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Who are We?

● CS Master (Federal University of 
Paraná, Brazil)

● Computer Science PhD Student 
(Federal University of Paraná, Brazil)

● ML Researcher (Since 2015)
● Interests: ML applied to Security, ML 

applications (Data Streams, Concept 
Drift, Adversarial Machine Learning)

● CS Master (University of Campinas, 
Brazil)

● Computer Science PhD Student 
(Federal University of Paraná, Brazil)

● Malware Analyst (Since 2012)
● Interests: Malware Analysis & 

Detection, Hardware-Assisted Security
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Introduction
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● Static Detection: real- 
time detection without 
executing it

● Analyse Portable 
Executable (PE) File: 
check its header and 
sections
○ Executable information
○ Code, libraries, and data

How to Detect a (Windows) Malware?
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Adversarial Machine Learning

● Adversarial Machine Learning: trend in recent years, as everybody knows
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Adversarial Malware is Different

● Image Classification: adversarial image should be 
similar to the original one and yet be classified as 
being from another class

● Malware Detection: adversarial malware should 
behave the same and yet be classified as goodware

● Challenge: automatically generating a fully functional 
adversarial malware may be difficult
○ Any modification can make it behave different or not work
○ Many solutions in literature, but malware do not work!
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Introduction: Machine Learning Security 
Evasion Competition (MLSEC)

● Our Experience: three wins in MLSEC contests!
● Public Challenge: contest to better understand adversarial 

samples impact in static ML-based malware detectors
● Contribution: insights gained on attacking/defending models
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Year 2019 2020 2021

Attacker Challenge 1st
(draw) 1st 1st

Defender Challenge - 2nd 1st
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The Challenge
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● Objective: participants develop their own ML defensive solutions, with 
models of their own choice and trained using any dataset

● Three requirements:
○ Less than 1% of False Positive Rate (FPR)
○ Less than 10% of False Negative Rate (FNR)
○ Must return a response within 5 seconds for any presented sample

● Winner: the model that presents the fewer number of evasions in the 
attacker challenge

Defender Challenge
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● Objective: all models that achieved the previous requirements are made 
available to be attacked by black-box attacks

● Data provided: 50 unique working Windows malware samples
● Participants: provide new binaries for the same malware samples

○ Bypass classifiers and present same behavior (Indicators of Compromise, IoC) in sandbox
○ Maximum size: 5mb in 2019; 2mb in 2020/2021

● Winner: the attacker that has most bypassed classifiers and performs the 
lowest number of queries (tiebreaker rule)

Attacker Challenge
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MLSEC 2019
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2019



● There was no Defender Challenge: 
models were selected by organizers

● Three Models:
○ LightGBM¹
○ MalConv²
○ Non-Negative MalConv³

The First Edition of MLSEC (2019)
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¹https://arxiv.org/abs/1804.04637
²https://arxiv.org/abs/1710.09435
³https://arxiv.org/abs/1806.06108

https://arxiv.org/abs/1804.04637
https://arxiv.org/abs/1710.09435
https://arxiv.org/abs/1806.06108


● LightGBM: Gradient boosting, 
hashing trick and histograms 

● PE Parsing (header info, file size, 
timestamp, libraries, strings, etc)

Models: PE Parsing vs Raw Bytes
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Goodware
Malware

Input PE Feature 
Extraction 

OutputClassification
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● MalConv & Non Neg. MalConv: 
End-to-end deep learning models
○ Non Neg.: force model to look only for 

malicious evidences

● Raw bytes as input (no parsing)

Goodware
Malware

Input Feature Extraction 
+ Classification 

Output



MLSEC 2019 Models: Train Dataset

● Ember 2018 dataset
● Benchmark for researchers
● 1.1M Portable Executable (PE) 

binary files: 
○ 900K training samples; 
○ 200K testing samples

● Open Source dataset:
○ https://github.com/elastic/ember
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Attack: Appending Random Data

● Generating growing chunks of 
random data, up to the limit of 
5MB defined by the challenge
○ MalConv, based on raw data, is more 

susceptible to this strategy
○ Severe for chunks greater than 1MB
○ Some features and models might be 

more robust than others
○ Non-Neg. MalConv and LightGBM 

were not so affected
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Attack: Appending Goodware Strings

● Retrieving strings presented by 
goodware files and appending 
them to malware binaries

● All models are significantly 
affected when 10K+ strings are 
appended

● Result holds true even for the 
model that also considers PE 
data (LightGBM), which was 
more robust in the previous 
experiment
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Attack: Packing and Unpacking samples with UPX

● UPX-packed versions are more detected by all classifiers
● Classifiers biased towards the detection of UPX binaries, despite their content
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Dataset MalConv Non-Neg MalConv LightGBM

Originally Packed

UPX 63.64% 55.37% 89.26%

Extracted UPX 59.50% 53.72% 66.12%

Originally Non-Packed

Original 65.35% 54.77% 67.23%

UPX Packed 67.43% 56.43% 88.12%
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Attack: Embedding Samples in a Dropper

1. Retrieves a pointer to the binary 
resource (line 3 to 5)

2. Creates a new file to drop the 
resource content (line 7)

3. Drop the entire content (line 8 to 10);
4. Launches a process based on the 

dropped file (line 13)
● Bypass all models (data appending)
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Adversarial Malware Generation: Results
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Malware (𝒎𝒘) Goodware (𝒈𝒘𝑖) Adversarial Malware (𝒎𝒘+)

Model Class Confidence Class Confidence Class Confidence

MalConv Malware 99.99% Goodware 69.54% Goodware 81.22%

Non-Neg. 
MalConv Malware 75.09% Goodware 73.32% Goodware 98.65%

LightGBM Malware 100.00% Goodware 99.99% Goodware 99.97%

Average Malware 91.69% Goodware 80.95% Goodware 93.28%
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Adversarial Malware in Real World
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● Could our strategy be leveraged 
in real world by actual attackers?

● VirusTotal service: detection 
rates for adversarial samples

● Results: our approach also 
affected real AV engines
○ Sample 6 dropping almost in half

● Explanation: AV engines also 
powered by ML models
○ Subject to same weaknesses and 

biases
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MLSEC 2020
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2020



● First thought: use as baseline a research model developed by us¹
○ Implementation: TF-IDF on top of PE Parsing and Random Forest classifier 
○ Training set: malware samples collected in the Brazilian cyberspace
○ Results in our paper: 98% of f1-score with a low false-negative rate

● When testing with EMBER test samples: bad results, totally different from expected
○ Biased: samples from EMBER are different from Brazilian malware
○ Hypothesis: classifiers used in Brazilian cyberspace are not the most suitable for global 

samples (EMBER)

Defense Solution: Our Initial Model
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¹Fabrício Ceschin, Felipe Pinage, Marcos Castilho, David Menotti, Luis S Oliveira, and André Gregio. The Need for Speed: An Analysis of Brazilian Malware Classifiers. IEEE Security 
Privacy 16, 6 ([n. d.]), 31–41.
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● Test hypothesis: train our model with 
EMBER dataset¹
○ Compare: Brazilian malware model²
○ Evaluation: BRMalware and MLSEC 19

● Regional datasets/models: each model 
performs better in their own region
○ Each region has its own characteristics
○ Specially crafted for a given region

● Ember as training dataset: 
○ More suitable dataset for the challenge

Defense Solution: Regional Datasets
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¹H. Anderson and P. Roth. EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models. ArXiv e-prints. Apr. 2018.
²F. Ceschin, F. Pinage, M. Castilho, D. Menotti, L. S. Oliveira, A. Grégio. The Need for Speed: An Analysis of Brazilian Malware Classifiers. IEEE Security Privacy, 2018.
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● Definitive model: selected attributes from the EMBER datasets
○ Three types of attributes: numerical, categorical and textual

■ Categorical: transformed into one-hot encoding array
■ Textual: texts, separated by spaces, transformed into 

sparse array with their TF-IDF
○ Normalization: MinMaxScaler (numerical, categorical and textual 

features concatenation)
● Train: EMBER's 1.6 million labeled samples¹

○ Scikit-learn Random Forest² with 100 estimators

Definitive Defense Solution
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¹https://github.com/elastic/ember
²https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

One-hot 
Encoder TF-IDF

Categorical TextualNumerical

MinMaxScaler

ATTRIBUTES

Random Forest

Our Model
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Fine-tuning Our Defense Solution
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● Objective: reduce the impact of adversarial perturbations
○ Force classification to be more aggressive

● New prediction function: uses model class probabilities as 
input to determine the output class
○ Threshold T: 

■ If prob(goodware) ≥ T, sample = goodware; Otherwise, malware

● Make our classifier perform as required by the competition:
○ Default Random Forest prediction function: FPR of 8.5%*
○ Threshold T = 80%: FPR of 0.1%*

T = 80%

Our Model

PE 
FILE

GWMW

T ≥ 80%T < 80%

Introduction The Challenge MLSEC 2019 MLSEC 2020 MLSEC 2021 Conclusion

* Using EMBER test set (selected samples not used in the training set)



● Initial test: submit 2019 adversarial samples provided 
by the organizers
○ 594 samples: variations of 50 original samples from last 

year's challenge
● Results:

○ Detected 88.91% of the samples
● All 2019 models were bypassed: significant good
● Confirmed our findings from previous challenge:

○ Models based on parsing PE files are better than the 
ones based on raw data

Our Model vs. MLSEC 2019 Adversaries
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NOT BAD
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1011

1011
0110

1011

1011
0110

● Three models accepted: ember, nfs (our model), and domumpqb
● Initial strategy: appending goodware strings and random bytes to 

original samples
○ 44 points: 

■ 36 bypassed ember (LightGBM)
■ 8 bypassed need for speed (our solution)
■ none bypassed domumpqb

● Using 2019 solution: embedding the original sample in a “Dropper”
○ New binary that embeds original malware sample as a resource
○ Fully bypassed the first model only (ember), just ⅓ of 2020 challenge!

Attack Solution: The Beginning
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1011
0110

DropperMalware

mw ƒ(mw)

Malware

mw

1011
0110

Goodware

gw
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● Focus in bypassing our own model: “know yourself before you know others”
● Our model: based on the library imports and their respective functions

○ Detecting dropper: presence of a functions such as FindResource, used by droppers 
● First ideia: hide the FindResource API calls from the classifier

○ Compress our samples with Telock¹, PELock², and Themida³
● Reducing the number of imports: increased the confidence on the malware label

○ Reinforces last year's claim: classifiers learn packers as malicious regardless its content
○ Also happens with real AVs⁴

Attack Solution: Attacking Ourselves
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¹http://www.telock.com-about.com
²https://www.pelock.com
³https://www.oreans.com/Themida.php
⁴Hojjat Aghakhani, Fabio Gritti, Francesco Mecca, Martina Lindorfer, Stefano Ortolani, Davide Balzarotti, Giovanni Vigna, and Christopher Kruegel. 2020. When Malware is 
Packin'Heat; Limits of Machine Learning Classifiers Based on Static Analysis Features. In NDSS Proceedings(NDSS). NDSS, US, 1. 
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● Alternative: search for some benign sample that 
present the same imports

● Calculator (calc.exe): imports series of functions, 
including FindResource
○ Report: benign with 100% of confidence level by our 

classifier
○ Our goal: build a new dropper binary mimicking the 

calculator

Attack Solution: Mimicking Calculator
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MALWARE
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● Two of three models: previous knowledge about models
○ Ember: deployed in the last year's contest
○ Need for speed: developed by us
○ Domumpqb: deploy a full black box attack

● Few samples had already bypassed it: 21 samples
● Hypothesis: it is detecting part of the embedded payload, 

the only part that changes (all droppers are similar)
● Solution: hide the embedded payload

○ Encoding the malware binary as a base64 string
○ XORing the malware binary with a key

Black-Box is Harder, but not Impossible
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● On average: less than 5 queries per sample to 
bypass the three models
○ Very low number: even considering that we 

had previous knowledge about some models
○ Expected from skilled and motivated attacker: 

targeted attacks against real systems
● Hold true for actual security solution: 5 

attempts is even below the threshold of a 
typical Intrusion Detection System (IDS)
○ Intrusion could occur unnoticeable

Our Attack Solution: Results
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Team Bypasses Queries Average

Ours 150 741 4.94

2nd 47 162 3.44

3rd 44 150 3,40

4th 1 78 78
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● Virus Total detection rate: 
○ Original vs adversarial samples

● AVS were also affected: 
○ Hiding payload from ML models 

also hides them from AV scans
○ ML models used by AVs are also 

affected by changes in binaries 

Our Attack Solution: Impact on Real AVs
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Our Attack Solution: ML and AntiVirus
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Sample Version
AntiVirus Detection

CrowdStrike Cylance Cynet Elastic Paloalto

22
Original True (100%) True True (100%) True (high 

confidence) True

Adversarial True (60%) True False False False

27
Original True (100%) True True (100%) True (high 

confidence) True

Adversarial False False False True False
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Our Attack Solution: Different Family Labels
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Our Attack Solution: Side Effects
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● Dropper binaries become similar: 
share same headers, instructions, libs

● Using dropper: increased the number 
of samples reported as similar
○ Reducing the relative frequency of 

very similar sample's scores
● Dropper's similarities: identified by the 

similarity matching solution
● Similar bytes: “diluted” among the 

dropper's bytes, reducing similarity
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MLSEC 2021
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2021



● Based on previous model: improved some aspects
● Removed features: related to strings (number of paths, URLs, 

registry keys, and MZ headers)
● More textual attributes: exports_list, dll_characteristics_list e 

characteristics_list (from EMBER dataset)
● New feature extractor: HashingVectorizer

○ Features most resistant to attacks
○ Online learning procedures (real-world solutions): does 

not require updating the vocabulary as time goes by

Defense Solution: Some Changes
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¹https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.HashingVectorizer.html

One-hot 
Encoder

Hashing
Trick

Categorical TextualNumerical

MinMaxScaler

ATTRIBUTES

Random Forest

Our Model
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Defense Solution: Testing with Adversaries*
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Model F-Score Recall Precision

Last Year’s Challenge
(TF-IDF, 2020 Model) 0.62% 0.31% 100%

TF-IDF without String
Features and with

more Textual Features
20.86% 11.65% 100%

HashingVectorizer without String
Features and with more Textual 

Features (2021 Model)
43.12% 27.48% 100%

*Tested using MLSEC 2019/2020 adversaries provided by organizers as malware, pristine Windows apps as goodware



Defense Solution: Tuning the Model
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● Considering two factors:
○ Training Dataset:

■ EMBER labeled samples (~1mi)
■ EMBER labeled samples (~1mi) and MLSEC 2019 adversarial samples 

(594)
■ EMBER labeled samples and MLSEC 2020 adversarial samples (50 

samples)
○ Model Threshold T: probability considered by the classifier to consider a given 

binary a goodware



Defense Solution: Tuning the Model
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*Tested using MLSEC 2019/2020 adversaries provided by organizers as malware, pristine Windows apps as goodware



Defense Solution: Tuning the Model
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*Tested using MLSEC 2019/2020 adversaries provided by organizers as malware, pristine Windows apps as goodware



Defense Solution: Tuning the Model
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*Tested using MLSEC 2019/2020 adversaries provided by organizers as malware, pristine Windows apps as goodware



Defense Solution: Tuning the Model
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*Tested using MLSEC 2019/2020 adversaries provided by organizers as malware, pristine Windows apps as goodware



Defense Solution: Comparing Our Model
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*Tested using MLSEC 2019/2020 adversaries provided by organizers as malware, pristine Windows apps as goodware



Defense Solution: Testing Multiple Models with Distinct Goodware Samples
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Model # of Bypasses

secret (our model) 162

A1 193

kipple 231

scanner_only_v1 714

model2_thresh_90 734

submission 3 1840

Defender Challenge: Results
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Attack Solution: First Thoughts

● Assumption: bypassing our model would be enough to bypass the others
● Problem: didn’t find any goodware sample with a significant number of 

imports classified as goodware to mimic
● Native Windows NTDLL: classified as goodware and had a significant 

number of exports
○ Mimic it: add fake exports with the same name as the ones from NTDLL to our dropper

● Conversion: dropper from EXE to DLL
● New rule in 2021: no filesystem dropping was allowed
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Attack Solution: Adapting our Solution

● Filesystem to Memory: memory-based approach (RunPE or 
ProcessHollowing), embedding encoded payload and extract it in memory

● Problem with Sandbox: rundll32 process used to run our Dropper DLL 
doesn’t work, even though it worked in our local machines

● Solution: a process that “likes” to be injected and patched
○ Restriction: it shouldn’t be detected by the classifiers when dropped the disk

● Another bias in our model: .Net executables (mscoree library)
● Hello World in .Net: dropped file turned into malicious in run-time by 

injecting the original malware payload in it
48
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Nickname Total Best Score per User Total API Queries Average

secret 196 600 3.06

amsqr 167 3004 17.98

rwchsfde 114 55701 488.61

vftuemab 113 3772 33.38

qjykdxju 97 3302 34.04

nomnomnom 86 14981 174.19

pip 74 534 7.21

dtrizna 68 4085 60.07

vxcuwzhg 13 108 8.31

fysvbqdq 12 773 64.41

Attacker Challenge: Results
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Attack Solution: Number of Bypasses by Model
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Attack Solution: Original VS Adversarial AV Detection Rates
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Conclusion
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Adversarial Attacks for the Masses

● Adversarial attacks: really happen and are effective
○ Must be taken into account in threat models, datasets, and experiments

● To encourage this practice: publicly released our codes to the 
community
○ Anyone may be able to practice with them (and improve them a LOT!)
○ Consider adversarial attacks in their own research

● Web-based solution¹: generate adversarial samples with our method
○ Each submitted file: tested in multiple ML models

● Check: robustness of multiple models and viability to attack them

53

corvus.inf.ufpr.br

¹https://corvus.inf.ufpr.br 
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http://www.youtube.com/watch?v=PLqS5ViJqLA


Feedback for Future Work

● Our findings: valuable feedback for next-gen security solutions
○ Embedding payloads into binary: simple yet effective way 

to defeat classifiers
● Next-generation solutions: cannot be limited to look only into 

the first binary layer
○ Extract embedded payloads (e.g., via file carving) to 

classify them
● Change features representation: cover less mutable features

○ “Features need to be discriminative and invariant”
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2021 Machine Learning Security Evasion Competition
Created by fabriciojoc

Our 2021 Machine Learning Security Evasion Competition source code
1 FORK 6 STAR https://github.com/fabriciojoc/2021-machine-learning-security-evasion-competition

Reproducibility: Everything is Open-source!
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MLSEC 2020: Need for Speed Malware Detection Model
Created by fabriciojoc

Source code of our detection model
1 FORK 4 STAR https://github.com/fabriciojoc/mlsec2020-needforspeed

Dropper
Created by marcusbotacin

Source code of the developed dropper
2 FORK 9 STAR https://github.com/marcusbotacin/Dropper
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Our Papers Related to this Work: We are Open to Collaborations!
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