
Understanding Uses and Misuses of Similarity Hashing Functions for

Malware Detection and Family Clustering in Actual Scenarios

Marcus Botacin1 Vitor Hugo Galhardo Moia2,3 Fabricio Ceschin1

Marco A. Amaral Henriques3 André Grégio1

1Federal University of Paraná (UFPR)
{mfbotacin,fjoceschin,gregio}@inf.ufpr.br

2 Samsung R&D Institute Brazil
vitor.m@samsung.com

3 University of Campinas (UNICAMP)
maah@unicamp.br

Abstract

An everyday growing number of malware variants target
end-users and organizations. To reduce the amount of indi-
vidual malware handling, security analysts apply techniques
for finding similarities to cluster samples. A popular clus-
tering method relies on similarity hashing functions, which
create short representations of files and compare them to
produce a score related to the similarity level between them.
Despite the popularity of those functions, the limits of their
application to malware samples have not been extensively
studied so-far. To help in bridging this gap, we performed
a set of experiments to characterize the application of these
functions on long-term, realistic malware analysis scenarios.
To do so, we introduce SHAVE, an ideal model of similarity
hashing-based antivirus engine. The evaluation of SHAVE
consisted of applying two distinct hash functions (ssdeep and
sdhash) to a dataset of 21 thousand actual malware sam-
ples collected over four years. We characterized this dataset
based on the performed clustering, and discovered that: (i)
smaller groups are prevalent than large ones; (ii) the thresh-
old value chosen may significantly change the conclusions
about the prevalence of similar samples in a given dataset;
(iii) establishing a ground-truth for similarity hashing func-
tions comparison has its issues, since the clusters originated
from traditional AV labeling routines may result from a com-
pletely distinct approach; (iv) the application of similarity
hashing functions improves traditional AVs’ detection rates
by up to 40%; and finally, (v) taking specific binary regions
into account (e.g., instructions) leads to better classification
results than hashing the entire binary file.

1 Introduction

Antiviruses (AVs) have been the main line of defense against
malware infections in the last years, but even the AV in-
dustry struggles to provide countermeasures for the ex-
ponentially growing number of malware variants released
daily [22]. AV companies usually handle the huge amount of
newly discovered malware by grouping samples into clusters,

then applying the same detection processes to each of them.
Thus, companies save time and prevent their analysts from
analyzing plenty of similar individual samples. This pro-
cedure of complexity reduction is backed by the fact that
many samples are created by the same attackers with the
same “development model”, which incur in resulting mal-
ware that exhibit similar constructs [4].

Identifying malware similarity is as challenging as it is
important for defense purposes. Many different approaches
have been proposed for similarity identification over time.
A popular similarity identification technique is similarity
hashing (a.k.a., Approximate Matching [18]), which pro-
duces small and compact object representations called di-
gests. The comparison of two objects’ digests using these
types of functions produces a value (score) that indicates
the level of similarity between those objects; a given thresh-
old determines whether the objects are considered similar to
each other or not. Similarity hashing functions became pop-
ular due to their greater speed in comparison to the afore-
mentioned related work, thus being implemented by many
security companies in their products, servers, and endpoints
(e.g., TrendMicro relies on similarity hashing for IoT mal-
ware clustering [43], whereas Google applies it for finding
malicious apps in its Play Store [28]).

Despite their popularity, the academic literature about
similarity hashing functions is still limited, either in number
or in the broadness of their use in malware detection. For
instance, Pagani et al. [56] presented an extensive evalua-
tion on the application of hash functions for many binary
analysis tasks, but the specific case of malware variants was
little explored. No available work focuses on the drawbacks
of malware analysis, such as threshold definition issues. The
literature also does not discuss the limitations, development
opportunities, and challenges of similarity hashing applica-
tion to actual malware samples in real scenarios. Therefore,
we decided to investigate these possibilities and fill these
gaps with a methodological approach for the application of
similarity hashing functions for malware classification and
clustering.

We investigate the application of similarity hashing func-

1

tions for three distinct, independent tasks: (i) characteriza-
tion of real datasets; (ii) malware detection; and (iii) mal-
ware clustering in families. For each one of them, we high-
light similarity hashing function’s strong and weak points.
For all tasks, since our goal is to evaluate the functions in
real scenarios, we used a dataset of 21 thousand distinct real-
world malware samples collected during seven years from
real infected machines.

For the characterization task, we leverage distinct setups
of hashing functions (ssdeep and sdhash) and thresholds
(from 0 up to 100%), such that we can explore the best pa-
rameters for performing the task at hand. We report a set of
exploratory results on the application of hashing functions
to malware samples, such as the number of clustered sam-
ples, their sizes, and the impact of distinct threshold values
on clusters definition. We successfully identified multiple
clusters in the real-world dataset, some of which contain-
ing up to a hundred samples. We discovered that distinct
threshold values might completely change the dataset char-
acterization outcomes by indicating that it presents a low
or a high ratio of similar samples. Even worse, there is cur-
rently no guideline for such threshold definition, such that
distinct researchers choose values in an ad-hoc manner.

For the detection task, we introduce SHAVE (Similarity
Hashing AntiVirus Engine), an ideal model of a cloud-based
AV with similarity hashing capabilities to evaluate its ap-
plication to malware samples. By leveraging SHAVE, we
discovered that traditional AVs’ detection rates can be in-
creased by up to 40% if the similarity between detected and
undetected samples is taken into account. We also discov-
ered that AVs cloud-based architectures might allow that
more complex similarity identification routines to be put
into practice by applying them only to the cluster’s cen-
troids, instead of to all samples.

For the malware classification task, we compared simi-
larity hashing function’s and traditional AntiVirus’ (AVs)
clustering capabilities, since AVs are the most popular so-
lutions for labeling malware. We identified a difficulty to
establish a ground-truth for the number and size of clusters
reported by the similarity hashing functions. We highlight
that it is difficult to compare SHAVE and traditional AVs —
the closest-related malware detection solution to this work
— since the latter generate clusters based on completely
distinct metrics (e.g., behavioral heuristics). We conclude
that malware classification is the hardest task to be per-
formed either by using AVs or similarity hashing functions,
which is often reflected in the lower metrics scores (accu-
racy, precision, so on) of these methods, as reported in the
paper. In an attempt to increase the classification capabil-
ities, we investigate distinct strategies, such as considering
only specific binary excerpts and/or sections. For instance,
we investigate the impact of common blocks [47], i.e., com-
mon structures that repeat in many objects of the same and
different file types, to the similarity scores. We discovered
that considering only the 70% most prevalent binary’s in-
structions slightly increases the overall metrics scores (e.g.,
accuracy, precision, recall).

Therefore, our results suggest that (i) the adoption of sim-
ilarity hashing functions is a promising candidate technique

to support the development of the next generation of AVs
intended to operate along with large-scale demands; but (ii)
their application should care about the drawbacks we de-
scribe in this study.

Our major goal with this case study is to discuss and sug-
gest mechanisms to increase the confidence and reliability of
the malware classification procedures using similarity hash-
ing functions used by malware analysts and forensic experts.
In this sense, our contributions in this paper are:

• We propose SHAVE, which presents the concept of
a similarity hashing-based AV engine operating solely
from a cloud server and with a centralized malware def-
inition repository.

• We evaluate the limits and benefits of applying similar-
ity hashing functions for malware detection and classi-
fication in real-world scenarios, investigate the impact
of removing common blocks from the similarity scoring,
and show the issues of using AV labels as ground-truth
from malware clustering.

• We show that using AV labels as ground-truth for mal-
ware families clustering is challenging, since labels come
from other techniques than similarity hashing functions,
producing distinct results.

• We investigate the impact of adapting a forensic com-
mon blocks removal approach to the malware similarity
identification context so as to allow the most discrimi-
nant binary instructions to influence more on the final
similarity score rather than common instructions.

• We pinpoint and discuss challenges and opportunities
for future work on malware detection and similarity
clustering.

The remainder of this paper is organized as follows: In
Section 2, we present background information on how simi-
larity hashing functions work; In Section 3, we present our
experimental methodology and the concept of a similarity
hashing-based AntiVirus; In Section 4, we evaluate the ap-
plication of similarity hashing functions for malware detec-
tion and classification in real-world scenarios; In Section 5,
we revisit our findings to propose guidelines for the applica-
tion of similarity hashing function; In Section 6, we discuss
the implications of our findings; In Section 7, we present re-
lated work to better position our contributions; Finally, we
draw our conclusions in Section 8.

2 Background

This work’s goal is to evaluate the application of similarity
hashing to speed up malware clustering procedures. There-
fore, we here present background information on similarity
hashing that supported the development of this work and
describe the clustering tasks we are tackling using them.

2

2.1 Similarity Hashing

Traditional hash functions (e.g., MD5, SHA-1, SHA-2) aim
to create small and compact object representations (a.k.a.,
digests) for their unique identification. The main charac-
teristic of hashes is that flipping a single bit in the input
drastically changes the output, making possible only the de-
tection of identical objects. To tackle traditional hash limi-
tation, similarity hashing functions were developed to create
short object representations and allow the identification of
similarity between objects. A small change in the input will
reflect in a minor and located variation in the digest, al-
lowing similar objects to be correlated. Another difference
between hashes and similarity hashing is that, while hashes
produce binary answers for the comparison of two objects
(they are identical or not), the other one uses special com-
parison functions that provide a confidence measure (score)
about the similarity of two objects. This score can be in a
fixed interval (from 0 to 100) or express dissimilarity (from
0 up to a given limit). A score of 100 (or another value rep-
resenting the perfect value - maximum similarity) produced
by similarity hashes does not mean that the two compared
objects are identical in every single byte, but that they have
a high degree of similarity.

The digest generation process [45] is composed by a fea-
ture extraction (in this case, feature is defined as a sequence
of bytes extracted from the object) and a filtering step to
reduce the number of produced features. This happens be-
cause some tools sometimes extract overlapping features
and/or some features are weak and should not be consid-
ered due to an increase in false positives (e.g., a sequence of
zeros). The interpretation of the final result varies accord-
ing to the tool; some use fixed threshold values to declare
similarity; others produce percentage values.

Similarity hashing is widely applied in the digital forensic
field, where practitioners use them to find similar data in
multiple contexts [61, 31], including the location of malware
variants, the topic of this work. Although these functions
are formally known as Approximate Matching [18], we opted
for using the term similarity hashing for the rest of this work
since it is most known in the malware community.

The Multiple Similarity Hashing Functions. Many
tools implement the concepts of similarity hashes and it is
hard to cover all of them in a single research effort. There-
fore, we limited our analysis to the most popular solutions.
Table 1 shows a sampling of the most recent papers available
in popular publisher’s (ACM, IEEE, Elsevier) repositories.
Our findings suggest ssdeep and sdhash as the targets of
most research works in the literature. Besides, these two
functions were also scrutinized in many research papers (see
next paragraphs) and are well accepted by the community.

In the following paragraphs, we summarize the use and the
operation of these two well known tools (ssdeep and sdhash)
which are the target of constant research and the focus of
this paper. A detailed analysis of their internal aspects is
presented in [42].

ssdeep is a popular similarity hashing function used in mul-
tiple contexts. It implements the Content Triggered Piece-
wise Hashing (CTPH) concept to detect content similarity at

Table 1: Recently Published Works. ssdeep and sdhash
are the most popular functions.

Work ss
d

e
e
p

sd
h

a
sh

T
L

S
H

m
y
h

a
sh

L
e
m

p
e
l-

z
iv

Shiel et al. [66] 3
Sarantinos et al. [64] 3 3

Pagani et al. [56] 3 3
Azab et al. [4] 3 3 3
Naik et al. [51] 3 3 3
Raff et al. [59] 3 3 3

the bytewise level. ssdeep creates variable size blocks with
the aid of a rolling hash algorithm to determine when blocks
start and stop (set boundaries) based on a (random) value
obtained from a fixed-size window that moves through the
input byte-by-byte. Next, all blocks produced are hashed
using an FNV hash function [52], and the six least signif-
icant bits of each hash are encoded in a Base64 character;
the digest is the concatenation of all characters. The sim-
ilarity is assessed with ssdeep by using an Edit Distance
function [68] that counts the minimum number of operations
required to transform one digest into the other, producing
a value (score) indicating similarity; it ranges from 0 (dis-
similarity) to 100 (perfect match). No threshold is used by
ssdeep; all comparisons with score > 0 are considered as sim-
ilar. More information about the whole process of creating
and comparing digests can be found in [36].

sdhash is another similarity hashing function that oper-
ates in the bytewise level to detect similarity between ob-
jects [60]. In short, sdhash aims to identify statistically
improbable features in objects (i.e., unique ones) and map-
ping them into similarity digests. A feature in this context
is a β-bytes sequence (64 by default) extracted from the ob-
ject, and those which have the lowest empirical probability
of being encountered by chance (based on their Shannon en-
tropy) are selected to represent the object. Next, all selected
features are hashed using SHA-1 and stored into bloom fil-
ters [10]. Each filter can store at most 160 features; in case
a filter reaches its capacity, a new one is created. The fi-
nal object digest is the sequence of all bloom filters. The
similarity of two digests is measured by comparing the set
of bloom filters against each other; a normalized score is
returned in the range of 0 (no similarity) to 100 (very sim-
ilar or identical). Roussev, V. and Quates, C. [63] suggests
the use of a threshold t value of 21 to define when objects
are similar since comparisons with lower scores tend to pro-
duce many false positives, although this threshold was not
evaluated in the malware detection context. Many studies
have been developed to improve sdhash efficiency [34] and
precision [47, 45]. In this work, we adopt a new version of
sdhash called J-sdhash [45], since it adopts a new com-
parison function that is more precise and whose results are
easier to interpret, as they are expressed in the terms of the
real similarity shared between objects.

3

2.2 Malware Clustering & Similarity

The presented functions can be applied to many classifica-
tion tasks and over any type of binary. Malware analysis is
one of the most popular tasks for similarity hashing func-
tions and therefore our focus in this work. Malware classifi-
cation tasks can be divided into three types:

1. Malware Family Clustering: In this task, a set of
binaries reported as malicious (with no malware family
label) are classified into clusters of similar binaries (mal-
ware families). The goal is to label them into N clus-
ters that maximize their similarities, generating family
labels for future classification and remediation tasks.
Note that this step is similar to unsupervised learning
in machine learning, given that there are no labels in-
volved in the process of generating labels for unknown
samples [8].

2. Malware Detection: In this task, unknown bina-
ries are classified into a cluster of either malware or
goodware samples. The goal is to identify whether the
unknown binary is malicious or not based on a set of
known malware and goodware samples, similar to a su-
pervised learning process [8].

3. Family Classification: In this task, a binary re-
ported as malicious is classified into clusters of simi-
lar known labeled malware binaries (malware families).
This task’s goal is to separate malware samples be-
longing to one family from another, thus allowing the
development of targeted remediation procedures. This
approach should not be confused with malware family
clustering. In the hereby described task, family labels
are available for the known malware binaries (e.g., as-
signed by previous antivirus checks), as in any training
set of supervised learning approaches [8].

Similarity hash functions present distinct drawbacks and
outcomes when applied for clustering, detection, and clas-
sification. In this work, we explore the three scenarios to
investigate their advantages and constraints.

3 Methodology

In this section, we present the adopted scientific methodol-
ogy on the malware clustering experiments and the dataset
considered in them. Whereas we do not claim our scientific
methodology to be immediately applied by practitioners, we
expect it to be adapted to be applied in conjunction with
other existing forensic methodologies (e.g., [40, 3]).

3.1 Dataset Selection

Our goal in this work is to evaluate the application of sim-
ilarity hashing for clustering malware samples in real-world
scenarios. To this end, we searched for a dataset of real
malware samples. We considered the dataset characterized
in [11] as representative of a real scenario, because it covers a

time frame of seven years of in-the-wild malware samples col-
lected from infected user’s machines by a security company.
This dataset has already been proven to be challenging to
other classification tasks [7, 21] such that we believe it might
highlight challenges to malware classification using similar-
ity hashing functions as well. This dataset is composed of
multiple file types, either executable ones (e.g., EXEs and
DLL written in C, CPLs written in Delphi, and code com-
piled from .Net), or script-based ones (e.g., VBS, Javascript,
so on). We selected for our evaluation only the executable
binary files present in the dataset, which resulted in a total
of 20986 files considered in this study. These binaries are
spread over more than 100 distinct family clusters (accord-
ing to AV’s labels), with 53% of them being “Download-
ers” or “Password Stealers” variations. Around 40% of all
samples are packed (50% of them with UPX and other 50%
with multiple, distinct packers). We did not filter obfuscated
samples out to demonstrate their impact over analyses in a
real inspection case.

To assess the False Positive (FP) rates of the classifi-
cation procedures, we also applied the tools to a set of
legitimate binaries (goodware) that are divided into two
classes: (i) 2870 Executable binaries and DLL files retrieved
from a fresh Windows 8/x64 installation; and (ii) the 2,935
most downloaded binaries from popular software reposito-
ries (e.g., CNET) in 2019. The applications were described in
a previous study [12]. All goodware files were checked using
the Virustotal service to ensure they were downloaded free
of bundled malware.

3.2 Clustering Criteria

The considered similarity hashing tools show the similarity
between the files A and B in a pairwise manner, but they do
not cluster these files automatically. Thus, we parsed their
outputs to create the clusters by ourselves. When clustering
the files, it is natural to think about transitivity: if A and B

are similar and B and C are similar, then A and C should be
similar too. Unfortunately, this might not hold for all files,
since they might share distinct code portions. Therefore,
we need to choose a criteria to include or not these files
into a given cluster. In this work, we decided to include
the three files of the aforementioned example in the same
cluster whenever the similarity between A and B and B and
C are greater or equal to the considered threshold for a given
experiment.

3.3 AV ground-truth

AntiViruses (AVs) are the most popular defense against mal-
ware. Therefore, in this work, we consider AV detection re-
sults for ground-truth evaluation experiments. All samples
hereby reported as malware were labeled as such by at least
one AV engine after the sample’s submission to the Virusto-
tal service [70]. In addition to detection rates, we also con-
sidered the labels attributed to the samples by the AVs as
ground-truth for family clustering experiments. Moreover,
we normalized all labels to avoid inconsistency issues [65]
whenever the experiments required it. For instance, samples

4

reported as belonging to the W32/Delf.A and W32/Delf.B

families were assigned to the same cluster. In the case of
“Generic” labels, we assigned the samples to a new cluster
to reflect the fact that AV analysts will have to manually
inspect the “unknown” samples. Depending on the experi-
ment goal, singleton clusters are discarded. All labels were
retrieved in Dec/2019 and attempts to reproduce our results
should refer to these scans, as AV labels may change over
time [13].

3.4 The Ideal AV Model

All experiments are described in this paper as if they were
applied in the light of an ideal, Similarity Hashing-based AV
Engine (SHAVE). The reliance on similarity hashing func-
tions allows us not only to match identical binaries (100%
similarity), as in typical signature-based detection schemes,
but also extend AV detection capabilities to detect samples
based on partial matches. We restricted our threat model to
signature-based AVs to not bias our results with influences
of other detection mechanisms, such as heuristic detectors.
The ideal AV engine is structured in a client-server archi-
tecture. The client running on the user’s endpoints triggers
inspection procedures according to user demands and up-
loads the digest of the suspicious file to the server running
on the cloud. The server is responsible for effectively imple-
menting the detection logic, which, in the case of this work,
relies on similarity metrics. The server compares the suspi-
cious digest against a previously built database of similarity
digests having multiple known threats and reports the simi-
larity score. The suspicious file is considered as malicious or
not according to the established threshold. This can be con-
figured either on the client or server-side. The major advan-
tage of the considered approach is that the AV only uploads
a digest to the cloud instead of an entire file, unlike some
cloud-based AV solutions. This allows preserving user’s pri-
vacy and saving network traffic. The centralized database
also allows instant malware definition updates, as these do
not need to be distributed to endpoints via the Internet.
Therefore, each scan request is always performed against
the latest version of the malicious digest database. Whereas
the experiment presented in Section 4 justify SHAVE’s via-
bility, we do not expect it to be adopted isolated as in our
experiments, but in conjunction with traditional AV solu-
tions.

4 Experiments & Results

In this section, we present and discuss the experiments
performed to evaluate the feasibility of leveraging similar-
ity hashing function for multiple, distinct malware-related
tasks. More precisely, we first describe the characteristics
presented by similarity hashing functions when characteriz-
ing a real dataset of malware samples. We further evaluate
whether this type of function allows one to cluster unknown
binaries to separate them into malicious and goodware sam-
ples. We finally evaluate whether one can leverage this ap-
proach to identify distinct malware families.

4.1 Characterizing a Real Dataset: Mal-
ware Family Clustering

An immediate application for similarity hashing functions is
to characterize an unknown dataset regarding the number
of malware families and their sizes, which allows analysts
to make inferences about the given scenario, such as how
active and diverse it is. Dataset characterization, however, is
not a straightforward task, but depends on multiple factors.
In this work, we are interested in shedding light on some
of them. In particular, we considered two main affecting
factors: (i) the used similarity hash function; and (ii) the
similarity threshold value.

The used similarity hash function directly affects the fi-
nal result as each function is developed using different tech-
niques (see Section 2) and thus output a distinct similar-
ity score. Pagani et al. [56] identified that the sdhash

function outperforms the popular ssdeep when applied to
their dataset of collected samples. We here applied these
same functions classes1 to a dataset of malware samples col-
lected in-the-wild to evaluate whether this conclusion holds
in broader scopes.

The threshold value affects the result because it conceptu-
ally defines when a sample is considered similar to another.
Failures in adopting a proper threshold value might lead to
False Positives (FPs) or False Negatives (FNs) in the case
of malware detectors and/or classifiers. In the following, we
discuss the extent of the influence of the threshold value in
the overall dataset characterization.
The similarity hash functions. We evaluated the im-
pact of distinct similarity hash functions by applying them
to the dataset described in Section 3. Figure 1 and Figure 2
show, respectively, the relative number of clustered samples
and the total number of identified clusters by the two sim-
ilarity hash functions according to the threshold variation
(from 0 to 100). Figure 1 shows that the tighter the con-
sidered threshold, the fewer samples are identified as sim-
ilar. J-sdhash slightly outperforms ssdeep for all thresh-
olds, which confirms Pagani’s results. Figure 2 clarifies that,
when using laxer thresholds, the similarity hashing func-
tions not only add more samples to already-existing clusters
(which could be due to False Positives), but they indeed
generate more clusters to host samples whose similarity was
not identified using distinct thresholds. From an incident re-
sponse perspective, it brings two significant advantages: (i)
the more samples are identified as similar, the faster they
can be handled by a uniform procedure; and (ii) having more
specific clusters allows more fine-grained incident response.

Finding #1: The J-SDHASH tool covers more sam-
ples and generates more clusters than the SSDEEP
tool, thus easing malware triaging.

The threshold. The threshold value is key for a good clas-
sification analysis, but it seems there is no consensus in the
literature about which is the ideal value. One can find re-
lated work suggesting values of 5 [62], 20 [43], and 90 [27].
In practice, researchers end up adopting ad-hoc threshold

1We used J-sdhash instead of the original sdhash version

5

0+ 10 20 30 40 50 60 70 80 90 100
Similarity Score

20

25

30

35

40

45

50

55

60

65

70
Sa

m
pl

es
 (%

)
Clustered Samples vs Similarity Score

J-SDHASH SSDEEP

Figure 1: Relative Number of Clustered Samples per Simi-
larity Threshold for the two similarity hashing functions.

0+ 10 20 30 40 50 60 70 80 90 100
Similarity Score

1600

1900

2200

2500

2800

3100

3400

3700

4000

Cl
us

te
rs

 (#
)

Clusters vs. Similarity Score

J-SDHASH SSDEEP

Figure 2: Absolute Number of Clusters per Similarity
Threshold for the two similarity hashing functions.

values among the ones considered in our experiments, since
there is currently no guideline for the threshold definition.
Understanding and defining threshold criteria is an impor-
tant open research question because the variation on the
number of clusters and clustered samples in some scenarios
might be expressive enough to lead to contradictory conclu-
sions. For instance, in the considered dataset, on the one
hand, a lax threshold of 50% or less (Figure 1) would sup-
port the conclusion that more than 50% of the dataset is
composed of malware variants (a scenario with few but very
active attackers, as discussed below). On the other hand, a
strict threshold value of 100% (Figure 1) would support the
conclusion that less than a third of the dataset is composed
of similar samples (a scenario with more but less active at-
tackers, as discussed below). Therefore, researchers should
(i) define a clear threshold for their experiments instead of
adopting default settings; and (ii) avoid comparing datasets
using distinct thresholds. In the following, we discuss addi-
tional criteria for threshold definition.

Finding #2: Distinct threshold values might lead to
completely opposite conclusions about the characteris-
tics of the same dataset.

To better understand the impact of multiple threshold
values, we took a look at the cluster size distribution in
addition to the number of clustered samples. The cluster
size distribution allows understanding and inferring multi-
ple characteristics of the observed dataset. One can, for
instance, leverage the number of distinct identified malware
families as a proxy for the number of attackers distribut-
ing malware samples and/or attack sources: the greater the
number of distinct clusters, the greater the chance that the
associated malware samples were generated by distinct at-
tackers. Alternatively, one could use the sizes of the clusters
as a proxy for characterizing how active the attackers are:
the greater the number of samples in a cluster, the greater
the chance that the attacker remained active for a long time
generating new malware variants.

We evaluated how clusters are distributed for the distinct
threshold values. Figure 3 illustrates the cluster size dis-

2 3 4 5 6 7 8 9 10 11 12 13 14 19 20 96 301
Cluster Size (# Samples)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Cl
us

te
rs

 (#
)

Cluster Size Distribution (Score=50)
J-SDHASH SSDEEP

Figure 3: Cluster Distribution for the 50% threshold.
Smaller clusters are more prevalent than larger ones, thus
incidating sample’s diversity.

tribution when the 50% threshold is applied2. We notice
that small clusters (e.g., sized 2, with most samples being
associated with at most one other sample) are more preva-
lent than large clusters, thus indicating a variety of malware
threats. This characteristic also holds for all other thresh-
old values we investigated. It was also reported in previous
studies [27], thus indicating it is a typical characteristic of
real malware datasets and that it can be observed regardless
of the considered threshold value.

Our experiments revealed that the threshold change af-
fects both the maximum number of samples attributed to
a single cluster as well as the size of the largest identified
cluster. These factors are associated, since the threshold
change “moves” samples back and forth from new clusters
to already-existing ones. For instance, our experiments show
that the clusters sized 2 are the prevalent ones for all thresh-
old values, as shown in Figure 4, even though their number is
reduced for tighter threshold values. This happens because
the use of tighter thresholds implies that some samples will

2chosen randomly as a single example due to space constraints

6

0 10 20 30 40 50 60 70 80 90 100
Similarity Score

0

300

600

900

1200

1500

1800

2100

2400

2700

3000
Cl

us
te

rs
 (#

)
Clusters Distribution (Size=2)

J-SDHASH SSDEEP

Figure 4: Clusters Sized 2 are prevalent for all threshold
values, although reduced in number for increased threshold
values.

0 10 20 30 40 50 60 70 80 90 100
Similarity Score

0
50

100
150
200
250
300
350
400
450
500
550

Cl
us

te
rs

 (#
)

Clusters Distribution (Max Cluster Size)
J-SDHASH SSDEEP

Figure 5: Maximum Cluster Size. The tighter the
threshold value, less large clusters and more specialized ones
are generated.

not be considered as enough similar anymore, thus being
removed from any cluster. This suggests that laxer thresh-
olds are more suitable for tasks that require maximizing the
sample’s coverage by the similarity hash function.

Our experiments also show that the size of the largest clus-
ters also change when tighter threshold are considered, as
shown in Figure 5. This happens because tighter thresholds
tend to divide single, large clusters into multiple, smaller
ones, according to the samples that best match themselves.
This suggests that tighter thresholds are more suitable for
tasks that require sample’s clusters to be highly specialized.

More specifically, two classes of analysis tasks require dis-
tinct cluster characteristics to operate with. When triaging
malware, it is desired to have the greatest coverage pos-
sible to minimize the processing costs; When applying re-
mediation procedures, it is desired to have the most sim-
ilar clusters possible to apply the correct, specialized vac-
cines to them. Therefore, we conclude that there is not
a single threshold value that applies to all tasks, but that
smaller threshold values should be used for malware triag-
ing and higher thresholds for remediation procedures. For
both cases, we observed that the J-sdhash function outper-
formed the ssdeep function for all threshold values. In the
following subsections, we dig deeper into these tasks.

Finding #3: Smaller thresholds are more interesting
for malware triaging and larger thresholds are more
interesting for remediation.

4.2 Detecting New Threats: Malware De-
tection

A common way to detect malware is to check whether an
unknown binary clusters to a set of known malware binaries,
according to the considered clustering criteria. We here dis-
cuss how similarity hashing functions can assist in this task.
For all the following presented experiments, the modified
sdhash function (J-sdhash) was considered, as it was the
one that produced the greatest variety of clusters in the ex-
periments presented in the previous section.

AV Detection Rates Increase using Similarity Infor-
mation. Antiviruses (AVs) often perform their clustering
tasks using deterministic signatures, which is reasonably ef-
fective (95% of all samples in the real dataset were detected
by at least one AV). Our hypothesis is that similarity hash-
ing functions could also be used for this task and perform
better. In the following, we present an evaluation of how
AV’s detection rates could be individually increased by con-
sidering binary’s structural similarity information. We eval-
uated the detection rate when looking at the similarity be-
tween a known malware sample and a suspicious sample.
More specifically, we searched for a tuple of samples (A,B)
that either A or B was detected by a given AV solution (but
not both) and the similarity between A and B is greater than
a predefined threshold. All experiments were performed us-
ing the same aforementioned dataset and all AV solutions
available in the VirusTotal service were considered.

0-10 10-40 50-90 100
Similarity Score (%)

0
5

10
15
20
25
30
35
40
45
50
55
60
65

De
te

ct
io

n
In

cr
ea

se
 (%

)

AV Detection Increase vs. Similarity Score
Baidu
Comodo

DrWeb
F-Secure

AhnLab
eScan

Figure 6: AV Detection Increase when considering
binary similarity. Similarity effectively increases AV de-
tection.

Figure 6 shows the detection rate increase according to the
multiple thresholds for the most affected AVs–i.e., the AVs
which would most increase their detection rates if similarity

7

hashing capabilities were added to them. As expected, the
laxer the threshold, the more samples are considered sim-
ilar to known malware and thus the greater the detection
rate increase. We notice that even when a tight threshold of
100% is considered (which requires the known malware and
the unknown payload to be 100% compatible–even though
not 100% equal), the detection rate keeps increasing, thus
showing that there is room for improvements in AV detec-
tion strategies and capabilities (such as by using similarity
hashing functions).

Finding #4: The use of similarity hashing functions
by AV increases their detection capabilities in practice.

Whereas increasing the detection rate via the application
of similarity hashing functions is possible, and even very
significant in the presented cases, it is important to high-
light that distinct AVs will be affected distinctly, according
to their engine’s weaknesses and capabilities. Figure 7
presents a landscape of the detection rate increase for the
multiple AVs present in the Virustotal service. We notice
that all AVs were positively affected, even though by a
small factor

The case for False Positives. We are not aware of AV
solutions using similarity hashing functions in the same way
as proposed in this work, although our results suggest that
adopting this approach is a promising way of increasing mal-
ware detection. This fact raised the concern if any limita-
tions were preventing AVs from adopting this type of oper-
ation mode. We hypothesized that a plausible explanation
could be an increase in the False Positive (FP) rates when
similarity scores were considered–i.e. if the laxer thresholds
were resulting in goodware samples being considered sim-
ilar to malware samples. To evaluate that possibility, we
repeated the same experiments as described above but now
considering the two datasets of goodware samples previously
described in Section 3.

Table 2 shows the FP rate (regarding the detection by
any Virustotal’s AV) for distinct threshold values in the two
datasets. Around one out of four samples result on a FP
when using the minimum threshold value of similarity sup-
ported (threshold > 0, 1%). Increasing the threshold consid-
erably decreases the FP rate. A threshold of 50% decreases
the FP rate to 1%. If we consider that a perfect compati-
bility score (100% threshold) between known malware and
suspicious payloads is required to classify a payload as ma-
licious, we observe an almost negligible FP rate while still
allowing AV detection rates to increase, as previously shown.
Therefore, our findings show that FP is not a limitation for
the application of similarity scores to increase AV’s malware
detection.

Finding #5: A threshold of 50% is the best trade-off
between TP and FNs when using a similarity hashing
function to assist AV detections.

Similarity Hashing Functions Performance. The ma-
jor advantage of the signature-based approaches adopted by
many AVs is that they are very fast. Similarity hashing

functions are more complex than traditional hash functions–
J-sdhash even requires the application of a traditional hash
function as part of its operation (see Section 2), thus im-
posing a greater processing load. We, therefore, evaluated
whether the greater performance impact could be a limita-
tion for their application in real-world scenarios. For such,
we measured the throughput of distinct similarity and tra-
ditional hash functions when inputted with real malware
samples. All experiments were performed on a 64GB, Intel
Xeon E5-2620 2.00GHz CPU running Ubuntu 18.04 LTS.

Table 3 and Table 4 show the average throughput (hashes
per second) while hashing the entire malware dataset de-
scribed in Section 3 using distinct hash functions, consid-
ering, respectively, the CPU Time (actual processing time)
and the Wall Time (total time spent). We notice that for all
cases the throughput reported using CPU Time is an order
of magnitude greater than Wall Time, thus showing that
the time taken to load the hash database to memory is not
negligible (which is key for an AV).

Finding #6: Similarity hashing-based AVs should
not neglect the cost of loading the signature database in
memory to operate even though they might reduce the
database size by condensing similar file’s signatures.

We observed that all the traditional hash functions pre-
sented greater throughput than the similarity hash func-
tions, which shows that the distinct performance rates are
due to the distinct nature of the functions rather than par-
ticular implementation decisions. We also observed that
the previously shown increase in J-sdhash’s similarity re-
sults in comparison to ssdeep’s is obtained via a decrease
in its performance. This result suggests that whereas the
J-sdhash function should be selected in unconstrained sce-
narios (e.g., offline analyses) due to its higher classification
capabilities (shown in the previous subsection), the ssdeep

function is a better option for performance-limited scenar-
ios (e.g., real-time operation), since it provides a ≈ 4 times
greater throughput without losing ≈ 4 times classification
power.

Finding #7: Whereas J-sdhash is a better choice for
unconstrained scenarios, ssdeep is a better choice for
performance-limited scenarios.

Similarity hashing performance and AV databases.
In addition to performance penalties when hashing individ-
ual files, similarity hashing functions also do not scale well
naturally (i.e., without a proper approach/protocol), which
might be prohibitive for an AV company trying to estab-
lish a database of known malware hashes. Figure 8 shows
the spent time to naively match a file against the totality
of a growing database, up to the limit of the entire malware
dataset. This simulates the addition of newly-discovered
samples to an AV company database, as AV companies of-
ten perform in traditional hash-based procedures. This kind
of growth might seems prohibitive at a first glance.

The viability of leveraging similarity hashing functions in
real-world cases is only highlighted when we consider that

8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67
AV (id)

0
5

10
15
20
25
30
35
40
45
50
55

In
cr

ea
se

 (%
)

Detection Increase vs Similariry Score
0+ 10 20 30 40 50 60 70 80 90+

Figure 7: Overall AV Comparison. Distinct AVs increase their detection rates differently.

Table 2: False Positive Analysis. Few goodware samples are mistakenly flagged as malicious.
Win/Sys32 Repositories

Threshold 0+% 50+% 100% 0+% 50+% 100%
FPs 27.30% 1.00% 0.05% 25.00% 1.00% 0.05%

Table 3: Hash Functions Throughput Comparison.
Hashes per second considering CPU processing time.

Function Throughput Function Throughput
J-sdhash 948 SHA256 5651
ssdeep 2475 MD5 9777

SHA512 5146 SHA1 11110

Table 4: Hash Functions Throughput Comparison.
Hashes per second considering Wall time.

Function Throughput Function Throughput
J-sdhash 82 SHA256 613
ssdeep 369 MD5 727

SHA512 413 SHA1 787

1 2 4 8 16 21
Database Size (K entries)

0

5

10

15

20

25

30

35

40

M
at

ch
in

g
Ti

m
e

(s
)

Matching Time vs. Database Size

TIME

Figure 8: Matching Time. The matching time of similar-
ity hashing function grows exponentially.

they do not need to perform the same number of compar-
isons as traditional hash functions to produce the same re-
sult. Whereas typical hash functions would require the com-
parison of all thousand files present in the dataset to check
whether any of them is malicious, a similarity hash func-
tion would require checking only the centroids of the cor-
responding clusters, thus reducing the problem space by a
magnitude order. This is possible because any sample in the
dataset is similar at least to its cluster centroid by construc-
tion. Therefore, to a similarity hash-based AV to be practi-
cal in terms of performance, a good clustering approach at
the server-side is required.

There are distinct approaches to accelerate the digest
search for large databases. The strategies might cover
databases in up to O(n · log(n)) or O(n) comparisons,
depending on the chosen strategy and the problem con-
straints (more information about these strategies can be
found in [48]). However, a common drawback of all these
approaches is that they consider an already-built, fixed-size
database, which is not the case of AV companies, that build
their databases as soon as new samples are being discovered.

To better understand the impact of centroids selection on
AV’s performance, we evaluated how fast a reference dataset
(the AV database) can be covered in practice, again simu-
lating an AV company creating a digest database, adding
more samples to it, and querying it for detection. For such,
we considered a DBSCAN-like algorithm that takes a new
sample (randomly chosen for the sake of the experiment)
and clusters it to an existing cluster in the AV company’s
database if the score is above the predefined threshold, or
creates a new cluster if not. This type of approach has
been previously used along with other similarity hash func-
tions [32, 71] and we are here extending it to operate along
with J-sdhash. In a real operation, this procedure is in-
definitely repeated for every new incoming sample. In our
experiment, the procedure repeats until all clusters (with re-
gards to the non-probabilistic ground-truth) are formed. We
considered 100 repetitions of this algorithm while initializing
it in random states.

9

0 10 20 30 40 50 60 70 80 90 100
Similarity Threshold

20

30

40

50

60

70

80
Sa

m
pl

es
 R

at
io

 (%
)

Coverage: Number of Required Clusters

Figure 9: Clustering: Number of Samples.

The average results presented in Figure 9 show that
the performance gains are greater as the laxer the thresh-
olds. When a 50% threshold value is considered, the match
against ≈ a third of the dataset is enough to cover all
samples. In other words, if an AV company had built its
database using ≈ a third of the samples we considered in
the experiment, it would be able to detect the remaining
two-thirds due to their similarity with the ≈ one-third of
centroids. When the threshold value is increased to its limit
(100%), around 70% of the samples are required to achieve
full coverage. In other words, the AV company should have
access to 70% of the samples to detect the remaining 30% of
the samples. This result is explained by the fact that when
a strict match is considered, the result is bounded by the
great number of clusters sized two, as shown in the previous
sections, thus requiring more checks to cover all clusters.
Therefore, the larger the reference clusters, the better the
performance of the AV scanning schema.

Finding #8: A good threshold selection allows an
AV database that covers the full reference dataset to be
developed with only a third of the reference samples.

4.3 Response & Remediation: Malware
Family Classification

In addition to detecting malware, AVs also try to classify
them in families. This is essential to label the threats and
allows incident response procedures and remediation (in the
ideal scenario). As for malware detection, previously pre-
sented, we also hypothesized that similarity hashing func-
tions could assist AVs in this task. In the following, we
present our findings.
AV Ground-truth is hard. The first step to evaluate
whether similarity hashing functions are good for malware
family clustering is to adopt a ground-truth, i.e., to identify
which families malware samples actually belong to. In our
experiments, we used the most adopted strategy in the lit-
erature: the reliance on AVs labels. We consider this choice
reasonable since although there are alternatives for malware
labeling (see Section 7), AVs are often the only immediately

available tool for most analysts. Notice that having to rely
on a third party to label similar samples is the case for most
real-world datasets (including ours) where there is no previ-
ous information about the sample’s similarity.

To evaluate AV’s agreement with the similarity hash func-
tions results, we considered two cases: individual AV’s clas-
sification capabilities, and the classification capabilities by
an AV committee. For such, we modeled two hypothetical
AVs from the labels assigned by VirusTotal’s AV engines.
The first AV we modeled is an “ideal” AV that confirms that
two samples are really similar whenever two labels assigned
by any VirusTotal AVs agree (even if the labels are provided
by distinct AVs); The second AV we modeled considers the
case of an “average” AV that confirms that the samples are
similar whenever two labels assigned by the same VirusTotal
AV agree (for the same AVs).

0 10 20 30 40 50 60 70 80 90 100
Similarity Score (%)

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

AV
 S

im
ila

rit
y

(%
)

AV's Similarity Detection vs. Similarity Score

Ideal AV Average AV

Figure 10: AV ground-truth. Samples reported similar
by an “ideal” and an “average” AV.

Our first finding was that relying on individual AVs for
establishing malware families ground-truth is a challenging
task since the labels hardly ever agree. Figure 10 shows
the agreement between the samples identified as similar by
J-sdhash and the two hypothetical AVs that we modeled.
The fact that most of the samples considered similar by
the similarity hash functions are also reported similar by
the “ideal” AV confirms that the similarity hash function
is able to effectively detect similar samples. However, the
low “average” score indicates that few AVs are able to in-
dividually detect similar samples, which makes their use as
ground-truth labelers hard. In other words, the difference
between the “ideal” and the “average” AVs shows that the
distinct approaches adopted by each AV solution are effec-
tive to detect similar malware samples when combined but
not when applied individually.

Finding #9: An AV committee is able to confirm
the similarity results presented by the functions, but
individual AVs are not.

A significant factor limiting the performance of the aver-
age AV is that AVs often generate “generic” labels. When it
happens, one has to either try to cluster the generic sample

10

anyway or generate a new cluster for the unknown sam-
ple. In both cases, the correctness of the clustering pro-
cess is affected, either due to False Positives or False Neg-
atives. Using a committee mitigates this problem by dilut-
ing the responsibility on the decision procedure, since it is
very unlikely that all AVs will present generic labels at the
same time. Thus, relying on the AVs diversity mitigates the
generic labeling problem.

The average result is highlighted when we observe the dif-
ferences between individual AVs when clustering the sam-
ples. Figure 11 shows the AVs that clustered most malware
samples into families and the number of clusters identified
by each one of these solutions. We notice that each solution
identified a distinct number of clusters, thus showing that
they rely on distinct criteria for the sample’s classification.

Tencent Antiy Avast MW Bitdefender Emsis Arcabit AdAware
0

20
40
60
80

100
120
140
160
180
200

Cl
us

te
rs

 (#
)

Cluster Size vs. AV Solution
Clusters

Figure 11: Number of clusters generated by differ-
ent AV solutions. Each AV solution generates a distinct
number of clusters.

Figure 12 shows the cluster size distribution for the AV
that most clustered samples. The observed distribution
is clearly different from the distributions obtained using
the similarity hash functions (shown in Section 4.1, with a
huge prevalence of clusters sized 2 and without a thousand-
sized cluster), even when considering the multiple evaluated
threshold values. This result also suggests that the AV relies
on a distinct method for malware clustering than the use of
a similarity hash function.

Finding #10: The criteria used by AVs to clas-
sify samples as similar is completely different from the
used by the similarity hashing functions.

The Root of AV labels. Given the identified heteroge-
neous results, we started investigating which types of clus-
tering mechanisms were used by the AV solutions. Table 5
shows the most popular labels assigned to the largest clus-
ters. We discovered that AVs have been labeling samples
according to heuristics, which flag samples as similar when
they are all matched using the same rule, regardless of their
structural similarity. We can observe, for instance, that
many samples are classified in the same “AutoIt” family,
which means that all malware samples were created us-
ing this same framework. This label, however, does not

2 3 4 5 6 7 8 9 10 11 12 13 14 1262
Size (# Samples)

0

5

10

15

20

25

30

35

Cl
us

te
rs

 (#
)

Cluster Size Distribution (Tencent AV)
Number

Figure 12: Cluster histogram of Tencent AV solution.
The distribution is clearly different from the ones generated
from similarity hashing functions.

provide any information about the structural similarity be-
tween these samples. Other samples were grouped in the
“Themida” cluster, which means that they were all packed
using this same solution. Unfortunately, this label cannot
say much about the similarity or behavior of the embedded
payloads.

Table 5: Tencent Cluster’s Labels. The AV clusters sam-
ples based on heuristics and not on binary similarity.

Cluster Samples (#) Cluster Samples (#)
Delf 437 AutoIt 385

Proxy 12 Heur 10
Themida 4 Rogue 2

Finding #11: AVs flag samples as similar when
they present the same file packaging and/or when are
packed with the same solution, regardless of their con-
tent.

The Impact of Packing. The previous results show that
AV labels are based on binary packing. This might signifi-
cantly affect detection and labeling since malware often uses
packers to hide their payloads from analysts and analysis
tools. Given the potential impact of packing over malware
classification, we decided to investigate what happens when
similarity hashing functions are applied to packed samples.
Ideally, we would like to check all packed samples, but there
is no automatic unpacking solution for all type of packers
identified in the samples of our dataset. Thus, we limited our
analysis to UPX [53], a popular open-source packer, since it
packed 50% of all packed samples of our dataset.

Figure 13 shows the comparison on the relative number
of unpacked and UPX-packed malware samples clustered by
the sdhash function. We first notice that the unpacked ver-
sions are more clustered than the packed versions, which
shows that the packing tool can hide some sample’s com-
mon characteristics. The tighter the selected threshold, the
greater the relative difference in the number of packed and

11

0 10 20 30 40 50 60 70 80 90 100
Similarity Score

0

10

20

30

40

50

60

70

80

90

100
Sa

m
pl

es
 (%

)
The Impact of Packing on Sample's Similarity

Packed Unpacked Identical

Figure 13: The impact of UPX packing. Packing re-
duces sample’s similarity scores.

unpacked samples, as the impact of the few common charac-
teristics identified by the similarity hashing functions is less
weighted. Nevertheless, packing similar samples does not
completely eliminate the capabilities of hashing functions to
cluster them. This happens because similar samples packed
with the same solution result in similarly packed binaries,
which are then clustered. The “identical” curve shows the
matching rate of the same samples in their packed and un-
packed versions (discarding non-original samples similar to
them). We notice that the packer significantly changes the
binary structure, such that most packed samples are very
distinct from their original versions. This allows us to con-
clude that the samples that were clustered by the similarity
hashing functions in their packed versions are not similar
with their own unpacked versions, but to multiple packed
variants of themselves distributed by the attackers.

Finding #12: Malware packing with UPX signifi-
cantly reduces clustering capabilities but does not com-
pletely eliminate its application to same-packer vari-
ants.

UPX Packing

UPX Packing

Similar Not Similar

Not Similar

Not Similar

Similar

Unpacked 1 Packed 1

Packed 2Unpacked 2

Figure 14: Average Packed Sample’s Similarity
Scheme. Cross-comparisons should be avoided.

Figure 14 summarizes the similarity scheme we identified
for the majority of the inspected samples. Notice that this
result does not imply that all packers will present this same

characteristic when generating malware variants. Packers
that perform distinct transformations for each run (e.g.,
crypters that use distinct keys) might generate distinct vari-
ants from the same original code.

AVs Agreement. A drawback resulting from the differ-
ences between our approach for similarity hashing clustering
for family identification and the current methods leveraged
by AVs to label samples is that these two outcomes cannot
be directly compared. If they are, a low agreement between
the samples considered similar by the hash function and
the AV is observed. In this work, we understand the label
agreement of a given cluster as the ratio of the samples in
the cluster that present the same label. For instance, if all
samples in a given cluster defined according to the similar-
ity hash function scores present the same AV labels, their
agreement is 100%. If 2 out of 3 samples in the same cluster
present the same AV label, their agreement is 66%. If all
samples present distinct AV labels, their agreement is zero.
Ideally, we would like that the similarity hashing functions
and the AVs presented perfect cluster and label agreement
rates (100% of agreement for the labels of 100% of all clus-
ters).

50 60 70 80 90 100
Similarity (%)

0
5

10
15
20
25
30
35
40
45
50
55

Ag
re

em
en

t (
%

)

Cluster Label Agreement
3+ Files 1+ Files

Figure 15: Agreement between the clusters generated
by the AV and by J-sdhash. We notice that most sam-
ples clustered by J-sdhash present divergent AV labels.

Figure 15 shows the fraction of clusters that presented a
perfect label agreement rate for distinct thresholds. For a
strict threshold of 100%, if we consider all samples in the
dataset, the average agreement ratio is 50%, i.e., 50% of
all clusters agree 100% in their sample’s labels. Whereas
this is not a very high value, it is still surprising, since it
seems to contradict the previously presented difference on
the cluster distribution for distinct thresholds (Figure 3).
We then realized that this result was biased by the large
number of small clusters, with two samples only (Figure 4),
which tend to agree more due to their low intra-cluster di-
versity. The agreement ratio of clusters with three or more
samples is around only 20%, thus showing that using AV
labels as ground-truth for cluster labeling is a challenging
task. This same phenomenon was observed when we varied
the threshold.

12

Finding #13: The direct application of AV labels
over similarity hashing functions-generated clusters
leads to low intra-cluster label agreement rates.

On the positive side, the tighter the threshold, the greater
the label agreement, thus showing that the clusters tend to
be more specific, thus more similar, in these cases. This
confirms our finding 2 about the best suitability of tighter
thresholds for remediation procedures rather than triaging.
Selecting individual AVs. Despite the presented limita-
tions, we cannot completely discard individual AVs as la-
beling tools for two reasons: (i) they are still the only solu-
tion available to label unknown payloads in many scenarios;
and (ii) many experiments can only be validated by using a
consistent evaluation tool. For instance, similarity hashing
function’s classification improvements can only be properly
validated by using the same AV as ground-truth, otherwise,
one cannot ensure that a better classification result is due
to the proposed function improvement rather due to the re-
ported matching of the file against a distinct AV part of a
committee.

Face to this scenario, it is essential to develop criteria for
selecting an AV for the experiment development. Since our
ultimate goal is to evaluate the similarity hashing function,
we proposing that the AV that most resembles the similar-
ity hashing function results should be selected. Thus, we
propose that we should consider the usual metrics of ac-
curacy, precision, recall, and F1 score for comparing their
outputs. In our context, a TP occurs when the AV assigns
the same labels to two samples that the similarity hashing
function considered similar. A TN occurs when the AV as-
signs distinct labels to two samples that the similarity hash-
ing function considered non-similar. A FP occurs when the
AV assigns the same labels to two samples that the similar-
ity hashing function considered non-similar. A FN occurs
when the AV assigns distinct labels to two samples that the
similarity hashing function considered similar.

The first hypothesis that comes up in everybody’s minds
for selecting an AV is that the AV which detects most sam-
ples is also the one that best clusters them. However, this
might not hold for all cases. In our experiments, AVG was
the AV that most detected samples, but the use of its labels
for clustering purposes resulted in poor accuracy rates, as
shown in Figure 16.

Finding #14: The AV that detects most samples is
not necessarily the one that best clusters them.

To identify the AV that actually best fits the similarity
hashing function, we repeated the experiment to compare
the metrics for all VirusTotal’s AVs. Figures 17, 18, 19,
and 20 show, respectively, accuracy, precision, recall, and
F1-scores for the AVs that best performed in our evaluations.
The NANO AV was the one that achieved the best scores
for all metrics.

We notice that the accuracy values grow in the 0-30%
range, which might be due to TP or TN increase. How-
ever, AV labels seem to impose an upper bound after the
30% value, which prevents the metric from growing signif-
icantly. Precision values confirm that TP also increases in

0 10 20 30 40 50 60 70 80 90 100
Similarity Score

5

10

15

20

25

30

35

Ac
cu

ra
cy

AVG's Clustering Accuracy vs. Similarity Score

Figure 16: AVG Clustering Accuracy. Despite present-
ing the greatest detection rates among all AVs, AVG was
not the AV that most/best clustered samples.

this range, which is explained by the similarity hashing func-
tion generating clusters of more similar samples as tighter
the threshold, as previously presented. However, this same
characteristic make recall values to lower as the threshold in-
creases, because the similarity hashing function stops clus-
tering together samples that the AV labels state as simi-
lar. As previously shown, this behavior is due to the broad
heuristic and generic labels assigned by the AVs to cover
samples packed in the same format despite its content. The
F1-score metric weights these findings and shows that the
best results are achieved for intermediate threshold values.
We notice that the F1-score for the 100% threshold is low
because whereas it correctly labels very similar samples, it
leaves all the generic, heuristic-labeled samples out of the
clusters.

In other words, we observe that, despite all challenges,
some AVs can present a reasonable trade-off between TPs
and FPs, depending on the considered threshold values. The
balance is completely tied to the way that the AV labels
the samples. For instance, more conservative AVs will clus-
ter fewer samples as similar than similarity hash functions,
thus raising the number of false negatives and limiting the
precision rate. Thus, in practice, the AV drawbacks when
labeling samples turns into an upper bound for the perfor-
mance rates.

Finding #15: Choosing the AV that best fit similar-
ity hashing function results is the best choice for in-
dividual ground-truth, but this might impose an upper
bound limitation to the evaluation metrics.

The Root of Similarity. Once we identified the nature of
the labels assigned by the AVs and the AV solution that best
fits the similarity hashing function’s behavior, we started in-
vestigating the nature of the similarity matches at the byte-
wise level. This task requires us to split the files into parts to
identify which one of them contributes most to the similarity
score. A natural choice for such splitting is to consider the
natural organization of executable binary files in sections. In
this study, we considered Windows malware samples, that

13

0 10 20 30 40 50 60 70 80 90 100
Similarity Score

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

AV Clustering Accuracy vs Similarity Score
AdAware
Avira

Cyren
NANO

Zillya

Figure 17: Whole Binary Accuracy

0 10 20 30 40 50 60 70 80 90 100
Similarity Score

0

10

20

30

40

50

60

70

80

90

100

Pr
ec

isi
on

 (%
)

AV Clustering Precision vs Similarity Score
AdAware
Avira

Cyren
Nano

Zillya

Figure 18: Whole Binary Precision

0 10 20 30 40 50 60 70 80 90 100
Similarity Score

0

10

20

30

40

50

60

70

80

90

100

Re
ca

ll
(%

)

AV Clustering Recall vs Similarity Score
AdAware
Avira

Cyren
Nano

Zillya

Figure 19: Whole Binary Recall

0 10 20 30 40 50 60 70 80 90 100
Similarity Score

0

10

20

30

40

50

60

70

80

90

100

F1
 S

co
re

 (%
)

AV Clustering F1 Score vs Similarity Score
AdAware
Avira

Cyren
Nano

Zillya

Figure 20: Whole Binary F1 Score

14

are distributed via the Portable Executable (PE) [58] file
format. The PE format is very flexible and does not de-
fine fixed section names and permissions, such each sample
might present its own combination. To triage all possibil-
ities, we started by investigating all sections presented by
the binaries, as summarized in Table 6.

We discovered that the diversity in binary sections is due
to the attacker’s implementation choices. Thus, each section
represents a distinct implementation decision and has a dis-
tinct goal. For instance, whereas “text” sections often im-
plement malicious actions by themselves (instructions), data
sections are often used to carry payloads injected by third
parties. Similarly, sections such as “UPX” are used mainly
to store the packing decompression stub. As each section’s
goals are distinct, the sample’s matching rates when consid-
ering each one of them is different as well, even if using the
same J-sdhash tool, as shown in Figure 21. As expected,
each implementation choice led to a distinct matching rate.
Even distinct packers sections, such as UPX and Themida,
resulted in distinct matching rates.

Finding #16: Each binary section implements a dis-
tinct part of the malicious behavior and thus present
a distinct similarity score.

Considering this finding, it is straightforward to hypoth-
esize that separating the distinct sections according to their
goals (e.g., the instructions that implement a malicious be-
havior and the malicious payloads stored as data) might
lead to greater similarity metrics. However, there is still a
challenge to be considered: Whereas the differences in the
matching rates in the distinctly named sections are sugges-
tive, they can only be confirmed by understanding the at-
tributes of each section. As the PE format does not specify
any strict rule for section naming, a section named “data”
by a malware sample could store in fact instructions. There-
fore, to perform a more precise check, we chose to parse the
section headers of all PE files and dump their executable and
non-executable section bytes in separated files. We then re-
peated the previously presented clustering experiments with
these new files.

Figures 22, 23, 24 and 25 present, respectively, accuracy,
precision, recall, and F1-score values obtained in the exper-
iments. All tests were performed considering the NANO AV
because it was the AV that presented the best results in the
aforementioned AV tests. We discovered that this strategy
resulted in an overall increase of all considered metrics. We
highlight that such improvement is observed in the compar-
ison with AV-assigned labels, which naturally complicates
the task, as shown in previous experiments. Therefore, we
conclude that such change not only clustered more samples,
but actually helped AVs to recognize them as similar.

More specifically, we observe that the behavior of the ac-
curacy metric is very similar to what is observed for the
full binary experiment. It starts growing, with some points
achieving a 10% higher score than was achieved for the full
binary. However, it is still limited by the AVs labels pre-
venting the metric to achieve values higher than 70%. The
precision metric results confirm that TP increased when sep-
arating data and instructions from the main binary. This

also caused the recall metric to be less affected, thus achiev-
ing more than 10% higher values at some specific points,
especially for higher thresholds, when the samples are ex-
pected to be really more similar. These facts resulted in
overall slightly better F1 scores.

Finding #17: Separating instructions from data sec-
tions leads to better similarity metrics scores.

We notice that both the instruction-only as well as the
data-only sections outperformed the original baseline, thus
showing that mixing instruction and data make similarity
detection harder. We believe that in the future when similar-
ity hashing function-based approaches become mainstream,
this fact might be purposely exploited by attackers to lower
the similarity score of their released malware variants. We
consider this is a plausible hypothesis since many attackers
already mix code and data to fool disassemblers [15].
Increasing Matching Rates. The previous results have
shown that instruction sections are the most discriminant
binary components for family clustering procedures using
similarity hashing functions. This is reasonable as the in-
struction sequences present in the binaries are responsible
for causing harm and thus characterizing a binary as ma-
licious. Therefore, instructions are a natural focus of any
strategy to enhance the classification performance of the
functions.

In the forensics context, researchers discovered that com-
mon blocks might influence the similarity assessment process
of two objects. Many pieces of common data are found to be
present in many files of the same and different types. These
pieces are related to application-generated content, such as
header/footer information, color pallets, font specifications,
etc [47]. For instance, Moia et al. [46] show that remov-
ing such blocks from the similarity assessment may increase
the similarity detection rate in some cases and even filter
out many irrelevant matches. Thus, it is plausible to hy-
pothesize that this same reasoning might apply to binary
similarity.

We adapted the concept of common blocks to common
instructions–i.e., instead of considering a set of bytes rep-
resentative of a data pattern, we considered them represen-
tative of an instruction and its argument. The rationale
behind this choice is that by removing common instructions
that are present in all (or most) binaries, and thus that do
not differentiate them, we allow the similarity hashing func-
tion to focus on the file contents that actually make them
similar or distinct. In other words, we aim to make similarity
scores more representative, since a similarity score consider-
ing instructions present in all binaries is naturally lifted due
to this similarity. A drawback of the common blocks method
is that the common block pattern might be removed from
any file region, thus potentially removing more than it was
designed to remove (e.g., removing actual data in addition
to file headers). This problem is exacerbated when mov-
ing to instructions, since the same instruction at distinct
file regions might imply distinct high-level behaviors. How-
ever, as in the common block’s case, we expect the most
common instructions to be statistically more significant in

15

Table 6: Binary Sections of the malware samples in our dataset. Each sample presents its own set of executable
binary sections.

Section Prevalence Section Prevalence Section Prevalence Section Prevalence
data 97% .bss 97% .idata 92% .reloc 90%
bss 85% ..tls 73% itext 72% .rdata 58%
.rsrc 51% UPX1 34% UPX0 34% .data 34%
.code 29% .edata 20% .text 18% Others 17%

0 10 20 30 40 50 60 70 80 90 100
Similarity Score (%)

0
10
20
30
40
50
60
70
80
90

100

Sa
m

pl
es

 (%
)

Sections vs. Similarity Scores
vmp0 vmp1 rsrc text data rdata

Figure 21: Similarity Matches per Section. Each section presents a distinct rate.

0 10 20 30 40 50 60 70 80 90 100
Similarity Score

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

AV Clustering Accuracy vs Similarity Score

All Text Data

Figure 22: Binary Sections Accuracy

0 10 20 30 40 50 60 70 80 90 100
Similarity Score

0

10

20

30

40

50

60

70

80

90

100

Pr
ec

isi
on

 (%
)

AV Clustering Precision vs Similarity Score

All Text Data

Figure 23: Binary Sections Precision

0 10 20 30 40 50 60 70 80 90 100
Similarity Score

0

10

20

30

40

50

60

70

80

90

100

Re
ca

ll
(%

)

AV Clustering Recall vs Similarity Score

All Text Data

Figure 24: Binary Sections Recall

0 10 20 30 40 50 60 70 80 90 100
Similarity Score

0

10

20

30

40

50

60

70

80

90

100

F1
 S

co
re

 (%
)

AV Clustering F1 Score vs Similarity Score

All Text Data

Figure 25: Binary Sections F1 Score

16

non-essential code regions, such that we end up observing
metrics improvements.

Considering the proposed method adaptation, we re-
peated the presented experiments now considering each bi-
nary instruction as a possible common block. In total, we
considered 377 million unique combinations of instruction
opcodes and arguments present in the disassembly of the
executable sections of the malware binaries. Table 7 exem-
plifies the top 10 instructions most found in our datasets
and that might be removed to improve malware detection
rates.

Table 7: Common Blocks. Top 10 most removed instruc-
tions.

Instruction Prevalence Instruction Prevalence
push <reg> 95.34% nop 89.84%
pop <reg> 94.77% int3 89.24%
inc <reg> 94.36% cltd 88.43%
dec <reg> 94.19% leave 83.49%

ret 94.18% in 83.38%

We notice that the most prevalent instructions, individ-
ually or in combination, really reflect common binary con-
structions. More specifically, we notice their relation with
function prologues (push) and epilogues (pop+ret). By re-
moving these binary function’s surrounding instructions, we
allow the similarity hashing function to focus on the simi-
larity of the actual binary function’s content.

To evaluate our hypothesis in practice, we varied the ra-
tio of the removed instructions (in % of the most common
instructions) to identify the binary portion that most dis-
criminates the binaries. Figures 26, 27, 28, and 29 presents,
respectively, accuracy, precision,recall, and F1-score values
obtained in the experiment while keeping 70%, 80%, 90%,
and 100% of the binary instructions (thus removing from
0% to 30% of the most common instructions).

This experiment sheds light on two important aspects of
similarity hashing functions. First, we notice that, whereas
removing a distinct number of common instructions did not
improve the overall metrics, it also did not decrease them.
This shows that approximate matching might also be suc-
cessful in identifying similarity of corrupted data or code
excerpts capture from partial memory dumps, which is key
for analyzing malware. Further, we notice that the 70%
threshold (removing the 30% most common instructions and
keeping the remaining 70%) leads to an overall performance
increase. We again highlight that this result is observed
even considering the limits imposed by the AV labeling pro-
cedures, which shows that this strategy not only clustered
more samples but also helped similarity hashing functions
and the AV to agree on their clusters.

The behavior of all metrics in this experiment was very
similar to in the previous one, but now achieving only
slightly better results, which is expected, since the result
has already been significantly improved by the adoption of
the previous techniques (e.g., separating instructions from
other sections). Even though, precision was the metric that
most increased, which demonstrates that this technique has
the potential to still increase the detection of similar samples

in agreement with AV labels.
The obtained result is explained by the fact that by feed-

ing the similarity hash with less data (70% of the total), the
bytes are distributed distinctly within the similarity hash-
ing function’s clustering buckets (see Section 2). This new
bucket organization leads to distinct digest values, that lead
to distinct similarity scores, and thus to distinct clusters.

Finding #18: Removing common instructions forces
similarity hashing function’s internal buckets reorgani-
zation, which leads to similarity metrics increase.

5 Guidelines for the Application of
Similarity Hashing Functions

With this work’s development, we discovered that although
similarity hashing functions are already popular solutions
in many contexts, there are still no guidelines for their
application, with distinct researchers and solutions taking
ad-hoc decisions on parameter selection. Our experiments
presented results provide interesting insights about the sce-
narios in which distinct parameters and approaches lead to
better usage of such functions. Therefore, aiming to help
to bridge this guidelines gap, we propose some rules to be
followed when designing and performing experiments with
similarity hashing functions.

1. Be aware of the existing trade-offs when choosing a
similarity hashing function.

(a) J-sdhash clusters more samples than ssdeep,
thus being more suitable for tasks that require
greater sample’s coverage.

(b) Ssdeep is faster than J-sdhash while present-
ing slightly lower similarity scores, thus being
more suitable for performance-constrained envi-
ronments.

i. The cost of loading a database for
matching is non-negligible for any of the
two functions.

2. Always explicitly choose a threshold value and do
not simply rely on tool’s default parameters and hetero-
geneous meanings. A threshold must reflect what and
how much the researchers envision as similar or not.

(a) Be aware that distinct threshold values might
lead to completely distinct dataset charac-
terizations, thus making you to take opposite
conclusions with its variations.

(b) Distinct threshold values perform better for dis-
tinct tasks, with smaller threshold values per-
forming better for malware triaging and
greater threshold values performing better
for malware remediation and response.

3. Do not mix malware detection and malware fam-
ily clustering, since they are distinct tasks, with dis-
tinct drawbacks.

17

0 10 20 30 40 50 60 70 80 90 100
Similarity Score

64
65
66
67
68
69
70
71
72
73
74
75
76

Ac
cu

ra
cy

 (%
)

AV Clustering Accuracy vs Similarity Score

All Inst
90

80
70

60
50

Figure 26: Accuracy Removing Blocks

0 10 20 30 40 50 60 70 80 90 100
Similarity Score

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Pr
ec

isi
on

 (%
)

AV Clustering Precision vs Similarity Score

All Inst
90

80
70

60
50

Figure 27: Precision Removing Blocks

0 10 20 30 40 50 60 70 80 90 100
Similarity Score

22
26
30
34
38
42
46
50
54
58
62
66

Re
ca

ll
(%

)

AV Clustering Recall vs Similarity Score

All Inst
90

80
70

60
50

Figure 28: Recall Removing Blocks

0 10 20 30 40 50 60 70 80 90 100
Similarity Score

28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60

F1
 S

co
re

 (%
)

AV Clustering F1 Score vs Similarity Score

All Inst
90

80
70

60
50

Figure 29: F1 Removing Blocks

18

4. When detecting malware samples:

(a) Considering sample’s similarity increases
AV’s detection, since samples not detected by
the AV can now be detected by their similarity
with previously detected samples.

(b) Intermediate threshold values (e.g., 50%)
present the best trade-off between malware de-
tection and false positives.

(c) A good threshold choice (e.g., 50%) allows
a similarity-based AV to detect a whole
dataset without adding all of them to a
database.

5. When classifying malware samples in families:

(a) Notice that A committee of AVs is a better
ground-truth than individual AVs, since it
reduces the heterogeneity of the AV’s labels.

(b) Individual AVs should be avoided because dis-
tinct AVs lead to distinct results, since they
rely on distinct classification criteria.

i. Many AVs classify samples as similar
based on their file type and/or packer,
regardless their actual content.

ii. Avoid directly comparing packed and
unpacked samples and prefer unpacking the
samples whenever possible to maximize simi-
larity scores.

(c) The application of individual AVs lead to low
intra-cluster agreement, since the clusters cre-
ated by the similarity hashing functions will be
distinct from the clusters generated by the AVs.

(d) If using individual AVs are still the only pos-
sibility:

i. Be aware that the AV that most detects
samples is not necessarily the one that
most clusters them, thus additional selec-
tion criteria are required.

ii. Choose the AVs that best-fits the similar-
ity hashing function results, so it allows
one to check function’s improvements without
the uncertainty of AV results.

(e) Remind that you can optimize the use of hash
functions to achieve better results.

i. Distinct binary sections present distinct
similarity rates, as they implement distinct
malicious behaviors and/or components.

ii. Separating code and data increases sim-
ilarity scores, as it avoid the distinct pat-
terns exhibited in these two kinds of sections
to be mixed.

A. Be careful when identifying executable
sections as packed code might turn
sections executable only in runtime.

iii. Removing common instruction in-
creases similarity metrics, as it supplies
the function with less data and it cause
internal buckets rearrangements.

6 Discussion

In this section, we discuss the limits of our evaluations and
the implications of our findings.

The Importance of the Threshold Value. Our ex-
periments have shown that the threshold value affects the
number of clustered samples and thus the conclusions when
characterizing a dataset. Therefore, we highlight the im-
portance of researchers reporting the used threshold in their
experiments to allow reproducibility and fair comparisons.
There is currently no guideline for the threshold definition.
We consider that this definition is a key open question to-
wards the adoption of similarity metrics as standard for
malware experiments and solutions. We expect our find-
ings might help in bridging this gap and incentivizing fu-
ture guidelines development. Meanwhile, we suggest re-
searchers clearly stating their considered threshold values
so as to allow reproducibility. Moreover, we suggest them
open-sourcing their similarity solutions since the threshold
value meaning changes from solution to solution.

Defining Ground-Truth is Hard. Our results have
shown that the clusters originated from AVs and from sim-
ilarity hashing functions differ significantly. We discovered
that the main reason is that AVs generate labels based on
detection heuristics and not on binary similarity. There-
fore, there is a significant opportunity for the development
of new methods and strategies for ground-truth definition.
We consider it as an important step for allowing malware
similarity experiments to be validated and new cluster-
ing/identification approaches to be compared to each other
on the same basis.

The Advantages of Alternative Malware Represen-
tations. Due to the nature of the similarity hashing func-
tions, our proposed AV only needs to upload the digest of
a suspicious file to be scanned instead of the entire file con-
tent, which results in privacy and performance gains. This
is made possible because the uploaded digest is, in fact, a
short representation of the scanned file, which saves network
bandwidth and presents itself as an effective and scalable al-
ternative representation for malware detection.

Similarity hashing for triaging malware. A straight-
forward application of similarity hashing in the context of
malware analysis and detection is to triage samples, i.e.,
to verify the sample is known or not. This task is often
performed using cryptographic hashes (e.g., MD5 or SHA),
which limits its application mostly to static databases. If
similarity hashes were used, the triage procedure could be
turned into the verification of whether there is a known way
to handle that sample, despite its being known or unknown.
Similarity hashes could then be used, for instance, to cluster
new samples to the existing ones and thus the same proce-
dures applied to that cluster would be applied to the new
sample. This would allow the scaling of multiple triaging ap-

19

proaches, such as Google SafeBrowsing [29], as users would
not need to upload entire files (but only their similarity di-
gests) to the server to have initial feedback about the file
security.

Scaling Malware Variants Identification. Multiple ap-
proaches have been proposed over time to identify malware
variants. Some of them, such as those relying on dynamic
analysis [14], are computationally expensive, despite effec-
tive, thus being not practical to handle large-scale databases.
The reliance on similarity hashing functions proposed in this
work allows an efficient and yet effective solution to handle
large-scale databases. In our approach, suspicious files are
matched only against representative samples of each cluster.
Therefore, costly approaches can be employed at the server-
side to define the cluster’s “leader” whereas our approach
can be used to fast calculate the similarity between these
leaders and the suspicious file.

identifying executable sections might be challeng-
ing. The major drawback of relying on individual sections
is that originally read-only sections can be turned into an
executable one in runtime by malware samples. This type
of information is only available for dynamic analysis proce-
dures and not for static approaches like the ones proposed in
this paper. Therefore, the best way of benefiting from this
type of approach is to not perform this task statically at the
client-side, but to outsource it to a more powerful agent,
such as a cloud-based AV server, which might execute and
trace the sample before matching its executable sections.

Limitations Whereas we believe our work covered a sig-
nificant number of challenges in the application of similar-
ity hashing functions to malware decision processes, we are
aware that it has some limitations. For instance, ssdeep and
J-sdhash are not the only similarity hashing functions that
could be selected. We considered them in our evaluation
due to their popularity, but other functions, such as TLSH
variations, should also be evaluated to draw a broader land-
scape of the malware classification subject. Moreover, our
dataset is only a limited view of the larger problem of mal-
ware handling. We do not claim that our findings generalize
from this dataset to any other. Instead, our claim is that
this dataset particularly highlights the challenges of malware
classification using similarity hashing functions. We demon-
strated that the challenges we pointed really occurred in a
real dataset and thus they should be considered by profes-
sionals and researchers as they might appear during their
investigative activities. However, other datasets might re-
veal distinct challenges, so more research is warranted.

Future Work. This work has shown alternative approaches
for the application of similarity hashing functions. We be-
lieve that our findings might help to broaden the usage sce-
narios of this type of function. However, this work is not
exhaustive and more research is warranted to investigate ad-
ditional issues. For instance, whereas our work encompassed
only MS Windows binaries, the same experiments should be
repeated to assess whether the same conclusions hold for
Linux and Android applications. In future work, we plan
to investigate the impact of considering common blocks of
multiple instructions in addition to single instructions and
new sources of labels ground-truths.

7 Related Work

In this section, we present related work to better position our
contributions. Whereas the main usage of similarity hash-
ing functions is for sample triaging and clustering [25, 30],
we below focus more specialized developments of similarity
hashing.

Approximate Matching. Many functions were developed
over the years trying to provide a lightweight solution, hav-
ing as short as possible digests with generation and compar-
ison times just as fast as traditional hash functions, such as
SHA-1, SHA-2, etc. The more prominent functions include
ssdeep [36], sdhash [60], mrsh-v2 [17], TLSH [54], and the
most recent one, LZJD [59]. However, the most popular and
the chosen ones for this work are ssdeep and sdhash, for be-
ing the first functions of their kind and target of constant
research, regarding improvements [16, 46, 45] and discussing
their detection capabilities [5, 20, 19].

Approximate Matching and Malware. The application
of similarity hashing functions to binary files was well stud-
ied by Pagani et al [56], which investigates use cases such as
library identification and binary recompilation. Malware are
particular types of binaries whose analysis tasks can bene-
fit from the application of similarity hash functions. These
have already been reported to be applied in forensic proce-
dures [64] and for hunting ransomware [50]. Their major
application field, however, is the identification of malware
variants [4].

Drawbacks of Approximate Matching. The applica-
tion of similarity hashing functions presents some draw-
backs, such as the ones mentioned by Pagani et al [56], re-
lated to a change in the binary structure of files. Since the
functions employed in this work are meant to find similarity
in the bytewise level, changes in the compiler during binary
creation or due to packing and compressing techniques will
negatively impact the use of the similarity hashing func-
tion in the assessment of similarity. A drawback related to
their application in practice is the resulting cluster diversity.
The application of similarity hash functions to IoT binaries
produced the same trade-offs between cluster sizes and per-
formance presented in this work [6].

Design of new similarity hash functions. A way to
advance malware similarity identification solutions is to de-
velop new similarity hash functions. Previous research works
have identified the requirements for a good similarity hash
function [55] and how it can inspire new applications [35],
but there are still few works targeting the similarity of ex-
ecutable binaries] [39], and more specifically proposing new
functions that are malware-targeted [38]. We expect that
this study might foster new research and that our findings
might support their developments.

Malware Variants Identification. The identification of
malware variants is a challenging task and multiple ap-
proaches have been proposed to address it: the use of n-
grams [26], visual analytics [57], call graphs (CGs) [9], graph
embedding [72], and dynamic analysis [2]. All of these
approaches, however, are more computationally expensive
than the here proposed application of hash functions. Ad-
ditionally, nothing prevents these approaches to be used as

20

a complement to ours if applied over the clusters identified
by the similarity hash functions.

Other Matching Approaches. Malware variants identifi-
cation is not the only method that works by matching similar
patterns. The same task is performed in the context of ba-
sic blocks comparison [1] and code reuse identification [69].
Similarity hashing is an important step part of these ap-
proaches and our findings are also valid to be applied along
with them.

Matching Strategies. A key contribution of this work is to
discuss matching criteria and strategies to effectively detect-
ing common binaries. Whereas our focus is on malware de-
tection, previous work presented related discussion in other
fields, such as in Windows modules identification [41]. The
application of this kind of strategy to malware samples is an
open problem.

Other Labeling Strategies. In addition to AVs, other
solutions might provide ground-truth information about
malware families. For instance, many machine-based ap-
proaches have been proposed recently to address the prob-
lem of weak malware labels [73]. These approaches are var-
ied, and might rely from static strings extracted from the
samples [67], to artifacts extracted during dynamic analysis
procedures [44]. Other approaches try to overcome malware
classification challenges via the observation of their behav-
iors [49]. A major drawback of these approaches is that
they are more costly (e.g., requiring runtime analysis) than
relying on AV labels. Also, the implementation of these
approaches is not often available during the practice of an
analyst and/or forensic expert. Thus, we focused this work
on the use of the widely-available AV labels.

Cloud AVs. A key insight of our evaluation is that the sim-
ilarity hash-based matching will be outsourced to a cloud-
based AV. The idea of a cloud AV is not new, but most so-
lutions only move the same technology to the cloud and do
not change how detection is performed [24]. In some cases,
the detection is even outsourced to third part AVs [33]. In
our proposal, in addition to the processing tasks, we also
change the file scanning representation from signatures to
similarity hashes and scores. This allows us to benefit from
other cloud-based strategies, such as distributed data col-
lection [23].

The bias towards the easy cases. In this paper, we tack-
led the problem of identifying similar malware samples in a
real scenario, which brings many difficulties and limits the
obtained results. Our goal with this evaluation is to high-
light how challenging a theoretically-feasible task might be-
come in a real scenario. In this sense, our evaluation follows
the philosophy adopted in previous work to demonstrated
that evaluating solution only using the “easy-to-classify”
samples is not enough for a complete understanding of the
problem. Previous works have already demonstrated that
the high accuracy rates reported for both traditional [37]
as well as emerging [7] (textures) malware clustering ap-
proaches might not be reproducible depending on how chal-
lenging the evaluated dataset is.

8 Conclusion

In this work, we investigated the limits and benefits of apply-
ing similarity hashing to clustering routines to enhance mal-
ware detection procedures applied to real-world datasets.
We proposed an ideal model of a similarity hashing-based
AntiVirus (AV) that applied two distinct similarity hash
functions to a dataset of real malware samples collected over
four years. We discovered that considering similarity scores
might improve standard AV’s detection rates by up to 40%
without raising False Positives. The centralized database
model adopted by our AV along with our findings suggests
that approaches so-far consider impractical, such as com-
plex clustering procedures, might now be successfully im-
plemented at the AV server level. On the other hand, we
discovered that leveraging AV’s labels as ground-truth for
malware similarity identification is challenging and requires
additional steps to achieve reasonable results. For instance,
we showed that considering only the most-representative bi-
nary instructions, i.e., the unique instructions of each binary
or the ones with fewer occurrences in different files), leads to
better similarity metrics than considering the entire binary,
thus a better fit between the similarity hashing function and
the considered AV.
Acknowledgements. This study was financed in part by
the Brazilian National Counsel of Technological and Scien-
tific Development (CNPq - process n. 164745/2017-3), the
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Supe-
rior - Brasil (CAPES – Finance Code 001) and the Santander
International Mobility Program for Graduate Students.
Reproducibility. All developed source codes for
this research are available at: https://github.com/

marcusbotacin/Binary.Similarity The list of consid-
ered malware samples is available at https://github.

com/marcusbotacin/malware-data Goodware informa-
tion is available at https://github.com/marcusbotacin/

Application.Installers.Overview

References

[1] F. Adkins, L. Jones, M. Carlisle, and J. Upchurch.
Heuristic malware detection via basic block compari-
son. In 2013 8th International Conference on Mali-
cious and Unwanted Software: ”The Americas” (MAL-
WARE), pages 11–18, 2013.

[2] E. M. S. Alkhateeb. Dynamic malware detection using
api similarity. In 2017 IEEE International Conference
on Computer and Information Technology (CIT), pages
297–301, 2017.

[3] Flora Amato, Aniello Castiglione, Giovanni Cozzolino,
and Fabio Narducci. A semantic-based methodology
for digital forensics analysis. Journal of Parallel and
Distributed Computing, 138:172–177, 2020.

[4] A. Azab, R. Layton, M. Alazab, and J. Oliver. Mining
malware to detect variants. In 2014 Fifth Cybercrime
and Trustworthy Computing Conference, pages 44–53,
2014.

21

[5] Harald Baier and Frank Breitinger. Security aspects of
piecewise hashing in computer forensics. In IT Security
Incident Management and IT Forensics (IMF), 2011
Sixth International Conference on, pages 21–36. IEEE,
2011.

[6] Marton Bak, Dorottya Papp1, Csongor Tamas,
and Levente Buttyan. Clustering iot mal-
ware based on binary similarity. https:

//www.crysys.hu/publications/files/setit/

cpaper_bme_BakPTB20dissect.pdf, 2020.

[7] Tamy Beppler, Marcus Botacin, Fabŕıcio J. O. Ceschin,
Luiz E. S. Oliveira, and André Grégio. L(a)ying in
(test)bed. In Zhiqiang Lin, Charalampos Papaman-
thou, and Michalis Polychronakis, editors, Information
Security, pages 381–401, Cham, 2019. Springer Inter-
national Publishing.

[8] Christopher M. Bishop. Pattern Recognition and Ma-
chine Learning (Information Science and Statistics).
Springer-Verlag, Berlin, Heidelberg, 2006.

[9] K. Blokhin, J. Saxe, and D. Mentis. Malware similarity
identification using call graph based system call subse-
quence features. In 2013 IEEE 33rd International Con-
ference on Distributed Computing Systems Workshops,
pages 6–10, 2013.

[10] Burton H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,
July 1970.

[11] Marcus Botacin, Hojjat Aghakhani, Stefano Ortolani,
Christopher Kruegel, Giovanni Vigna, Daniela Oliveira,
Paulo Ĺıcio De Geus, and André Grégio. One size does
not fit all: A longitudinal analysis of brazilian finan-
cial malware. ACM Trans. Priv. Secur., 24(2), January
2021.

[12] Marcus Botacin, Giovanni Bertão, Paulo de Geus,
André Grégio, Christopher Kruegel, and Giovanni Vi-
gna. On the security of application installers and online
software repositories. In Clémentine Maurice, Leyla
Bilge, Gianluca Stringhini, and Nuno Neves, editors,
Detection of Intrusions and Malware, and Vulnerabil-
ity Assessment, pages 192–214, Cham, 2020. Springer
International Publishing.

[13] Marcus Botacin, Fabricio Ceschin, Paulo [de Geus], and
André Grégio. We need to talk about antiviruses: chal-
lenges & pitfalls of av evaluations. Computers & Secu-
rity, 95:101859, 2020.

[14] Marcus Botacin, Paulo de Geus, and André Grégio.
Malware variants identification in practice. https:

//sbseg2019.ime.usp.br/anais/195666.pdf, 2019.

[15] Marcus Botacin, Lucas Galante, Paulo de Geus,
and André Grégio. Revenge is a dish served cold:
Debug-oriented malware decompilation and reassem-
bly. In Proceedings of the 3rd Reversing and Offensive-
Oriented Trends Symposium, ROOTS’19, New York,
NY, USA, 2019. Association for Computing Machinery.

[16] Frank Breitinger and Harald Baier. Performance Issues
About Context-Triggered Piecewise Hashing, pages 141–
155. Springer Berlin Heidelberg, Berlin, Heidelberg,
2012.

[17] Frank Breitinger and Harald Baier. Similarity Preserv-
ing Hashing: Eligible Properties and a New Algorithm
MRSH-v2, pages 167–182. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

[18] Frank Breitinger, Barbara Guttman, Michael McCar-
rin, Vassil Roussev, and Douglas White. Approximate
matching: definition and terminology. NIST Special
Publication, 800:168, 2014.

[19] Frank Breitinger and Vassil Roussev. Automated evalu-
ation of approximate matching algorithms on real data.
Digital Investigation, 11:S10–S17, 2014.

[20] Frank Breitinger, Georgios Stivaktakis, and Vassil
Roussev. Evaluating detection error trade-offs for byte-
wise approximate matching algorithms. Digital Inves-
tigation, 11(2):81–89, 2014.

[21] F. Ceschin, F. Pinage, M. Castilho, D. Menotti, L. S.
Oliveira, and A. Gregio. The need for speed: An anal-
ysis of brazilian malware classifers. IEEE Security &
Privacy, 16(6):31–41, Nov.-Dec. 2018.

[22] CNN. Nearly 1 million new malware threats re-
leased every day. https://money.cnn.com/2015/

04/14/technology/security/cyber-attack-hacks-

security/, 2015.

[23] M. Dev, H. Gupta, S. Mehta, and B. Balamurugan.
Cache implementation using collective intelligence on
cloud based antivirus architecture. In 2016 Interna-
tional Conference on Advanced Communication Con-
trol and Computing Technologies (ICACCCT), pages
593–595, 2016.

[24] Dimitris Deyannis, Eva Papadogiannaki, Giorgos Kali-
vianakis, Giorgos Vasiliadis, and Sotiris Ioannidis.
Trustav: Practical and privacy preserving malware
analysis in the cloud. In Proceedings of the Tenth ACM
Conference on Data and Application Security and Pri-
vacy, CODASPY ’20, page 39–48, New York, NY, USA,
2020. Association for Computing Machinery.

[25] Sebastian Eschweiler, Khaled Yakdan, and El-
mar Gerhards-Padilla†. discovre: Efficient cross-
architecture identification of bugs in binary code - ndss
17, 2017.

[26] Z. Fuyong and Z. Tiezhu. Malware detection and classi-
fication based on n-grams attribute similarity. In 2017
IEEE International Conference on Computational Sci-
ence and Engineering (CSE) and IEEE International
Conference on Embedded and Ubiquitous Computing
(EUC), volume 1, pages 793–796, 2017.

22

[27] Lucas Galante, Marcus Botacin, André Grégio, and
Paulo de Geus. Malicious linux binaries: A land-
scape. https://sol.sbc.org.br/index.php/sbseg_

estendido/article/view/4160, 2018.

[28] Google. How google play protect kept users safe in 2019.
https://security.googleblog.com/2020/03/how-

google-play-protect-kept-users-safe.html,
2019.

[29] Google. Improved malware protection for users
in the advanced protection program. https:

//security.googleblog.com/2020/09/improved-

malware-protection-for-users.html, 2020.

[30] Mariano Graziano, Davide Canali, Leyla Bilge, An-
drea Lanzi, and Davide Balzarotti. Needles in a
haystack: Mining information from public dynamic
analysis sandboxes for malware intelligence. In Proceed-
ings of the 24th USENIX Conference on Security Sym-
posium, SEC’15, page 1057–1072, USA, 2015. USENIX
Association.

[31] Vikram S Harichandran, Frank Breitinger, and Ibrahim
Baggili. Bytewise approximate matching: The good,
the bad, and the unknown. The Journal of Digital
Forensics, Security and Law: JDFSL, 11(2):59, 2016.

[32] Qing He, Hai Xia Gu, Qin Wei, and Xu Wang. A
novel dbscan based on binary local sensitive hashing
and binary-knn representation. Advances in Multime-
dia, 2017:3695323, Dec 2017.

[33] Chris Jarabek, David Barrera, and John Aycock.
Thinav: Truly lightweight mobile cloud-based anti-
malware. In Proceedings of the 28th Annual Computer
Security Applications Conference, ACSAC ’12, page
209–218, New York, NY, USA, 2012. Association for
Computing Machinery.

[34] André Kameyama, Vitor Moia, and Marco
Aurélio Amaral Henriques. Aperfeiçoamento da ferra-
menta sdhash para identificação de artefatos similares
em investigações forenses. https://sol.sbc.org.br/

index.php/sbseg_estendido/article/view/4161,
2018.

[35] ElMouatez Billah Karbab, Mourad Debbabi, and Djed-
jiga Mouheb. Fingerprinting android packaging: Gener-
ating dnas for malware detection. Digital Investigation,
18:S33–S45, 2016.

[36] Jesse Kornblum. Identifying almost identical files using
context triggered piecewise hashing. Digital investiga-
tion, 3:91–97, 2006.

[37] Peng Li, Limin Liu, Debin Gao, and Michael K. Re-
iter. On challenges in evaluating malware clustering.
In Somesh Jha, Robin Sommer, and Christian Kreibich,
editors, Recent Advances in Intrusion Detection, pages
238–255, Berlin, Heidelberg, 2010. Springer Berlin Hei-
delberg.

[38] Yuping Li, Sathya Chandran Sundaramurthy, Alexan-
dru G. Bardas, Xinming Ou, Doina Caragea, Xin Hu,
and Jiyong Jang. Experimental study of fuzzy hashing
in malware clustering analysis. In Proceedings of the
8th USENIX Conference on Cyber Security Experimen-
tation and Test, CSET’15, page 8, USA, 2015. USENIX
Association.

[39] Lorenz Liebler and Harald Baier. Towards exact and
inexact approximate matching of executable binaries.
Digital Investigation, 28:S12–S21, 2019.

[40] Jacques Linden, Raymond Marquis, Silvia Bozza, and
Franco Taroni. Dynamic signatures: A review of
dynamic feature variation and forensic methodology.
Forensic Science International, 291:216–229, 2018.

[41] Miguel Mart́ın-Pérez, Ricardo J. Rodŕıguez, and Da-
vide Balzarotti. Pre-processing memory dumps to im-
prove similarity score of windows modules. Computers
& Security, 101:102119, 2021.

[42] Miguel Mart́ın-Pérez, Ricardo J. Rodŕıguez, and Frank
Breitinger. Bringing order to approximate matching:
Classification and attacks on similarity digest algo-
rithms. Forensic Science International: Digital Inves-
tigation, 36:301120, 2021. DFRWS 2021 EU - Selected
Papers and Extended Abstracts of the Eighth Annual
DFRWS Europe Conference.

[43] Fernando Mercês. Grouping linux iot mal-
ware samples with trend micro elf hash.
https://blog.trendmicro.com/trendlabs-

security-intelligence/grouping-linux-iot-

malware-samples-with-trend-micro-elf-hash/,
2020.

[44] Aziz Mohaisen and Omar Alrawi. Amal: High-fidelity,
behavior-based automated malware analysis and clas-
sification. In Kyung-Hyune Rhee and Jeong Hyun Yi,
editors, Information Security Applications, pages 107–
121, Cham, 2015. Springer International Publishing.

[45] Vitor Hugo Galhardo Moia. A study on approximate
matching for similarity search: techniques, limitations
and improvements for digital forensic investigations.
PhD dissertation, School of Electrical and Computer
Engineering - University of Campinas, Campinas, SP,
Brazil, 2020.

[46] Vitor Hugo Galhardo Moia, Frank Breitinger, and
Marco Aurélio Amaral Henriques. Understanding the
effects of removing common blocks on approximate
matching scores under different scenarios for digital
forensic investigations. In XIX Brazilian Symposium on
information and computational systems security, pages
1–14. Brazilian Computer Society (SBC) SÃ£ o Paulo-
SP, Brazil, 2019.

[47] Vitor Hugo Galhardo Moia, Frank Breitinger, and
Marco Aurélio Amaral Henriques. The impact of
excluding common blocks for approximate matching.
Computers & Security, 89:101676, 2020.

23

[48] Vitor Hugo Galhardo Moia and Marco Aurélio Amaral
Henriques. Similarity digest search: A survey and com-
parative analysis of strategies to perform known file fil-
tering using approximate matching. Security and Com-
munication Networks, 2017, 2017.

[49] Azqa Nadeem, Christian Hammerschmidt, Carlos H.
Gañán, and Sicco Verwer. Beyond Labeling: Using
Clustering to Build Network Behavioral Profiles of Mal-
ware Families, pages 381–409. Springer International
Publishing, Cham, 2021.

[50] N. Naik, P. Jenkins, N. Savage, and L. Yang. Cy-
berthreat hunting - part 1: Triaging ransomware us-
ing fuzzy hashing, import hashing and yara rules. In
2019 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), pages 1–6, 2019.

[51] N. Naik, P. Jenkins, N. Savage, L. Yang, K. Naik, and
J. Song. Augmented yara rules fused with fuzzy hashing
in ransomware triaging. In 2019 IEEE Symposium Se-
ries on Computational Intelligence (SSCI), pages 625–
632, 2019.

[52] Landon Curt Noll. Fowler/noll/vo (fnv) hash.
http://www.isthe.com/chongo/tech/comp/fnv/

index.html, 2012. Accessed 2020 Apr 14.

[53] Markus Oberhumer, Laszlo Molnar, and John Reiser.
the ultimate packer for executables. https://upx.

github.io/, 2017.

[54] Jonathan Oliver, Chun Cheng, and Yanggui Chen.
TLSH–a locality sensitive hash. In Cybercrime
and Trustworthy Computing Workshop (CTC), 2013
Fourth, pages 7–13. IEEE, 2013.

[55] Jonathan Oliver and Josiah Hagen. On designing
the elements of a fuzzy hashing scheme. https://

www.malwareconference.org/index.php/en/2019-

malware-conference-proceedings/2019-malware-

conference/session-2-case-studies-analysis-

and-industry-view/05-4720-pdf/detail, 2019.

[56] Fabio Pagani, Matteo Dell’Amico, and Davide
Balzarotti. Beyond precision and recall: Understanding
uses (and misuses) of similarity hashes in binary anal-
ysis. In Proceedings of the Eighth ACM Conference on
Data and Application Security and Privacy, CODASPY
’18, page 354–365, New York, NY, USA, 2018. Associ-
ation for Computing Machinery.

[57] A. Paturi, M. Cherukuri, J. Donahue, and S. Mukka-
mala. Mobile malware visual analytics and similarities
of attack toolkits (malware gene analysis). In 2013 In-
ternational Conference on Collaboration Technologies
and Systems (CTS), pages 149–154, 2013.

[58] Matt Pietrek. An in-depth look into the
win32 portable executable file format. https:

//docs.microsoft.com/en-us/archive/msdn-

magazine/2002/february/inside-windows-win32-

portable-executable-file-format-in-detail,
2002.

[59] Edward Raff and Charles Nicholas. Lempel-ziv jaccard
distance, an effective alternative to ssdeep and sdhash.
Digital Investigation, 24:34–49, 2018.

[60] Vassil Roussev. Data fingerprinting with similarity di-
gests. In IFIP International Conf. on Digital Forensics,
pages 207–226. Springer, 2010.

[61] Vassil Roussev. An evaluation of forensic similarity
hashes. Digital investigation, 8:34–41, 2011.

[62] Vassil Roussev. An evaluation of forensic similarity
hashes. Digital Investigation, 8:S34 – S41, 2011. The
Proceedings of the Eleventh Annual DFRWS Confer-
ence.

[63] Vassil Roussev and Candice Quates. sdhash tutorial:
Release 0.8. http://roussev.net/sdhash/tutorial/
sdhash-tutorial.pdf, 2013. Accessed 2016 Set 13.

[64] N. Sarantinos, C. Benzäıd, O. Arabiat, and A. Al-
Nemrat. Forensic malware analysis: The value of fuzzy
hashing algorithms in identifying similarities. In 2016
IEEE Trustcom/BigDataSE/ISPA, pages 1782–1787,
2016.

[65] Marcos Sebastián, Richard Rivera, Platon Kotzias, and
Juan Caballero. Avclass: A tool for massive malware
labeling. In Fabian Monrose, Marc Dacier, Gregory
Blanc, and Joaquin Garcia-Alfaro, editors, Research
in Attacks, Intrusions, and Defenses, pages 230–253,
Cham, 2016. Springer International Publishing.

[66] Ian Shiel and Stephen O’Shaughnessy. Improving file-
level fuzzy hashes for malware variant classification.
Digital Investigation, 28:S88–S94, 2019.

[67] Prasha Shrestha, Suraj Maharjan, Gabriela Ramı́rez
de la Rosa, Alan Sprague, Thamar Solorio, and Gary
Warner. Using string information for malware fam-
ily identification. In Ana L.C. Bazzan and Karim
Pichara, editors, Advances in Artificial Intelligence
– IBERAMIA 2014, pages 686–697, Cham, 2014.
Springer International Publishing.

[68] Esko Ukkonen. On approximate string matching. In
International Conference on Fundamentals of Compu-
tation Theory, pages 487–495. Springer, 1983.

[69] J. Upchurch and X. Zhou. Malware provenance: code
reuse detection in malicious software at scale. In 2016
11th International Conference on Malicious and Un-
wanted Software (MALWARE), pages 1–9, 2016.

[70] VirusTotal. Virustotal. https://www.virustotal.

com, 2018.

[71] Y. Wu, J. Guo, and X. Zhang. A linear dbscan algo-
rithm based on lsh. In 2007 International Conference
on Machine Learning and Cybernetics, volume 5, pages
2608–2614, 2007.

24

[72] Xiaochuan Zhang, Wenjie Sun, Jianmin Pang, Fudong
Liu, and Zhen Ma. Similarity metric method
for binary basic blocks of cross-instruction set ar-
chitecture. https://archive.bar/pdfs/bar2020-

preprint2.pdf, 2020.

[73] Y. Zhang, Y. Sui, S. Pan, Z. Zheng, B. Ning, I. Tsang,
and W. Zhou. Familial clustering for weakly-labeled
android malware using hybrid representation learning.
IEEE Transactions on Information Forensics and Se-
curity, 15:3401–3414, 2020.

25

