving Forward

In this section, we propose guidelines based on the dis-
cussed challenges and pitfalls for multiple stakeholders
to advance the state-of-the-art of the malware research
field.

5.1 The Field

• Increase discussions about experimentation practices
on the malware field to enhance research outcomes
quality. Existing venues such as USENIX CSET [189]
and NDSS LASER [145] might work as a forum for
discussing dataset creation and experiment designing
guidelines.

• Create incentives for the development of more ob-
servational studies and offensive research to provide
foundations for sound anti-malware solutions. De-
spite the currently non-ideal prevalence of engineer-
ing solutions, the community has already stepped in
to address this drawback via targeted venues which
acknowledge the importance of this type of research
for cyber security, such as the USENIX Workshop On

Offensive Technologies (WOOT), supporting of-
fensive research. In fact, most of offensive research
considered in this paper was published since 2008 in
such venue, thus highlighting its positive impact on
the field. Similarly, support of future workshops on
observational landscapes studies is warranted to help
help addressing this challenge.

• Consider academical and real-world expectations
when evaluating engineering solutions, thus allowing
academia to provide more efficient approaches to prac-
tical solutions adopted by the industry, such as propos-
ing new, more efficient signature-based approaches
that are still leveraged by AV solutions despite aca-
demic advances towards behavior-based detection.

23

• Develop classifiers for imbalanced datasets is essential
to allow development of security solutions addressing
actual scenarios, where equal distribution of malware
families is nonexistent.

• Understand the impact of social and cultural aspects
when developing anti-malware solutions for users pro-
tection. In this sense, we consider that the recent
growth of the usable security field as a promising way
to bridge this gap.

• Create standardized repositories and establish guide-
lines for dataset definitions is essential to move the
community towards a more methodologically strong
discipline. Notice that we are not claiming for the de-
velopment of a static collection of samples, but to the
development of an structured manner to handle dy-
namic collections of malware samples. In this sense,
we currently envision attempts towards this direction
in the IoT scenario [98]. Whereas this initiative does
not solve current issues of existing repositories, it is an
important initiative to not repeat errors from the past
in the development of new technologies.

5.2 Researchers

• Clearly define the Research Objective according to one
of the types of malware research (e.g., Engineering So-
lution, Observational/Analysis/Landscape Study, Of-
fensive Research, Network Traffic) to streamline exe-
cution of the Malware Research method, specially re-
garding to proper evaluation.

• Define threat models based on real-world needs to in-
crease research applicability and impact.

• Clearly state engineering solution’s requirements to al-
low for adoption of proper metrics in evaluation.

• Position your solution as on-line or offline, thus easing
solutions evaluation and comparison.

• Position your solution a proof-of-concept prototype or
ready-for-deployment to incentive other researchers to
contribute to its advancement and enhancement. The
application of software maturity level assessment pro-
cedures [60], as leveraged by software engineering re-
search, might provide criteria for researchers better po-
sitioning their solutions.

• Define datasets representative of the environment the
real scenarios in which the solution is intended to op-
erate.

• Rely on previous landscape studies insights to develop
solutions and define datasets.

• State assumptions about malware and goodware sam-
ples repositories to allow biases identification and re-
search reproducibility.

• If making comparisons to prior work, avoid simply
referring to their reported results, but rather repro-
ducing their experiments using the same dataset and
methodology.

• Scan all samples, even those labeled as benign, to avoid
introducing errors in ground-truth definitions due to,
for instance, trojanized applications.

• Report AV detection results (e.g., sample labels) in
a uniform fashion to make studies comparable (e.g.,
using AVClass).

• Make your datasets (binary files, hashes, execution
objects) publicly available to facilitate research repro-
ducibility.

• Make sample’s execution traces publicly available to
allow research reproducibility even when C&C’s are
sinkholed.

• When characterizing datasets, report number of sam-
ples effectively analyzed and which criteria were con-
sidered for detecting/classification of succesful execu-
tion.

• Avoid using generic AV detection results as ground-
truth whenever possible to allow fair detection solu-
tions comparisons, thus opting for more qualified de-
tection information labels.

5.3 Reviewers

• Evaluate each work according to their stated goals:
prototype vs. readily deployable solution, static vs dy-
namic analysis, offline vs real-world, thus acknowledg-
ing the importance of observational/landscapes studies
and offensive security as basis for the developments of
sound anti-malware engineering solutions.

• Support observational/landscapes studies and offen-
sive security as basis for the developments of sound
anti-malware solutions.

• Evaluate threat model fitness to real-world needs in
addition to hypothesized threats described in the lit-
erature.

• Be mindful of Anchor bias when evaluating dataset
size, prioritizing how the researcher defined and evalu-
ated the representatives of the dataset for the context
proposed solution is supposed to operate (corporate
environment, home, lab, etc.).

• Engage in the exploratory feeling is essential to over-
come the bias of claiming for more contributions at
the charge of in-depth investigations, thus avoiding the
risk of claiming that a solution is limited when it really
solves part of a major problem.

24

• Understand proposals as prototypes and not as end-
users solutions is essential to stimulate researchers to
propose their ideas in a free way.

5.4 Conferences, Journals, and Work-
shops

• Support more observational/landscape and offensive
security work via creation of special tracks, new work-
shops, and explicitly inviting in call-for-papers such
line of research, as already done for Systematization
of Knowledge (SoK) papers in some venues [179, 188].
and offensive security work as strong contributions in
conference/journal/workshop evaluation procedures,
having specially designed criteria for the evaluation of
this type of work, as already done for Systematization
of Knowledge (SoK) papers in some venues [179, 188].

• Adopt special landscape study sessions as part of con-
ferences Call For Papers (CFPs), to motivate the de-
velopment of this line of research, as some venues have
already done regarding SoK and Surveys [179, 188, 1].

• Support more practical aspects of malware research,
especially broader impacts in user and society, is es-
sential to integrate the academical knowledge to real
user’s needs. In this sense, we consider that the mal-
ware scenario may learn from experiences from related
security fields, such as the Real World Crypto confer-
ence [87], which focuses on practical aspects of cryp-
tography. an academic conference focused in practical
aspects, thus streamlining the science of implementing
real-world security solutions.

• Create incentives for dataset release for paper pub-
lication, for instance, including it as one of the cri-
terion during peer-review is a requirement that con-
ferences and journals could adopt to push authors to-
wards developing more reproducible scientific work. In
this sense, we consider as positive initiatives such as
the NDSS Binary Analysis Research (BAR) work-
shop [199], which released all datasets described in the
published papers.

5.5 Industry

• Security companies: include Indicators Of Compro-
mise (IOCs) in all threat reports to detection statistics
to provide the malware research and development com-
munity with better technical information about the
identified threats.

• AV companies: add detection engines and methods as
part of AV labels to allow researchers to better identify
how threats were detected and better evaluate their so-
lutions. We consider that displaying the AV detection
subsystems in OS logs, as performed by the Windows
Defender logs [135], is a good first step towards a long
journey.

6 Related Work

This paper intersects literature on improving research
practices and theoretical and practical limitations of
malware analysis procedures. We here show how these
aspects are correlated with previous work’s reports.
For reader’s convenience, the considered papers are
summarized in Table 5.

Table 5: Related Work. Summary of differences.
Science of Security

Work Approach Issues
Ours Practical Experiment design
[82] Theoretical Results reporting

Security Limits
Work Approach Issues
Ours Practical AV labels, private datasets
[34] Theoretical Path explosition
[139] Theoretical Opaque Constants

Pitfalls
Work Approach Issues
Ours Practical Signatures, datasets
[9] Theoretical False Positives

[153] Theoretical Training data
Sandbox

Work Approach Issues
Ours Practical sinkholing, loading
[194] Practical evasion
[127] Practical fingerprint
[168] Practical stimulation
[105] Practical replay

Science of Security. Discussion about computer
viruses myths dates back to the 1990’s [164], but the
development of solutions have taken the forefront of the
field at the expense of in-depth scientific discussions. In
this work, we revisited in-depth discussions on the field
by systematizing pitfalls and challenges in malware re-
search. We highlighted that all types of malware research
(engineering solutions, offensive research, observational
studies, and network traffic) can be conducted according
to a method integrating the scientific and engineering
methods. Herley and van Oorschot recently discussed
the elusive goal of security as a scientific pursuit [82],
and identified reproducibility issues in current research
papers. In this work, we complement this discussion in-
depth and in the context of malware research with issues
that go beyond reproducibility.
Prior work investigating malware research challenges fit
in one of the following categories:

Theoretical Limitations. Prior work investigated the
limits and constraints of malware analysis procedures,
which can appear naturally or be actively exploited by
attackers to make sample detection harder. Typically,

25

these constructions consist of ambiguous execution and
data flows, which are hard to be tracked because they
span an exponential number of paths [34]. In addition,
constructions such as opaque constants [139] cannot be
statically solved, thus requiring runtime analysis, which
raises processing costs and demands more time, limiting
scale. Understanding these limitations is important
to properly define threat models and establish clear
research review guidelines. In this work, we comple-
mented this prior literature by extending the analysis of
theoretical limits of malware experiments to also include
practical considerations.

Experiment Design Issues. As important as to un-
derstand the limits of data collection procedures is to
understand the limits of analysis procedures, which af-
fect the experiment design. A poorly designed experi-
ment may result in the reporting of results that are not
reproducible or applicable in actual scenarios. Axelsson
has already reported issues with experiment design, as in
the “base-rate fallacy for IDS” [9], which states that “the
factor limiting the performance of an intrusion detection
system is not the ability to identify behavior correctly as
intrusive, but rather its ability to suppress false alarms”.
In other words, a solution reporting too many FP is im-
practical for actual scenarios, despite presenting high TP
(True Positive) detection rates.

A large number of current malware research rely machine
learning methods. Therefore, similar to the base-rate
fallacy for IDS, Pendlebury et al. [153] also reported
multiple bias while training models for security solutions,
such as datasets not reflecting realistic conditions [153].
Unfortunately, unrealistic datasets and threat models
are often seem in malware research. This paper ex-
tended this discussion to malware experiments in general
and discussed their impact in the development of the
malware research as a methodologically strong discipline.

Sandbox Issues. One of the most frequent concerns
researcher have when developing malware experiments
is regarding the sandbox environment leveraged for
performing real-time sample analysis, given the multiple
challenges that the use of this type of solution imposes.
Previous work on the literature have already identified
some challenges with using sandboxes in experiments,
for example, sandbox evasion [194] due to fingerprint-
ing [127] or lack of proper stimulation [168]. Kirat
et al. [105] also highlighted the need for isolating and
replaying network packets for proper sample execution
across distinct sandboxes. Given these challenges,
malware research often fails in accomplishing some
of the analysis requirements, as discussed by Rossow
et al. [166]. In this work, we presented additional
aspects, such as identifying broken samples execu-
tion and the lack of malware loaders, which must be
considered in the development of malware research work.

Improving Research Practices. In this work, we
proposed that all malware research can be done via a
methodology that integrates the scientific and the engi-
neering methods. Fortunately, this need has been ac-
knowledged (yet slowly and unstructuredly) by the com-
munity in recent years, via guidelines for handling do-
main lists [167], generating dataset for static analysis
procedures [131], for benchmarking systems [190], and for
the application of machine learning [176, 8, 178, 68, 37].
We hope our work to motivate other researchers towards
developing best practices guidelines based on the lessons
we learned and recommendations provided.
New views of security. A major contribution of this
work is to position security among the scientific and the
engineering methods. Whereas we believe this might be
a significant advance, these are not the only factors to be
considered in a security analysis. For instance, we believe
that economic aspects of security [5] should also be con-
sidered in analyses procedures. Thus, we expected that
these might be incorporated in future research method-
ologies.

7 Conclusion

In this paper, we presented a systematic literature review
of scholarly work in the field of malware analysis and de-
tection published in the major security conferences in
the period between 2000 and 2018. Our analysis encom-
passed a total of 491 papers, which, to the best of our
knowledge, is the largest literature review of its kind pre-
sented so-far. Moreover, unlike previous research work,
our analysis is not limited to surveying the distinct kinds
of published work, but we also delve into their method-
ological approaches and experimental design practices to
identify the challenges and the pitfalls of malware re-
search. We identified a set of 20 pitfalls and challenges
commonly related to malware research, that range from
the lack of a proper threat model definition to the adop-
tion of closed-source solutions and private datasets that
do not streamline reproducibility. To help overcoming
these challenges and avoiding the pitfalls, we proposed
a set of actionable items to be considered by the mal-
ware research community: i) Consolidating malware re-
search as a diversified research field with different needed
types of research (e.g., engineering solutions, offensive
research, observational/landscape studies, and network
traffic); (ii) design of engineering solutions with clearer,
direct assumptions (e.g., positioning solutions as proofs-
of-concept vs. deployable, offline vs. online, etc.); iii)
Design of experiments to reflecting more realistic sce-
narios instead of generalized cases the scenario where
solution should operate (e.g., corporation, home, lab,
country)leveraging datasets having malware families bal-
anced to reflect specific countries, vulnerable populations
or corporations); and iv) Acknowledgment of limitations

26

current technologies and norms exert in research existing
solutions limitations (e.g., the use of closed-source AV so-
lutions as groundtruth for malware experiments) to sup-
port the development of more reproducible research. We
hope that our insights might help fostering, particularly,
the next-generation of anti-malware solutions and, more
broadly, the malware research field as a more mature
scientific field.
We reinforce once again that the views presented in
this work are not unique; other interpretations of the
observed phenomenon are possible. In these cases, the
researchers must formalize their views so as we can build
a body of knowledge on methodological practices. This
type of body of knowledge might be a recommended
reading for students entering the field and might also
work as a basis for the development of future guidelines.

Acknowledgements. Marcus thanks the Brazilian Na-
tional Counsel of Technological and Scientific Develop-
ment (CNPq) for the PhD Scholarship 164745/2017-3.
Daniela on behalf of all authors thanks the National
Science Foundation (NSF) by the project grant CNS-
1552059.

References

[1] ACM. Computing surveys. https://csur.acm.

org/, 2019.

[2] Abdullah Al-Dujaili, Alex Huang, Erik Hemberg,
and Una-May O’Reilly. Adversarial deep learn-
ing for robust detection of binary encoded mal-
ware. In 2018 IEEE Security and Privacy Work-
shops (SPW), pages 76–82. IEEE, 2018.

[3] Joey Allen, Matthew Landen, Sanya Chaba, Yang
Ji, Simon Pak Ho Chung, and Wenke Lee. Improv-
ing accuracy of android malware detection with
lightweight contextual awareness. In Proceedings
of the 34th Annual Computer Security Applications
Conference, ACSAC ’18, page 210–221, New York,
NY, USA, 2018. Association for Computing Ma-
chinery.

[4] Sumayah Alrwais, Kan Yuan, Eihal Alowaisheq,
Xiaojing Liao, Alina Oprea, XiaoFeng Wang, and
Zhou Li. Catching predators at watering holes:
Finding and understanding strategically compro-
mised websites. In Proceedings of the 32Nd An-
nual Conference on Computer Security Applica-
tions, ACSAC ’16, pages 153–166. ACM, 2016.

[5] Ross Anderson and Tyler Moore. The economics
of information security. https://www.cl.cam.ac.
uk/~rja14/Papers/sciecon2.pdf, 2005.

[6] Dennis Andriesse and Herbert Bos. Instruction-
level steganography for covert trigger-based mal-

ware. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assess-
ment, pages 41–50. Springer, 2014.

[7] Ionut Arghire. Windows 7 most hit by wannacry
ransomware. http://www.securityweek.com/

windows-7-most-hit-wannacry-ransomware,
2017.

[8] Daniel Arp, Erwin Quiring, Feargus Pendle-
bury, Alexander Warnecke, Fabio Pierazzi, Chris-
tian Wressnegger, Lorenzo Cavallaro, and Konrad
Rieck. Dos and don’ts of machine learning in com-
puter security, 2020.

[9] Stefan Axelsson. The base-rate fallacy and the
difficulty of intrusion detection. ACM Trans. Inf.
Syst. Secur., 3(3):186–205, August 2000.

[10] Paul Baecher, Markus Koetter, Thorsten Holz,
Maximillian Dornseif, and Felix Freiling. The ne-
penthes platform: An efficient approach to col-
lect malware. In Diego Zamboni and Christopher
Kruegel, editors, Recent Advances in Intrusion De-
tection, pages 165–184, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[11] Davide Balzarotti. System security circus. http://
s3.eurecom.fr/~balzarot/notes/top4_2018/,
2018.

[12] Sebastian Banescu, Christian Collberg, Vi-
jay Ganesh, Zack Newsham, and Alexander
Pretschner. Code obfuscation against symbolic ex-
ecution attacks. In Proceedings of the 32nd An-
nual Conference on Computer Security Applica-
tions, pages 189–200. ACM, 2016.

[13] Ulrich Bayer, Imam Habibi, Davide Balzarotti, En-
gin Kirda, and Christopher Kruegel. A view on cur-
rent malware behaviors. In Proceedings of the 2Nd
USENIX Conference on Large-scale Exploits and
Emergent Threats: Botnets, Spyware, Worms, and
More, LEET’09, pages 8–8, Berkeley, CA, USA,
2009. USENIX Association.

[14] Ulrich Bayer, Andreas Moser, Christopher
Kruegel, and Engin Kirda. Dynamic analysis of
malicious code. Journal in Computer Virology,
2(1):67–77, 2006.

[15] Sofia Belikovetsky, Mark Yampolskiy, Jinghui Toh,
Jacob Gatlin, and Yuval Elovici. dr0wned–cyber-
physical attack with additive manufacturing. In
11th {USENIX} Workshop on Offensive Technolo-
gies ({WOOT} 17), 2017.

[16] Leyla Bilge and Tudor Dumitraş. Before we knew
it: An empirical study of zero-day attacks in the

27

https://csur.acm.org/
https://csur.acm.org/
https://www.cl.cam.ac.uk/~rja14/Papers/sciecon2.pdf
https://www.cl.cam.ac.uk/~rja14/Papers/sciecon2.pdf
http://www.securityweek.com/windows-7-most-hit-wannacry-ransomware
http://www.securityweek.com/windows-7-most-hit-wannacry-ransomware
http://s3.eurecom.fr/~balzarot/notes/top4_2018/
http://s3.eurecom.fr/~balzarot/notes/top4_2018/

real world. In Proceedings of the 2012 ACM Con-
ference on Computer and Communications Secu-
rity, CCS ’12, pages 833–844, New York, NY, USA,
2012. ACM.

[17] Leyla Bilge, Sevil Sen, Davide Balzarotti, Engin
Kirda, and Christopher Kruegel. Exposure: A
passive dns analysis service to detect and report
malicious domains. ACM Trans. Inf. Syst. Secur.,
16(4):14:1–14:28, April 2014.

[18] BitDefender. The update system for virus signa-
tures. https://www.bitdefender.com/support/

the-update-system-for-virus-signatures-

216.html.

[19] Thomas Bläsing, Leonid Batyuk, Aubrey-Derrick
Schmidt, Seyit Ahmet Camtepe, and Sahin Al-
bayrak. An android application sandbox system for
suspicious software detection. In 2010 5th Inter-
national Conference on Malicious and Unwanted
Software, pages 55–62. IEEE, 2010.

[20] Stevens Le Blond, Cedric Gilbert, Utkarsh
Upadhyay, Manuel Gomez Rodriguez, and
David Choffnes. A broad view of the ecosys-
tem of socially engineered exploit documents.
https://www.ndss-symposium.org/ndss2017/

ndss-2017-programme/broad-view-ecosystem-

socially-engineered-exploit-documents/,
2017.

[21] Lorenzo Bordoni, Mauro Conti, and Riccardo Spo-
laor. Mirage: Toward a stealthier and modular
malware analysis sandbox for android. In Euro-
pean Symposium on Research in Computer Secu-
rity, pages 278–296. Springer, 2017.

[22] Marcus Botacin, Giovanni Bertão, Paulo de Geus,
André Grégio, Christopher Kruegel, and Giovanni
Vigna. On the security of application installers and
online software repositories. In Clémentine Mau-
rice, Leyla Bilge, Gianluca Stringhini, and Nuno
Neves, editors, Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, pages 192–
214, Cham, 2020. Springer International Publish-
ing.

[23] Marcus Botacin, Paulo Ĺıcio de Geus, and André
Grégio. “vanilla” malware: vanishing antiviruses
by interleaving layers and layers of attacks. Jour-
nal of Computer Virology and Hacking Techniques,
Jun 2019.

[24] Marcus Botacin, Paulo Ĺıcio De Geus, and André
grégio. Who watches the watchmen: A security-
focused review on current state-of-the-art tech-
niques, tools, and methods for systems and bi-
nary analysis on modern platforms. ACM Comput.
Surv., 51(4):69:1–69:34, July 2018.

[25] Marcus Felipe Botacin, Paulo Ĺıcio de Geus, and
André Ricardo Abed Grégio. The other guys: au-
tomated analysis of marginalized malware. Jour-
nal of Computer Virology and Hacking Techniques,
14(1):87–98, Feb 2018.

[26] Michael Brengel and Christian Rossow. M em s
crimper: Time-and space-efficient storage of mal-
ware sandbox memory dumps. In International
Conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, pages 24–45.
Springer, 2018.

[27] Matthew Brocker and Stephen Checkoway. iseeyou:
Disabling the macbook webcam indicator LED. In
23rd USENIX Security Symposium (USENIX Se-
curity 14), pages 337–352, San Diego, CA, 2014.
USENIX Association.

[28] Erik Buchanan, Ryan Roemer, Hovav Shacham,
and Stefan Savage. When good instructions go
bad: Generalizing return-oriented programming to
risc. In Proceedings of the 15th ACM conference
on Computer and communications security, pages
27–38. ACM, 2008.

[29] Alejandro Calleja, Juan Tapiador, and Juan Ca-
ballero. A look into 30 years of malware devel-
opment from a software metrics perspective. In
International Symposium on Research in Attacks,
Intrusions, and Defenses, pages 325–345. Springer,
2016.

[30] D. Carlin, A. Cowan, P. O’Kane, and S. Sezer. The
effects of traditional anti-virus labels on malware
detection using dynamic runtime opcodes. IEEE
Access, 5:17742–17752, 2017.

[31] Nicholas Carlini, Antonio Barresi, Mathias Payer,
David Wagner, and Thomas R. Gross. Control-
flow bending: On the effectiveness of control-flow
integrity. In 24th USENIX Security Symposium
(USENIX Security 15), pages 161–176, Washing-
ton, D.C., 2015. USENIX Association.

[32] Nicholas Carlini and David Wagner. {ROP} is
still dangerous: Breaking modern defenses. In 23rd
{USENIX} Security Symposium ({USENIX} Secu-
rity 14), pages 385–399, 2014.

[33] Nicholas Carlini and David Wagner. ROP is still
dangerous: Breaking modern defenses. In 23rd
USENIX Security Symposium (USENIX Security
14), pages 385–399, San Diego, CA, 2014. USENIX
Association.

[34] Lorenzo Cavallaro, Prateek Saxena, and R. Sekar.
On the limits of information flow techniques for

28

https://www.bitdefender.com/support/the-update-system-for-virus-signatures-216.html
https://www.bitdefender.com/support/the-update-system-for-virus-signatures-216.html
https://www.bitdefender.com/support/the-update-system-for-virus-signatures-216.html
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/broad-view-ecosystem-socially-engineered-exploit-documents/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/broad-view-ecosystem-socially-engineered-exploit-documents/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/broad-view-ecosystem-socially-engineered-exploit-documents/

malware analysis and containment. In Diego Zam-
boni, editor, Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, pages 143–
163, Berlin, Heidelberg, 2008. Springer Berlin Hei-
delberg.

[35] F. Ceschin, F. Pinage, M. Castilho, D. Menotti,
L. S. Oliveira, and A. Gregio. The need for speed:
An analysis of brazilian malware classifers. IEEE
Security & Privacy, 16(6):31–41, Nov.-Dec. 2018.

[36] Fabŕıcio Ceschin, Marcus Botacin, Heitor Murilo
Gomes, Luiz S. Oliveira, and André Grégio. Shal-
low security: On the creation of adversarial vari-
ants to evade machine learning-based malware
detectors. In Proceedings of the 3rd Revers-
ing and Offensive-Oriented Trends Symposium,
ROOTS’19, New York, NY, USA, 2019. Associa-
tion for Computing Machinery.

[37] Fabŕıcio Ceschin, Heitor Murilo Gomes, Mar-
cus Botacin, Albert Bifet, Bernhard Pfahringer,
Luiz S. Oliveira, and André Grégio. Machine learn-
ing (in) security: A stream of problems, 2020.

[38] Orçun Çetin, Carlos Gañán, Lisette Altena,
Samaneh Tajalizadehkhoob, and Michel van Eeten.
Let me out! evaluating the effectiveness of quaran-
tining compromised users in walled gardens. In
Fourteenth Symposium on Usable Privacy and Se-
curity (SOUPS 2018), pages 251–263, Baltimore,
MD, 2018. USENIX Association.

[39] S. K. Cha, I. Moraru, J. Jang, J. Truelove,
D. Brumley, and D. G. Andersen. Splitscreen:
Enabling efficient, distributed malware detec-
tion. Journal of Communications and Networks,
13(2):187–200, 2011.

[40] Daming D Chen, Maverick Woo, David Brumley,
and Manuel Egele. Towards automated dynamic
analysis for linux-based embedded firmware. In
NDSS, pages 1–16, 2016.

[41] Haining Chen, Ninghui Li, William Enck, Yousra
Aafer, and Xiangyu Zhang. Analysis of seandroid
policies: Combining mac and dac in android. In
Proceedings of the 33rd Annual Computer Security
Applications Conference, ACSAC 2017, pages 553–
565, New York, NY, USA, 2017. ACM.

[42] Lingwei Chen, Shifu Hou, and Yanfang Ye. Se-
curedroid: Enhancing security of machine learning-
based detection against adversarial android mal-
ware attacks. In Proceedings of the 33rd Annual
Computer Security Applications Conference, AC-
SAC 2017, pages 362–372, New York, NY, USA,
2017. ACM.

[43] Lingwei Chen, Yanfang Ye, and Thirimachos
Bourlai. Adversarial machine learning in malware
detection: Arms race between evasion attack and
defense. In 2017 European Intelligence and Se-
curity Informatics Conference (EISIC), pages 99–
106. IEEE, 2017.

[44] Ping Chen, Hai Xiao, Xiaobin Shen, Xinchun Yin,
Bing Mao, and Li Xie. Drop: Detecting return-
oriented programming malicious code. In Inter-
national Conference on Information Systems Se-
curity, pages 163–177. Springer, 2009.

[45] Sen Chen, Minhui Xue, Lingling Fan, Shuang Hao,
Lihua Xu, Haojin Zhu, and Bo Li. Automated
poisoning attacks and defenses in malware detec-
tion systems: An adversarial machine learning ap-
proach. computers & security, 73:326–344, 2018.

[46] Binlin Cheng, Jiang Ming, Jianmin Fu, Guojun
Peng, Ting Chen, Xiaosong Zhang, and Jean-Yves
Marion. Towards paving the way for large-scale
windows malware analysis: Generic binary unpack-
ing with orders-of-magnitude performance boost.
In Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security,
CCS ’18, pages 395–411, New York, NY, USA,
2018. ACM.

[47] Yueqiang Cheng, Zongwei Zhou, Yu Miao, Xuhua
Ding, and Huijie Robert Deng. Ropecker: A
generic and practical approach for defending
against rop attacks. In Symposium on Network and
Distributed System Security (NDSS, 2014.

[48] Cisco. Updating anti-virus signatures.
https://www.cisco.com/assets/sol/sb/

isa500_emulator/help/guide/af1321261.html.

[49] ClamAV. Clamavnet. https://www.clamav.net/,
2019.

[50] ClamTk. Updating antivirus signatures. http:

//clamtk.sourceforge.net/help/update-

signatures-clamtk.html.

[51] Michele Colajanni, Daniele Gozzi, and Mirco
Marchetti. Collaborative architecture for mal-
ware detection and analysis. In IFIP Interna-
tional Information Security Conference, pages 79–
93. Springer, 2008.

[52] D. E. Comer, David Gries, Michael C. Mul-
der, Allen Tucker, A. Joe Turner, and Paul R.
Young. Computing as a discipline. Commun.
ACM, 32(1):9–23, January 1989.

[53] Lucian Constantin. Researcher wins $200,000
prize from microsoft for new exploit mitigation
technology. https://www.pcworld.com/article/

29

https://www.cisco.com/assets/sol/sb/isa500_emulator/help/guide/af1321261.html
https://www.cisco.com/assets/sol/sb/isa500_emulator/help/guide/af1321261.html
https://www.clamav.net/
http://clamtk.sourceforge.net/help/update-signatures-clamtk.html
http://clamtk.sourceforge.net/help/update-signatures-clamtk.html
http://clamtk.sourceforge.net/help/update-signatures-clamtk.html
https://www.pcworld.com/article/259943/researcher_wins_200000_prize_from_microsoft_for_new_exploit_mitigation_technology.html

259943/researcher_wins_200000_prize_from_

microsoft_for_new_exploit_mitigation_

technology.html, 2012.

[54] Emanuele Cozzi, Mariano Graziano, Yanick
Fratantonio, and Davide Balzarotti. Understand-
ing linux malware. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 161–175. IEEE,
2018.

[55] Weidong Cui, Marcus Peinado, Zhilei Xu, and El-
lick Chan. Tracking rootkit footprints with a prac-
tical memory analysis system. In Presented as
part of the 21st {USENIX} Security Symposium
({USENIX} Security 12), pages 601–615, 2012.

[56] Weidong Cui, Marcus Peinado, Zhilei Xu, and El-
lick Chan. Tracking rootkit footprints with a prac-
tical memory analysis system. In Presented as part
of the 21st USENIX Security Symposium (USENIX
Security 12), pages 601–615, Bellevue, WA, 2012.
USENIX.

[57] George E Dahl, Jack W Stokes, Li Deng, and
Dong Yu. Large-scale malware classification us-
ing random projections and neural networks. In
2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 3422–3426.
IEEE, 2013.

[58] Peter J. Denning. The science in computer science.
Commun. ACM, 56(5):35–38, May 2013.

[59] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin
Acar, and Michael Backes. Keep me updated: An
empirical study of third-party library updatabil-
ity on android. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communi-
cations Security, pages 2187–2200. ACM, 2017.

[60] Jean-Marc Desharnais and Alain April. Soft-
ware maintenance productivity and maturity. In
Proceedings of the 11th International Conference
on Product Focused Software, PROFES ’10, page
121–125, New York, NY, USA, 2010. Association
for Computing Machinery.

[61] D. Dolev and A. Yao. On the security of public
key protocols. IEEE Transactions on Information
Theory, 29(2):198–208, 1983.

[62] Yue Duan, Mu Zhang, Abhishek Vasisht Bhaskar,
Heng Yin, Xiaorui Pan, Tongxin Li, Xueqiang
Wang, and X Wang. Things you may not know
about android (un) packers: a systematic study
based on whole-system emulation. In 25th Annual
Network and Distributed System Security Sympo-
sium, NDSS, pages 18–21, 2018.

[63] Duo. Security report finds phishing, not zero-
days, is the top malware infection vector.
https://duo.com/blog/security-report-

finds-phishing-not-zero-days-is-the-top-

malware-infection-vector, 2018.

[64] Nicholas Epley and Thomas Gilovich. The
anchoring-and-adjustment heuristic: Why the ad-
justments are insufficient. Psychological Science,
17(4):311–318, 2006. PMID: 16623688.

[65] Qian Feng, Aravind Prakash, Heng Yin, and
Zhiqiang Lin. Mace: High-coverage and robust
memory analysis for commodity operating sys-
tems. In Proceedings of the 30th Annual Computer
Security Applications Conference, pages 196–205.
ACM, 2014.

[66] Yu Feng, Osbert Bastani, Ruben Martins, Isil
Dillig, and Saswat Anand. Automated synthesis of
semantic malware signatures using maximum sat-
isfiability. https://www.ndss-symposium.org/

ndss2017/ndss-2017-programme/automated-

synthesis-semantic-malware-signatures-

using-maximum-satisfiability/, 2017.

[67] Jacob Fustos, Farzad Farshchi, and Heechul Yun.
Spectreguard: An efficient data-centric defense
mechanism against spectre attacks. In Proceedings
of the 56th Annual Design Automation Conference
2019, DAC ’19, pages 61:1–61:6, New York, NY,
USA, 2019. ACM.

[68] Giorgio Giacinto and Belur V. Dasarathy. An edi-
torial note to prospective authors: Machine learn-
ing for computer security: A guide to prospective
authors. Inf. Fusion, 12(3):238–239, July 2011.

[69] Jason Gionta, Ahmed Azab, William Enck, Peng
Ning, and Xiaolan Zhang. Seer: Practical memory
virus scanning as a service. In Proceedings of the
30th Annual Computer Security Applications Con-
ference, ACSAC ’14, page 186–195, New York, NY,
USA, 2014. Association for Computing Machinery.

[70] Jan Goebel, Thorsten Holz, and Carsten Willems.
Measurement and analysis of autonomous spread-
ing malware in a university environment. In In-
ternational Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, pages
109–128. Springer, 2007.

[71] Enes Göktaş, Elias Athanasopoulos, Michalis Poly-
chronakis, Herbert Bos, and Georgios Portokalidis.
Size does matter: Why using gadget-chain length
to prevent code-reuse attacks is hard. In 23rd
USENIX Security Symposium (USENIX Security
14), pages 417–432, San Diego, CA, 2014. USENIX
Association.

30

https://www.pcworld.com/article/259943/researcher_wins_200000_prize_from_microsoft_for_new_exploit_mitigation_technology.html
https://www.pcworld.com/article/259943/researcher_wins_200000_prize_from_microsoft_for_new_exploit_mitigation_technology.html
https://www.pcworld.com/article/259943/researcher_wins_200000_prize_from_microsoft_for_new_exploit_mitigation_technology.html
https://duo.com/blog/security-report-finds-phishing-not-zero-days-is-the-top-malware-infection-vector
https://duo.com/blog/security-report-finds-phishing-not-zero-days-is-the-top-malware-infection-vector
https://duo.com/blog/security-report-finds-phishing-not-zero-days-is-the-top-malware-infection-vector
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/automated-synthesis-semantic-malware-signatures-using-maximum-satisfiability/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/automated-synthesis-semantic-malware-signatures-using-maximum-satisfiability/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/automated-synthesis-semantic-malware-signatures-using-maximum-satisfiability/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/automated-synthesis-semantic-malware-signatures-using-maximum-satisfiability/

[72] Liangyi Gong, Zhenhua Li, Feng Qian, Zifan
Zhang, Qi Alfred Chen, Zhiyun Qian, Hao Lin,
and Yunhao Liu. Experiences of landing machine
learning onto market-scale mobile malware detec-
tion. In Proceedings of the Fifteenth European Con-
ference on Computer Systems, EuroSys ’20, New
York, NY, USA, 2020. Association for Computing
Machinery.

[73] B. Govindarajalu. Computer Architecture and Or-
ganization: Design Principles and Applications
2nd Edition. Mc Graw Hill India, 2017.

[74] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong
Zou, and Xuxian Jiang. Riskranker: scalable and
accurate zero-day android malware detection. In
Proceedings of the 10th international conference on
Mobile systems, applications, and services, pages
281–294. ACM, 2012.

[75] Mariano Graziano, Davide Canali, Leyla Bilge,
Andrea Lanzi, Elaine Shi, Davide Balzarotti,
Marten van Dijk, Michael Bailey, Srinivas De-
vadas, Mingyan Liu, et al. Needles in a haystack:
Mining information from public dynamic analy-
sis sandboxes for malware intelligence. In 24th
{USENIX} Security Symposium ({USENIX} Secu-
rity 15), pages 1057–1072, 2015.

[76] Mariano Graziano, Corrado Leita, and Davide
Balzarotti. Towards network containment in mal-
ware analysis systems. In Proceedings of the 28th
Annual Computer Security Applications Confer-
ence, pages 339–348. ACM, 2012.

[77] André Ricardo Abed Grégio, Paulo Ĺıcio De Geus,
Christopher Kruegel, and Giovanni Vigna. Track-
ing memory writes for malware classification and
code reuse identification. In International Confer-
ence on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 134–143. Springer,
2012.

[78] Kathrin Grosse, Nicolas Papernot, Praveen
Manoharan, Michael Backes, and Patrick Mc-
Daniel. Adversarial examples for malware detec-
tion. In European Symposium on Research in Com-
puter Security, pages 62–79. Springer, 2017.

[79] André Ricardo Abed Grégio, Vitor Monte Afonso,
Dario Simões Fernandes Filho, Paulo Ĺıcio de
Geus, and Mario Jino. Toward a Taxonomy
of Malware Behaviors. The Computer Journal,
58(10):2758–2777, 07 2015.

[80] Guofei Gu, Phillip Porras, Vinod Yegneswaran,
and Martin Fong. Bothunter: Detecting malware
infection through ids-driven dialog correlation. In

16th USENIX Security Symposium (USENIX Se-
curity 07), Boston, MA, 2007. USENIX Associa-
tion.

[81] Mordechai Guri and Dima Bykhovsky. air-jumper:
Covert air-gap exfiltration/infiltration via security
cameras & infrared (ir). Computers & Security,
82:15–29, 2019.

[82] C. Herley and P. C. v. Oorschot. Sok: Science, se-
curity and the elusive goal of security as a scientific
pursuit. In 2017 IEEE Symposium on Security and
Privacy (SP), pages 99–120, May 2017.

[83] Chi-Yao Hong, Fang Yu, and Yinglian Xie. Pop-
ulated ip addresses: Classification and applica-
tions. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security, pages
329–340. ACM, 2012.

[84] Francis Hsu, Hao Chen, Thomas Ristenpart, Jason
Li, and Zhendong Su. Back to the future: A frame-
work for automatic malware removal and system
repair. In 2006 22nd Annual Computer Security
Applications Conference (ACSAC’06), pages 257–
268. IEEE, 2006.

[85] D. Y. Huang, M. M. Aliapoulios, V. G. Li, L. In-
vernizzi, E. Bursztein, K. McRoberts, J. Levin,
K. Levchenko, A. C. Snoeren, and D. McCoy.
Tracking ransomware end-to-end. In 2018 IEEE
Symposium on Security and Privacy (SP), pages
618–631, May 2018.

[86] Wenyi Huang and Jack W. Stokes. Mtnet: A multi-
task neural network for dynamic malware classifi-
cation. In Juan Caballero, Urko Zurutuza, and
Ricardo J. Rodŕıguez, editors, Detection of Intru-
sions and Malware, and Vulnerability Assessment,
pages 399–418, Cham, 2016. Springer International
Publishing.

[87] IACR. Real world crypto symposium. https://

rwc.iacr.org/, 2019.

[88] Daisuke Inoue, Masashi Eto, Katsunari Yoshioka,
Shunsuke Baba, Kazuya Suzuki, Junji Nakazato,
Kazuhiro Ohtaka, and Koji Nakao. nicter: An
incident analysis system toward binding network
monitoring with malware analysis. In 2008 WOM-
BAT Workshop on Information Security Threats
Data Collection and Sharing, pages 58–66. IEEE,
2008.

[89] Daisuke Inoue, Katsunari Yoshioka, Masashi Eto,
Yuji Hoshizawa, and Koji Nakao. Malware be-
havior analysis in isolated miniature network for
revealing malware’s network activity. In 2008
IEEE International Conference on Communica-
tions, pages 1715–1721. IEEE, 2008.

31

https://rwc.iacr.org/
https://rwc.iacr.org/

[90] Kyriakos K. Ispoglou and Mathias Payer. malwash:
Washing malware to evade dynamic analysis. In
10th USENIX Workshop on Offensive Technologies
(WOOT 16), Austin, TX, 2016. USENIX Associa-
tion.

[91] Matthew Jagielski, Alina Oprea, Battista Biggio,
Chang Liu, Cristina Nita-Rotaru, and Bo Li. Ma-
nipulating machine learning: Poisoning attacks
and countermeasures for regression learning. In
2018 IEEE Symposium on Security and Privacy,
SP 2018, Proceedings, 21-23 May 2018, San Fran-
cisco, California, USA, pages 19–35, 2018.

[92] Suman Jana, Donald E Porter, and Vitaly
Shmatikov. Txbox: Building secure, efficient sand-
boxes with system transactions. In 2011 IEEE
Symposium on Security and Privacy, pages 329–
344. IEEE, 2011.

[93] Yeongjin Jang, Chengyu Song, Simon P Chung,
Tielei Wang, and Wenke Lee. A11y attacks: Ex-
ploiting accessibility in operating systems. In Pro-
ceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages
103–115. ACM, 2014.

[94] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu.
Stealthy malware detection through vmm-based
out-of-the-box semantic view reconstruction. In
Proceedings of the 14th ACM conference on Com-
puter and communications security, pages 128–138.
ACM, 2007.

[95] Roberto Jordaney, Kumar Sharad, Santanu K.
Dash, Zhi Wang, Davide Papini, Ilia Nouretdinov,
and Lorenzo Cavallaro. Transcend: Detecting con-
cept drift in malware classification models. In 26th
USENIX Security Symposium (USENIX Security
17), pages 625–642, Vancouver, BC, 2017. USENIX
Association.

[96] Murat Kantarcioglu and Bowei Xi. Adversarial
data mining: Big data meets cyber security. In
Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, pages
1866–1867. ACM, 2016.

[97] Nikos Karampatziakis, Jack W Stokes, Anil
Thomas, and Mady Marinescu. Using file relation-
ships in malware classification. In International
Conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, pages 1–20.
Springer, 2012.

[98] Evanson Mwangi Karanja, Shedden Masupe, and
Mandu Gasennelwe-Jeffrey. Challenge paper: To-
wards open datasets for internet of things malware.
J. Data and Information Quality, 10(2):7:1–7:5,
September 2018.

[99] Khaled N. Khasawneh, Meltem Ozsoy, Caleb
Donovick, Nael Abu-Ghazaleh, and Dmitry Pono-
marev. Ensemble learning for low-level hardware-
supported malware detection. In Herbert Bos,
Fabian Monrose, and Gregory Blanc, editors, Re-
search in Attacks, Intrusions, and Defenses, pages
3–25, Cham, 2015. Springer International Publish-
ing.

[100] Yosuke Kikuchi, Hiroshi Mori, Hiroki Nakano, Kat-
sunari Yoshioka, Tsutomu Matsumoto, and Michel
Van Eeten. Evaluating malware mitigation by an-
droid market operators. In 9th Workshop on Cyber
Security Experimentation and Test ({CSET} 16),
2016.

[101] Doowon Kim, Bum Jun Kwon, and Tudor Dumi-
traş. Certified malware: Measuring breaches of
trust in the windows code-signing pki. In Pro-
ceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS
’17, pages 1435–1448, New York, NY, USA, 2017.
ACM.

[102] Jin-Young Kim, Seok-Jun Bu, and Sung-Bae Cho.
Malware detection using deep transferred genera-
tive adversarial networks. In International Con-
ference on Neural Information Processing, pages
556–564. Springer, 2017.

[103] Johannes Kinder, Stefan Katzenbeisser, Christian
Schallhart, and Helmut Veith. Detecting malicious
code by model checking. In Klaus Julisch and
Christopher Kruegel, editors, Detection of Intru-
sions and Malware, and Vulnerability Assessment,
pages 174–187, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

[104] Dhilung Kirat, Giovanni Vigna, and Christopher
Kruegel. Barebox: Efficient malware analysis on
bare-metal. In Proceedings of the 27th Annual
Computer Security Applications Conference, AC-
SAC ’11, pages 403–412, New York, NY, USA,
2011. ACM.

[105] Dhilung Kirat, Giovanni Vigna, and Christopher
Kruegel. Barecloud: Bare-metal analysis-based
evasive malware detection. In 23rd USENIX Se-
curity Symposium (USENIX Security 14), pages
287–301, San Diego, CA, 2014. USENIX Associ-
ation.

[106] Bojan Kolosnjaji, Apostolis Zarras, Tamas
Lengyel, George Webster, and Claudia Eckert.
Adaptive semantics-aware malware classification.
In Proceedings of the 13th International Confer-
ence on Detection of Intrusions and Malware, and
Vulnerability Assessment - Volume 9721, DIMVA
2016, pages 419–439, Berlin, Heidelberg, 2016.
Springer-Verlag.

32

[107] Bojan Kolosnjaji, Apostolis Zarras, George Web-
ster, and Claudia Eckert. Deep learning for clas-
sification of malware system call sequences. In
Australasian Joint Conference on Artificial Intel-
ligence, pages 137–149. Springer, 2016.

[108] David Korczynski and Heng Yin. Capturing mal-
ware propagations with code injections and code-
reuse attacks. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communi-
cations Security, CCS ’17, pages 1691–1708. ACM,
2017.

[109] Christoforos E. Kozyrakis and David A. Patterson.
A new direction for computer architecture re-
search. https://web.stanford.edu/~kozyraki/

publications/1998.IEEEComputer.Direction.

pdf, 1998.

[110] Alex Krizhevsky. Learning multiple layers of fea-
tures from tiny images. University of Toronto, 05
2012.

[111] Bum Jun Kwon, Jayanta Mondal, Jiyong Jang,
Leyla Bilge, and Tudor Dumitraş. The dropper ef-
fect: Insights into malware distribution with down-
loader graph analytics. In Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’15, pages 1118–1129,
New York, NY, USA, 2015. ACM.

[112] Alexander Küchler, Alessandro Mantovani, Yufei
Han, Leyla Bilge, and Davide Balzarotti. Does ev-
ery second count?time-based evolution of malware
behavior in sandboxes. http://s3.eurecom.fr/

docs/ndss21_kuechler.pdf, 2021.

[113] Fanny Lalonde Levesque, Jude Nsiempba, José M.
Fernandez, Sonia Chiasson, and Anil Somayaji. A
clinical study of risk factors related to malware in-
fections. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications
Security, CCS ’13. ACM, 2013.

[114] Andrea Lanzi, Davide Balzarotti, Christopher
Kruegel, Mihai Christodorescu, and Engin Kirda.
Accessminer: using system-centric models for mal-
ware protection. In Proceedings of the 17th ACM
conference on Computer and communications se-
curity, pages 399–412. ACM, 2010.

[115] Pavel Laskov and Richard Lippmann. Machine
learning in adversarial environments, 2010.

[116] Alan Lee, Vijay Varadharajan, and Udaya Tu-
pakula. On malware characterization and attack
classification. In Proceedings of the First Aus-
tralasian Web Conference - Volume 144, AWC ’13,
page 43–47, AUS, 2013. Australian Computer So-
ciety, Inc.

[117] Johnny Chung Lee. Hacking the nintendo wii re-
mote. IEEE pervasive computing, 7(3):39–45, 2008.

[118] Corrado Leita and Marc Dacier. Sgnet: a world-
wide deployable framework to support the analysis
of malware threat models. In 2008 Seventh Eu-
ropean Dependable Computing Conference, pages
99–109. IEEE, 2008.

[119] Corrado Leita, Marc Dacier, and Frederic Mas-
sicotte. Automatic handling of protocol depen-
dencies and reaction to 0-day attacks with script-
gen based honeypots. In International Workshop
on Recent Advances in Intrusion Detection, pages
185–205. Springer, 2006.

[120] Chaz Lever, Platon Kotzias, Davide Balzarotti,
Juan Caballero, and Manos Antonakakis. A lus-
trum of malware network communication: Evolu-
tion and insights. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 788–804. IEEE,
2017.

[121] Fanny Lalonde Levesque and Jose M. Fernandez.
Computer security clinical trials: Lessons learned
from a 4-month pilot study. In 7th Workshop on
Cyber Security Experimentation and Test (CSET
14), San Diego, CA, 2014. USENIX Association.

[122] Xinghua Li, Jianfeng Ma, and SangJae Moon. On
the security of the canetti-krawczyk model. Inter-
national Conference on Computational and Infor-
mation Science, 2005.

[123] Zhichun Li, Manan Sanghi, Yan Chen, Ming-Yang
Kao, and Brian Chavez. Hamsa: Fast signature
generation for zero-day polymorphic worms with
provable attack resilience. In 2006 IEEE Sympo-
sium on Security and Privacy (S&P’06), pages 15–
pp. IEEE, 2006.

[124] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu.
Automatic reverse engineering of data structures
from binary execution. In Proceedings of the 11th
Annual Information Security Symposium, CERIAS
’10, pages 5:1–5:1, West Lafayette, IN, 2010. CE-
RIAS - Purdue University.

[125] Martina Lindorfer, Alessandro Di Federico, Fed-
erico Maggi, Paolo Milani Comparetti, and Stefano
Zanero. Lines of malicious code: Insights into the
malicious software industry. In Proceedings of the
28th Annual Computer Security Applications Con-
ference, ACSAC ’12, pages 349–358. ACM, 2012.

[126] Martina Lindorfer, Matthias Neugschwandtner,
Lukas Weichselbaum, Yanick Fratantonio, Victor
van der Veen, and Christian Platzer. Andrubis –
1,000,000 apps later: A view on current android
malware behaviors. In Proceedings of the 2014

33

https://web.stanford.edu/~kozyraki/publications/1998.IEEEComputer.Direction.pdf
https://web.stanford.edu/~kozyraki/publications/1998.IEEEComputer.Direction.pdf
https://web.stanford.edu/~kozyraki/publications/1998.IEEEComputer.Direction.pdf
http://s3.eurecom.fr/docs/ndss21_kuechler.pdf
http://s3.eurecom.fr/docs/ndss21_kuechler.pdf

Third International Workshop on Building Analy-
sis Datasets and Gathering Experience Returns for
Security, BADGERS ’14, pages 3–17, Washington,
DC, USA, 2014. IEEE Computer Society.

[127] Ke Liu, Shuai Lu, and Chaoge Liu. Poster: Fin-
gerprinting the publicly available sandboxes. In
Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, CCS
’14, pages 1469–1471, New York, NY, USA, 2014.
ACM.

[128] Chi-Keung Luk, Robert Cohn, Robert Muth, Har-
ish Patil, Artur Klauser, Geoff Lowney, Steven
Wallace, Vijay Janapa Reddi, and Kim Hazelwood.
Pin: Building customized program analysis tools
with dynamic instrumentation. In Proceedings of
the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI
’05, pages 190–200, New York, NY, USA, 2005.
ACM.

[129] Meng Luo, Oleksii Starov, Nima Honarmand, and
Nick Nikiforakis. Hindsight: Understanding the
evolution of ui vulnerabilities in mobile browsers.
In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security,
CCS ’17, pages 149–162, New York, NY, USA,
2017. ACM.

[130] Weiqin Ma, Pu Duan, Sanmin Liu, Guofei Gu, and
Jyh-Charn Liu. Shadow attacks: Automatically
evading system-call-behavior based malware detec-
tion. J. Comput. Virol., 8(1-2):1–13, May 2012.

[131] Aravind Machiry, Nilo Redini, Eric Gustafson, Ho-
jjat Aghakhani, Christopher Kruegel, and Gio-
vanni Vigna. Towards automatically generating a
sound and complete dataset for evaluating static
analysis tools. https://ruoyuwang.me/bar2019/

pdfs/bar2019-final90.pdf, 2019.

[132] Giorgi Maisuradze, Michael Backes, and Christian
Rossow. What cannot be read, cannot be lever-
aged? revisiting assumptions of jit-rop defenses.
In 25th USENIX Security Symposium (USENIX
Security 16), pages 139–156, Austin, TX, 2016.
USENIX Association.

[133] MalwareBytes. Explained yara rules.
https://blog.malwarebytes.com/security-

world/technology/2017/09/explained-yara-

rules/, 2017.

[134] Pratyusa K Manadhata, Sandeep Yadav, Prasad
Rao, and William Horne. Detecting malicious do-
mains via graph inference. In European Sympo-
sium on Research in Computer Security, pages 1–
18. Springer, 2014.

[135] Microsoft. Review event logs and error codes
to troubleshoot issues with microsoft de-
fender antivirus. https://docs.microsoft.

com/en-us/windows/security/threat-

protection/microsoft-defender-antivirus/

troubleshoot-microsoft-defender-antivirus,
2018.

[136] Najmeh Miramirkhani, Mahathi Priya Appini,
Nick Nikiforakis, and Michalis Polychronakis.
Spotless sandboxes: Evading malware analysis sys-
tems using wear-and-tear artifacts. In 2017 IEEE
Symposium on Security and Privacy (SP), pages
1009–1024. IEEE, 2017.

[137] Shinsuke Miwa, Toshiyuki Miyachi, Masashi Eto,
Masashi Yoshizumi, and Yoichi Shinoda. Design
and implementation of an isolated sandbox with
mimetic internet used to analyze malwares. In Pro-
ceedings of the DETER Community Workshop on
Cyber Security Experimentation and Test on DE-
TER Community Workshop on Cyber Security Ex-
perimentation and Test 2007, DETER, pages 6–6,
Berkeley, CA, USA, 2007. USENIX Association.

[138] Tyler Moore, Nektarios Leontiadis, and Nicolas
Christin. Fashion crimes: Trending-term exploita-
tion on the web. In Proceedings of the 18th ACM
Conference on Computer and Communications Se-
curity, CCS ’11, pages 455–466. ACM, 2011.

[139] Andreas Moser, Christopher Kruegel, and Engin
Kirda. Limits of static analysis for malware detec-
tion. In Computer security applications conference,
2007. ACSAC 2007. Twenty-third annual, pages
421–430. IEEE, 2007.

[140] Alexander Moshchuk, Tanya Bragin, Steven D
Gribble, and Henry M Levy. A crawler-based study
of spyware in the web. In NDSS, volume 1, page 2,
2006.

[141] Yacin Nadji, Manos Antonakakis, Roberto
Perdisci, and Wenke Lee. Understanding the
prevalence and use of alternative plans in malware
with network games. In Proceedings of the 27th
Annual Computer Security Applications Confer-
ence, ACSAC ’11, pages 1–10, New York, NY,
USA, 2011. ACM.

[142] Antonio Nappa, M Zubair Rafique, and Juan Ca-
ballero. Driving in the cloud: An analysis of drive-
by download operations and abuse reporting. In In-
ternational Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, pages
1–20. Springer, 2013.

[143] NASA. Mission, goals, objectives. https://www.

nasa.gov/offices/emd/home/mgo.html, 2019.

34

https://ruoyuwang.me/bar2019/pdfs/bar2019-final90.pdf
https://ruoyuwang.me/bar2019/pdfs/bar2019-final90.pdf
https://blog.malwarebytes.com/security-world/technology/2017/09/explained-yara-rules/
https://blog.malwarebytes.com/security-world/technology/2017/09/explained-yara-rules/
https://blog.malwarebytes.com/security-world/technology/2017/09/explained-yara-rules/
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-antivirus/troubleshoot-microsoft-defender-antivirus
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-antivirus/troubleshoot-microsoft-defender-antivirus
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-antivirus/troubleshoot-microsoft-defender-antivirus
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-antivirus/troubleshoot-microsoft-defender-antivirus
https://www.nasa.gov/offices/emd/home/mgo.html
https://www.nasa.gov/offices/emd/home/mgo.html

[144] NASA. Nasa cost estimating handbook (ceh).
https://www.nasa.gov/offices/ocfo/nasa-

cost-estimating-handbook-ceh, 2019.

[145] NDSS. Laser workshop. https://www.ndss-

symposium.org/ndss2021/laser-workshop-

2021, 2021.

[146] Matthias Neugschwandtner, Paolo Milani Com-
paretti, Gregoire Jacob, and Christopher Kruegel.
Forecast: skimming off the malware cream. In Pro-
ceedings of the 27th Annual Computer Security Ap-
plications Conference, pages 11–20. ACM, 2011.

[147] Alina Oprea, Zhou Li, Robin Norris, and Kevin
Bowers. Made: Security analytics for enterprise
threat detection. In Proceedings of the 34th An-
nual Computer Security Applications Conference,
ACSAC ’18, pages 124–136, New York, NY, USA,
2018. ACM.

[148] Alina Oprea, Zhou Li, Ting-Fang Yen, Sang H
Chin, and Sumayah Alrwais. Detection of early-
stage enterprise infection by mining large-scale log
data. In 2015 45th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Net-
works, pages 45–56. IEEE, 2015.

[149] Gerhard Pahl and Wolfgang Beitz. Engineering
design: a systematic approach. Springer Science &
Business Media, 2013.

[150] Vasilis Pappas, Michalis Polychronakis, and Ange-
los D. Keromytis. Transparent ROP exploit miti-
gation using indirect branch tracing. In Presented
as part of the 22nd USENIX Security Symposium
(USENIX Security 13), pages 447–462, Washing-
ton, D.C., 2013. USENIX.

[151] Razvan Pascanu, Jack W Stokes, Hermineh Sanos-
sian, Mady Marinescu, and Anil Thomas. Mal-
ware classification with recurrent networks. In
2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
1916–1920. IEEE, 2015.

[152] Paul Pearce, Vacha Dave, Chris Grier, Kirill
Levchenko, Saikat Guha, Damon McCoy, Vern
Paxson, Stefan Savage, and Geoffrey M. Voelker.
Characterizing large-scale click fraud in zeroaccess.
In Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security,
CCS ’14, pages 141–152, New York, NY, USA,
2014. ACM.

[153] Feargus Pendlebury, Fabio Pierazzi, Roberto Jor-
daney, Johannes Kinder, and Lorenzo Cavallaro.
Enabling fair ml evaluations for security. In Pro-
ceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS

’18, pages 2264–2266, New York, NY, USA, 2018.
ACM.

[154] Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan
Xu, Zhiqiang Lin, and Zhendong Su. X-force:
Force-executing binary programs for security ap-
plications. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 829–844, San Diego,
CA, 2014. USENIX Association.

[155] Roberto Perdisci, Andrea Lanzi, and Wenke Lee.
Mcboost: Boosting scalability in malware collec-
tion and analysis using statistical classification of
executables. In 2008 Annual Computer Security
Applications Conference (ACSAC), pages 301–310.
IEEE, 2008.

[156] Roberto Perdisci, Wenke Lee, and Nick Feam-
ster. Behavioral clustering of http-based malware
and signature generation using malicious network
traces. In NSDI, volume 10, page 14, 2010.

[157] Karl Popper. The logic of scientific discovery.
Routledge, 1959. Republished: 2005.

[158] Rebecca S Portnoff, Linda N Lee, Serge Egelman,
Pratyush Mishra, Derek Leung, and David Wag-
ner. Somebody’s watching me?: Assessing the ef-
fectiveness of webcam indicator lights. In Proceed-
ings of the 33rd Annual ACM Conference on Hu-
man Factors in Computing Systems, pages 1649–
1658. ACM, 2015.

[159] Prisma. Transparent reporting of systematic re-
views and meta-analyses. http://www.prisma-

statement.org/, 2019.

[160] Zhiyun Qian, Z Morley Mao, and Yinglian Xie.
Collaborative tcp sequence number inference at-
tack: how to crack sequence number under a sec-
ond. In Proceedings of the 2012 ACM conference
on Computer and communications security, pages
593–604. ACM, 2012.

[161] M. Zubair Rafique and Juan Caballero. Firma:
Malware clustering and network signature gener-
ation with mixed network behaviors. In Proceed-
ings of the 16th International Symposium on Re-
search in Attacks, Intrusions, and Defenses - Vol-
ume 8145, RAID 2013, pages 144–163, New York,
NY, USA, 2013. Springer-Verlag New York, Inc.

[162] M Zubair Rafique and Juan Caballero. Firma:
Malware clustering and network signature gener-
ation with mixed network behaviors. In Interna-
tional Workshop on Recent Advances in Intrusion
Detection, pages 144–163. Springer, 2013.

[163] Mohd Faizal Ab Razak, Nor Badrul Anuar, Rosli
Salleh, and Ahmad Firdaus. The rise of “malware”:

35

https://www.nasa.gov/offices/ocfo/nasa-cost-estimating-handbook-ceh
https://www.nasa.gov/offices/ocfo/nasa-cost-estimating-handbook-ceh
https://www.ndss-symposium.org/ndss2021/laser-workshop-2021
https://www.ndss-symposium.org/ndss2021/laser-workshop-2021
https://www.ndss-symposium.org/ndss2021/laser-workshop-2021
http://www.prisma-statement.org/
http://www.prisma-statement.org/

Bibliometric analysis of malware study. Journal of
Network and Computer Applications, 75:58 – 76,
2016.

[164] Rob Rosenberger and Ross Greenberg. Computer
virus myths. SIGSAC Rev., 7(4):21–24, January
1990.

[165] Christian Rossow, Christian Dietrich, and Herbert
Bos. Large-scale analysis of malware download-
ers. In Proceedings of the 9th International Confer-
ence on Detection of Intrusions and Malware, and
Vulnerability Assessment, DIMVA’12, pages 42–61,
Berlin, Heidelberg, 2013. Springer-Verlag.

[166] Christian Rossow, Christian J. Dietrich, Chris
Grier, Christian Kreibich, Vern Paxson, Norbert
Pohlmann, Herbert Bos, and Maarten van Steen.
Prudent practices for designing malware experi-
ments: Status quo and outlook. In Proceedings
of the 2012 IEEE Symposium on Security and Pri-
vacy, SP ’12, pages 65–79, Washington, DC, USA,
2012. IEEE Computer Society.

[167] Walter Rweyemamu, Tobias Lauinger, Christo
Wilson, William Robertson, and Engin Kirda.
Clustering and the weekend effect: Recommenda-
tions for the use of top domain lists in security
research. In David Choffnes and Marinho Bar-
cellos, editors, Passive and Active Measurement,
pages 161–177, Cham, 2019. Springer International
Publishing.

[168] Aleieldin Salem. Stimulation and detection of an-
droid repackaged malware with active learning.
https://arxiv.org/pdf/1808.01186.pdf, 2018.

[169] Stefano Schiavoni, Federico Maggi, Lorenzo Cav-
allaro, and Stefano Zanero. Phoenix: Dga-based
botnet tracking and intelligence. In International
Conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, pages 192–
211. Springer, 2014.

[170] James Scott. Signature based mal-
ware detection is dead. https:

//pdfs.semanticscholar.org/646c/

8b08dd5c3c70785550eab01e766798be80b5.pdf,
2017.

[171] Marcos Sebastián, Richard Rivera, Platon Kotzias,
and Juan Caballero. Avclass: A tool for mas-
sive malware labeling. In Fabian Monrose, Marc
Dacier, Gregory Blanc, and Joaquin Garcia-Alfaro,
editors, Research in Attacks, Intrusions, and De-
fenses, pages 230–253, Cham, 2016. Springer Inter-
national Publishing.

[172] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian
Perrig. Secvisor: A tiny hypervisor to provide life-
time kernel code integrity for commodity oses. In

Proceedings of Twenty-first ACM SIGOPS Sympo-
sium on Operating Systems Principles, SOSP ’07,
pages 335–350, New York, NY, USA, 2007. ACM.

[173] M. Zubair Shafiq, Syed Ali Khayam, and Muddas-
sar Farooq. Embedded malware detection using
markov n-grams. In Diego Zamboni, editor, De-
tection of Intrusions and Malware, and Vulnerabil-
ity Assessment, pages 88–107, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

[174] Ed Skoudis and Lenny Zeltser. Malware: Fighting
Malicious Code. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2003.

[175] Andrew Slaughter, Mark Yampolskiy, Manyalibo
Matthews, Wayne E King, Gabe Guss, and Yuval
Elovici. How to ensure bad quality in metal addi-
tive manufacturing: In-situ infrared thermography
from the security perspective. In Proceedings of
the 12th International Conference on Availability,
Reliability and Security, page 78. ACM, 2017.

[176] Michael R. Smith, Nicholas T. Johnson, Joe B.
Ingram, Armida J. Carbajal, Bridget I. Haus,
Eva Domschot, Ramyaa Ramyaa, Christo-
pher C. Lamb, Stephen J. Verzi, and W. Philip
Kegelmeyer. Mind the gap: On bridging the
semantic gap between machine learning and
malware analysis. In Proceedings of the 13th ACM
Workshop on Artificial Intelligence and Security,
AISec’20, page 49–60, New York, NY, USA, 2020.
Association for Computing Machinery.

[177] Tomas Sochor and Matej Zuzcak. Study of internet
threats and attack methods using honeypots and
honeynets. In International Conference on Com-
puter Networks, pages 118–127. Springer, 2014.

[178] R. Sommer and V. Paxson. Outside the closed
world: On using machine learning for network in-
trusion detection. In 2010 IEEE Symposium on
Security and Privacy, pages 305–316, 2010.

[179] IEEE S&P. Ieee security & privacy. https://www.
ieee-security.org/TC/SP2020/cfpapers.html,
2019.

[180] Blaine Stancill, Kevin Z Snow, Nathan Otterness,
Fabian Monrose, Lucas Davi, and Ahmad-Reza
Sadeghi. Check my profile: Leveraging static anal-
ysis for fast and accurate detection of rop gadgets.
In International Workshop on Recent Advances in
Intrusion Detection, pages 62–81. Springer, 2013.

[181] Jay Stokes, , , Joe Faulhaber, Mady Marinescu,
Anil Thomas, and Marius Gheorghescu. Scalable
telemetry classification for automated malware de-
tection. In Proceedings of European Symposium on
Research in Computer Security (ESORICS2012).
Springer, September 2012.

36

https://arxiv.org/pdf/1808.01186.pdf
https://pdfs.semanticscholar.org/646c/8b08dd5c3c70785550eab01e766798be80b5.pdf
https://pdfs.semanticscholar.org/646c/8b08dd5c3c70785550eab01e766798be80b5.pdf
https://pdfs.semanticscholar.org/646c/8b08dd5c3c70785550eab01e766798be80b5.pdf
https://www.ieee-security.org/TC/SP2020/cfpapers.html
https://www.ieee-security.org/TC/SP2020/cfpapers.html

[182] Brett Stone-Gross, Marco Cova, Lorenzo Caval-
laro, Bob Gilbert, Martin Szydlowski, Richard
Kemmerer, Christopher Kruegel, and Giovanni Vi-
gna. Your botnet is my botnet: Analysis of a bot-
net takeover. In Proceedings of the 16th ACM Con-
ference on Computer and Communications Secu-
rity, CCS ’09, pages 635–647, New York, NY, USA,
2009. ACM.

[183] Gianluca Stringhini, Christopher Kruegel, and
Giovanni Vigna. Shady paths: Leveraging surf-
ing crowds to detect malicious web pages. In Pro-
ceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, CCS
’13, pages 133–144, New York, NY, USA, 2013.
ACM.

[184] Nina Sunde and Itiel E. Dror. Cognitive and human
factors in digital forensics: Problems, challenges,
and the way forward. Digital Investigation, 29:101
– 108, 2019.

[185] Vasilis G. Tasiopoulos and Sokratis K. Katsikas.
Bypassing antivirus detection with encryption. In
Proceedings of the 18th Panhellenic Conference on
Informatics, PCI ’14, pages 16:1–16:2, New York,
NY, USA, 2014. ACM.

[186] BIML Team. Annotated bibliography. https://

berryvilleiml.com/references/, 2020.

[187] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor
Santos, and Pablo G Bringas. Sok: Deep packer
inspection: A longitudinal study of the complexity
of run-time packers. In 2015 IEEE Symposium on
Security and Privacy, pages 659–673. IEEE, 2015.

[188] USENIX. Usenix soups. https://www.usenix.

org/conference/soups2019, 2019.

[189] USENIX. Workshop on cyber security experi-
mentation and test. https://www.usenix.org/

conferences/byname/135, 2020.

[190] Erik van der Kouwe, Dennis Andriesse, Herbert
Bos, Cristiano Giufrida, and Gernot Heiser.
Benchmarking crimes:an emerging threat in
systems security. https://ts.data61.csiro.

au/publications/papers/Kouwe_ABGH_18:

arxiv.pdf, 2019.

[191] Victor van der Veen, Yanick Fratantonio, Mar-
tina Lindorfer, Daniel Gruss, Clementine Mau-
rice, Giovanni Vigna, Herbert Bos, Kaveh Razavi,
and Cristiano Giuffrida. Drammer: Determinis-
tic rowhammer attacks on mobile platforms. In
Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS
’16, pages 1675–1689, New York, NY, USA, 2016.
ACM.

[192] Marie Vasek and Tyler Moore. Do malware re-
ports expedite cleanup? an experimental study. In
Presented as part of the 5th Workshop on Cyber
Security Experimentation and Test, Bellevue, WA,
2012. USENIX.

[193] Michael Venable, Mohamed R. Chouchane,
Md Enamul Karim, and Arun Lakhotia. An-
alyzing memory accesses in obfuscated x86
executables. In Klaus Julisch and Christopher
Kruegel, editors, Detection of Intrusions and
Malware, and Vulnerability Assessment, pages
1–18, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

[194] Timothy Vidas and Nicolas Christin. Evading an-
droid runtime analysis via sandbox detection. In
Proceedings of the 9th ACM Symposium on Infor-
mation, Computer and Communications Security,
ASIA CCS ’14, pages 447–458, New York, NY,
USA, 2014. ACM.

[195] R Vinayakumar, KP Soman, and Prabaha-
ran Poornachandran. Detecting malicious do-
main names using deep learning approaches at
scale. Journal of Intelligent & Fuzzy Systems,
34(3):1355–1367, 2018.

[196] VirusTotal. Launching virustotal monitor, a
service to mitigate false positives. https:

//blog.virustotal.com/2018/06/vtmonitor-

to-mitigate-false-positives.html, 2018.

[197] Thomas Vissers, Jan Spooren, Pieter Agten,
Dirk Jumpertz, Peter Janssen, Marc Van Wese-
mael, Frank Piessens, Wouter Joosen, and Lieven
Desmet. Exploring the ecosystem of malicious do-
main registrations in the. eu tld. In International
Symposium on Research in Attacks, Intrusions,
and Defenses, pages 472–493. Springer, 2017.

[198] Stijn Volckaert, Bart Coppens, and Bjorn De Sut-
ter. Cloning your gadgets: Complete rop at-
tack immunity with multi-variant execution. IEEE
Transactions on Dependable and Secure Comput-
ing, 13(4):437–450, 2016.

[199] Ruoyu Wang. Ndss workshop on binary analy-
sis research (bar) 2019. https://ruoyuwang.me/

bar2019/, 2019.

[200] Andrew G West and Aziz Mohaisen. Metadata-
driven threat classification of network endpoints
appearing in malware. In International Confer-
ence on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 152–171. Springer,
2014.

[201] Andrew G. West and Aziz Mohaisen. Metadata-
driven threat classification of network endpoints

37

https://berryvilleiml.com/references/
https://berryvilleiml.com/references/
https://www.usenix.org/conference/soups2019
https://www.usenix.org/conference/soups2019
https://www.usenix.org/conferences/byname/135
https://www.usenix.org/conferences/byname/135
https://ts.data61.csiro.au/publications/papers/Kouwe_ABGH_18:arxiv.pdf
https://ts.data61.csiro.au/publications/papers/Kouwe_ABGH_18:arxiv.pdf
https://ts.data61.csiro.au/publications/papers/Kouwe_ABGH_18:arxiv.pdf
https://blog.virustotal.com/2018/06/vtmonitor-to-mitigate-false-positives.html
https://blog.virustotal.com/2018/06/vtmonitor-to-mitigate-false-positives.html
https://blog.virustotal.com/2018/06/vtmonitor-to-mitigate-false-positives.html
https://ruoyuwang.me/bar2019/
https://ruoyuwang.me/bar2019/

appearing in malware. In Sven Dietrich, editor,
Detection of Intrusions and Malware, and Vulner-
ability Assessment, pages 152–171, Cham, 2014.
Springer International Publishing.

[202] Carsten Willems, Felix C. Freiling, and Thorsten
Holz. Using memory management to detect and
extract illegitimate code for malware analysis. In
Proceedings of the 28th Annual Computer Security
Applications Conference, ACSAC ’12, pages 179–
188, New York, NY, USA, 2012. ACM.

[203] Carsten Willems, Thorsten Holz, and Felix Freil-
ing. Toward automated dynamic malware analy-
sis using cwsandbox. IEEE Security & Privacy,
5(2):32–39, 2007.

[204] Zhenyu Wu, Steven Gianvecchio, Mengjun Xie,
and Haining Wang. Mimimorphism: A new ap-
proach to binary code obfuscation. In Proceedings
of the 17th ACM conference on Computer and com-
munications security, pages 536–546. ACM, 2010.

[205] Mengjun Xie, Zhenyu Wu, and Haining Wang.
Honeyim: Fast detection and suppression of in-
stant messaging malware in enterprise-like net-
works. In Twenty-Third Annual Computer Security
Applications Conference (ACSAC 2007), pages 64–
73. IEEE, 2007.

[206] Guanhua Yan, Nathan Brown, and Deguang Kong.
Exploring discriminatory features for automated
malware classification. In International Conference
on Detection of Intrusions and Malware, and Vul-
nerability Assessment, pages 41–61. Springer, 2013.

[207] Wei Yang, Deguang Kong, Tao Xie, and Carl A
Gunter. Malware detection in adversarial settings:
Exploiting feature evolutions and confusions in an-
droid apps. In Proceedings of the 33rd Annual
Computer Security Applications Conference, pages
288–302. ACM, 2017.

[208] Heng Yin, Dawn Song, Manuel Egele, Christopher
Kruegel, and Engin Kirda. Panorama: capturing
system-wide information flow for malware detec-
tion and analysis. In Proceedings of the 14th ACM
conference on Computer and communications se-
curity, pages 116–127. ACM, 2007.

[209] Akira Yokoyama, Kou Ishii, Rui Tanabe, Yinmin
Papa, Katsunari Yoshioka, Tsutomu Matsumoto,
Takahiro Kasama, Daisuke Inoue, Michael Brengel,
Michael Backes, et al. Sandprint: fingerprinting
malware sandboxes to provide intelligence for sand-
box evasion. In International Symposium on Re-
search in Attacks, Intrusions, and Defenses, pages
165–187. Springer, 2016.

[210] Fei Zhang, Patrick PK Chan, Battista Biggio,
Daniel S Yeung, and Fabio Roli. Adversarial fea-
ture selection against evasion attacks. IEEE trans-
actions on cybernetics, 46(3):766–777, 2016.

[211] Hang Zhang, Dongdong She, and Zhiyun Qian.
Android root and its providers: A double-edged
sword. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Se-
curity, pages 1093–1104. ACM, 2015.

[212] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao.
Semantics-aware android malware classification us-
ing weighted contextual api dependency graphs. In
Proceedings of the 2014 ACM SIGSAC conference
on computer and communications security, pages
1105–1116. ACM, 2014.

[213] Yajin Zhou and Xuxian Jiang. Dissecting android
malware: Characterization and evolution. In 2012
IEEE symposium on security and privacy, pages
95–109. IEEE, 2012.

[214] Jianwei Zhuge, Thorsten Holz, Xinhui Han,
Chengyu Song, and Wei Zou. Collecting
autonomous spreading malware using high-
interaction honeypots. In International Conference
on Information and Communications Security,
pages 438–451. Springer, 2007.

38

	Introduction
	Methodology
	The Malware Research Method
	Challenges & Pitfalls
	Research Objective Definition
	Hypothesis Definition & Research Requirements
	Solutions Design
	Experiment Design
	Test of Hypothesis/Evaluation of Solutions
	Summary

	Moving Forward
	The Field
	Researchers
	Reviewers
	Conferences, Journals, and Workshops
	Industry

	Related Work
	Conclusion

