

ML SEMINAR OCTOBER 13/14TH 2021 SECRET.INF.UFPR.BR

All You Need to Know to Win a Cybersecurity Adversarial Machine Learning Competition and Make Malware Attacks Practical

Fabrício Ceschin Federal University of Paraná, BR @fabriciojoc fjoceschin@inf.ufpr.br

Marcus Botacin Federal University of Paraná, BR @MarcusBotacin mfbotacin@inf.ufpr.br

Who are We?

Introduction

Fabrício Ceschin

Federal University of Paraná, BR @fabriciojoc fjoceschin@inf.ufpr.br

- CS Master (Federal University of Paraná, Brazil)
- Computer Science PhD Student (Federal University of Paraná, Brazil)
- ML Researcher (Since 2015)
- Interests: ML applied to Security, ML applications (Data Streams, Concept Drift, Adversarial Machine Learning)

MLSEC 2019

The Challenge

Marcus Botacin

- Federal University of Paraná, BR @MarcusBotacin mfbotacin@inf.ufpr.br
- CS Master (University of Campinas, Brazil)
- Computer Science PhD Student (Federal University of Paraná, Brazil)
- Malware Analyst (Since 2012)
- Interests: Malware Analysis & Detection, Hardware-Assisted Security

Introduction

How to Detect a (Windows) Malware?

- Static Detection: realtime detection without executing it
- Analyse Portable Executable (PE) File: check its header and sections
 - Executable information
 - Code, libraries, and data

Introduction

MLSEC 2019

MLSEC 2020

MLSEC 2021

Conclusion

Adversarial Machine Learning

• Adversarial Machine Learning: trend in recent years, as everybody knows

 $\mathrm{sign}(\nabla_{\pmb{x}}J(\pmb{\theta}, \pmb{x}, y))$

"nematode" 8.2% confidence

 $egin{aligned} & m{x} + \ \epsilon \mathrm{sign}(
abla_{m{x}} J(m{ heta}, m{x}, y)) \ \mathrm{``gibbon''} \ 99.3 \ \% \ \mathrm{confidence} \end{aligned}$

Introduction

The Challenge

MLSEC 2019

MLSEC 2020

MLSEC 2021

Conclusion

Adversarial Malware is Different

- Image Classification: adversarial image should be similar to the original one and yet be classified as being from another class
- Malware Detection: adversarial malware should behave the same and yet be classified as goodware
- **Challenge:** automatically generating a fully functional adversarial malware may be difficult
 - Any modification can make it behave different or not work
 - Many solutions in literature, but malware do not work!

MLSEC 2019

MLSEC 2020

Introduction: Machine Learning Security Evasion Competition (MLSEC)

- **Our Experience:** three wins in MLSEC contests!
- **Public Challenge:** contest to better understand adversarial samples impact in static ML-based malware detectors
- **Contribution:** insights gained on attacking/defending models

	Year	2019	2020	2021
Attacke	er Challenge	1st (draw)	1st	1st
Defende	er Challenge	-	2nd	1st
	The Challenge	MLSEC 2019	MLSEC 2020	MLSEC 2021

Conclusion

ENDGAME.

MRG ffitas

The Challenge

Defender Challenge

• **Objective:** participants develop their own ML defensive solutions, with models of their own choice and trained using any dataset

• Three requirements:

- Less than 1% of False Positive Rate (FPR)
- Less than 10% of False Negative Rate (FNR)
- Must return a response within 5 seconds for any presented sample
- Winner: the model that presents the fewer number of evasions in the attacker challenge

Attacker Challenge

- **Objective:** all models that achieved the previous requirements are made available to be attacked by black-box attacks
- Data provided: 50 unique working Windows malware samples
- **Participants:** provide new binaries for the same malware samples
 - Bypass classifiers and present same behavior (Indicators of Compromise, IoC) in sandbox
 - Maximum size: 5mb in 2019; 2mb in 2020/2021
- Winner: the attacker that has most bypassed classifiers and performs the lowest number of queries (tiebreaker rule)

MLSEC 2019

The First Edition of MLSEC (2019)

- There was no Defender Challenge: models were selected by organizers
- Three Models:
 - LightGBM¹
 - MalConv²
 - Non-Negative MalConv³

¹<u>https://arxiv.org/abs/1804.04637</u> ²<u>https://arxiv.org/abs/1710.09435</u> ³<u>https://arxiv.org/abs/1806.06108</u>

Models: PE Parsing vs Raw Bytes

- LightGBM: Gradient boosting, hashing trick and histograms
- PE Parsing (header info, file size, timestamp, libraries, strings, etc)

• MalConv & Non Neg. MalConv:

End-to-end deep learning models

• **Non Neg.:** force model to look only for malicious evidences

13

Raw bytes as input (no parsing)

MLSEC 2019 Models: Train Dataset

- Ember 2018 dataset
- Benchmark for researchers
- 1.1M Portable Executable (PE) binary files:
 - 900K training samples;
 - 200K testing samples
- Open Source dataset:
 - https://github.com/elastic/ember

endgameinc / emb	er			• Watch	38	★ Star	371	¥ Fork	96
Code () Issues 8	(*) Pull requests 0	🔟 Projects 0 🛛 🕕 Secur	ity 🛄 Insights						
o description, website,	or topics provided.								
39 commits	₽7 branches	🗇 0 packages	🛇 0 releases	11 4 cor	ntributo	ors	фV	ew license	4
Branch: master 🔻 New pu	ull request				[Find file	Clon	e or downlo	oad +
Phil Roth some conda pa	ckages come only from the c	onda-forge channel				Latest con	nmit 04a	37ef on 19	Sep
ember	change	es based on drhyrum's com	ments					4 months	ago
licenses	Update	Update licenses				2 months ag			ago
malconv	Update	Jpdate README.md					last yea		
resources	no lon	ger including this in the rep	0			4 months ad			ago
scripts	changi	ng 'year' to 'feature_version	r -			4 months ago			ago
LICENSE.txt	Update	licenses						2 months	ago
README.md	some	onda packages come only	from the conda-forge ch	iannel				2 months	ago
requirements.txt	update	dependencies						7 months	ago
requirements_conda.tx	t accour	accounting for the different name of lief in conda				4 months ag			ago
requirements_noteboo	k.txt versior	is that the notebooks were	run with					4 months	ago
🖹 setup.py	update	dependencies						7 months	ago
III README.md									

MLSEC 2019

MLSEC 2020

MLSEC 2021

Attack: Appending Random Data

- Generating growing chunks of random data, up to the limit of 5MB defined by the challenge
 - MalConv, based on raw data, is more susceptible to this strategy
 - Severe for chunks greater than 1MB
 - Some features and models might be more robust than others
 - Non-Neg. MalConv and LightGBM were not so affected

Appending Random Data

MLSEC 2020

MLSEC 2021

Conclusion

Attack: Appending Goodware Strings

- Retrieving strings presented by goodware files and appending them to malware binaries
- All models are significantly affected when 10K+ strings are appended
- Result holds true even for the model that also considers PE data (LightGBM), which was more robust in the previous experiment

- UPX-packed versions are more detected by all classifiers
- Classifiers biased towards the detection of UPX binaries, despite their content

Dataset	1	MalConv	Non-Neg MalConv	LightGBM					
	Originally Packed								
UPX	 	63.64%	55.37%	89.26%					
Extracted U	РХ	59.50%	53.72%	66.12%					
	Originally Non-Packed								
Original		65.35%	54.77%	67.23%					
UPX Packe	d	67.43%	56.43%	88.12%					
Introduction	The Challenge	MLSEC 2019	MLSEC 2020 M	LSEC 2021 Conclusion					

Attack: Embedding Samples in a Dropper

1

2

3

4

5

6

9

- Retrieves a pointer to the binary 1. resource (line 3 to 5)
- Creates a new file to drop the 2. resource content (line 7)
- Drop the entire content (line 8 to 10); 3. 8
- Launches a process based on the 4. 10 dropped file (line 13) 11
- 12 Bypass all models (data appending) 13

```
int main(){
    HMODULE h = GetModuleHandle(NULL);
    HRSRC r = FindResource(h, ...);
    HGLOBAL rc = LoadResource(h,r);
    void* data = LockResource(rc);
    DWORD size = SizeofResource(h,r);
    FILE *f = fopen("dropped.exe","wb");
    for(int i=0;i<size;i++){</pre>
        unsigned char c1 = ((char*)data)[i];
        fprintf(f,"%c",c1);
    fclose(f);
    CreateProcess("dropped.exe", ...);
```

Adversarial Malware Generation: Results

	Malware (<i>mw</i>)		Goodware (gw_i)		Adversarial Malware (<i>mw</i> +)	
Model	Class	Confidence	Class	Confidence	Class	Confidence
MalConv	Malware	99.99%	Goodware	69.54%	Goodware	81.22%
Non-Neg. MalConv	Malware	75.09%	Goodware	73.32%	Goodware	98.65%
LightGBM	Malware	100.00%	Goodware	99.99%	Goodware	99.97%
Average	Malware	91.69%	Goodware	80.95%	Goodware	93.28%

Introduction

MLSEC 2019

MLSEC 2020

MI

MLSEC 2021

19 Conclusion

Adversarial Malware in Real World

- Could our strategy be leveraged in real world by actual attackers?
- VirusTotal service: detection rates for adversarial samples
- **Results:** our approach also affected real AV engines
 - Sample 6 dropping almost in half
- **Explanation:** AV engines also powered by ML models
 - Subject to same weaknesses and biases

MLSEC 2020

MLSEC 2021

Defense Solution: Our Initial Model

- First thought: use as baseline a research model developed by us¹
 - Implementation: TF-IDF on top of PE Parsing and Random Forest classifier
 - **Training set:** malware samples collected in the Brazilian cyberspace
 - Results in our paper: 98% of f1-score with a low false-negative rate
- When testing with EMBER test samples: bad results, totally different from expected
 - **Biased:** samples from EMBER are different from Brazilian malware
 - **Hypothesis:** classifiers used in Brazilian cyberspace are not the most suitable for global samples (EMBER)

¹Fabrício Ceschin, Felipe Pinage, Marcos Castilho, David Menotti, Luis S Oliveira, and André Gregio. The Need for Speed: An Analysis of Brazilian Malware Classifiers. IEEE Security Privacy 16, 6 ([n. d.]), 31–41.

Introd	luction
IIIIUUU	luction

Defense Solution: Regional Datasets

- Test hypothesis: train our model with EMBER dataset¹
 - Compare: Brazilian malware model²
 - Evaluation: BRMalware and MLSEC 19
- **Regional datasets/models:** each model performs better in their own region
 - Each region has its own characteristics
 - Specially crafted for a given region
- Ember as training dataset:
 - More suitable dataset for the challenge

¹H. Anderson and P. Roth. EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models. ArXiv e-prints. Apr. 2018.
 ²F. Ceschin, F. Pinage, M. Castilho, D. Menotti, L. S. Oliveira, A. Grégio. The Need for Speed: An Analysis of Brazilian Malware Classifiers. IEEE Security Privacy, 2018.

Regional Datasets Comparison

23

Conclusion

Introduction

The Challenge

MLSEC 2019

MLSEC 2020

MLSEC 2021

Definitive Defense Solution

Definitive model: selected attributes from the EMBER datasets

- Three types of attributes: numerical, categorical and textual 0
 - **Categorical:** transformed into one-hot encoding array
 - **Textual:** texts, separated by spaces, transformed into sparse array with their TF-IDF
- Normalization: MinMaxScaler (numerical, categorical and textual 0 features concatenation)
- **Train:** EMBER's 1.6 million labeled samples¹
 - Scikit-learn Random Forest² with 100 estimators 0

Introduction

¹https://github.com/elastic/ember

MLSEC 2019

MLSEC 2020

MLSEC 2021

Conclusion

Fine-tuning Our Defense Solution

- **Objective:** reduce the impact of adversarial perturbations
 - Force classification to be more aggressive
- New prediction function: uses model class probabilities as input to determine the output class
 - Threshold T:

Introduction

■ If prob(goodware) ≥ *T*, sample = goodware; Otherwise, malware

MLSEC 2020

• Make our classifier perform as required by the competition:

MLSEC 2019

- Default Random Forest prediction function: FPR of 8.5%*
- **Threshold** *T* **= 80%:** FPR of 0.1%*

The Challenge

* Using EMBER test set (selected samples not used in the training set)

	PE FILE			
	Ļ	-		
0	ur Mod	el		
T < 80%	/= 80%	<i>T</i> ≥ 80%		
мw		GW		

MLSEC 2021

Conclusion

Our Model vs. MLSEC 2019 Adversaries

- Initial test: submit 2019 adversarial samples provided by the organizers
 - **594 samples:** variations of 50 original samples from last year's challenge
- Results:
 - Detected 88.91% of the samples
- All 2019 models were bypassed: significant good
- Confirmed our findings from previous challenge:
 - Models based on parsing PE files are better than the ones based on raw data

NOT BAD

MLSEC 2019

MLSEC 2020

Attack Solution: The Beginning

- Three models accepted: ember, nfs (our model), and domumpqb
- Initial strategy: appending goodware strings and random bytes to original samples
 - 44 points:
 - 36 bypassed ember (LightGBM)
 - 8 bypassed need for speed (our solution)
 - none bypassed domumpqb
- Using 2019 solution: embedding the original sample in a "Dropper"
 - New binary that embeds original malware sample as a resource
 - Fully bypassed the first model only (ember), just 1/3 of 2020 challenge!

MLSEC 2019

MLSEC 2020

Attack Solution: Attacking Ourselves

- Focus in bypassing our own model: "know yourself before you know others"
- Our model: based on the library imports and their respective functions
 - Detecting dropper: presence of a functions such as *FindResource*, used by droppers
- First ideia: hide the FindResource API calls from the classifier
 - Compress our samples with **Telock**¹, **PELock**², and **Themida**³
- **Reducing the number of imports:** increased the confidence on the malware label
 - Reinforces last year's claim: classifiers learn packers as malicious regardless its content
 - Also happens with real AVs⁴

¹http://www.telock.com-about.com

²https://www.pelock.com

³https://www.oreans.com/Themida.php

⁴Hojjat Aghakhani, Fabio Gritti, Francesco Mecca, Martina Lindorfer, Stefano Ortolani, Davide Balzarotti, Giovanni Vigna, and Christopher Kruegel. 2020. When Malware is Packin'Heat; Limits of Machine Learning Classifiers Based on Static Analysis Features. In NDSS Proceedings(NDSS). NDSS, US, 1.

Introduction	

The Challenge

MLSEC 2019

MLSEC 2020

Attack Solution: Mimicking Calculator

- Alternative: search for some benign sample that present the same imports
- Calculator (calc.exe): imports series of functions, including *FindResource*
 - **Report:** benign with 100% of confidence level by our classifier
 - **Our goal:** build a new dropper binary mimicking the calculator

		MA	LWA	RE
MC	MR	MS	M+	M-
←	CE	С	±	V
7	8	9	/	%
4	5	6	*	1/x
1	2	2	-	

Black-Box is Harder, but not Impossible

- Two of three models: previous knowledge about models
 - **Ember:** deployed in the last year's contest
 - Need for speed: developed by us
 - **Domumpqb:** deploy a full black box attack
- Few samples had already bypassed it: 21 samples
- **Hypothesis:** it is detecting part of the embedded payload, the only part that changes (all droppers are similar)
- Solution: hide the embedded payload
 - Encoding the malware binary as a base64 string
 - XORing the malware binary with a key

MLSEC 2019

MLSEC 2020

MLSEC 2021

Our Attack Solution: Results

- On average: less than 5 queries per sample to Tea bypass the three models
 - Very low number: even considering that we had previous knowledge about some models
 - Expected from skilled and motivated attacker: targeted attacks against real systems
- Hold true for actual security solution: 5 attempts is even below the threshold of a typical Intrusion Detection System (IDS)
 - Intrusion could occur unnoticeable

Team	Bypasses	Queries	Average
Ours	150	741	4.94
2nd	47	162	3.44
3rd	44	150	3,40
4th	1	78	78

MLSEC 2021

Our Attack Solution: Impact on Real AVs

- Virus Total detection rate:
 - Original vs adversarial samples
- AVS were also affected:
 - Hiding payload from ML models also hides them from AV scans
 - ML models used by AVs are also affected by changes in binaries

MLSEC 2019

MLSEC 2020

32

Conclusion

Our Attack Solution: ML and AntiVirus

Sampla	Varaian	AntiVirus Detection					
Sample	Version	CrowdStrike	Cylance	Cynet	Elastic	Paloalto	
22	Original	True (100%)	True	True (100%)	True (high confidence)	True	
	Adversarial	True (60%)	True	False	False	False	
27	Original	True (100%)	True	True (100%)	True (high confidence)	True	
	Adversarial	False	False	False	True	False	
Introduction	The Challenge	MLSEC 2019	9	MLSEC 2020	MLSEC 2021	Conclusion	

Our Attack Solution: Different Family Labels

Our Attack Solution: Side Effects

- **Dropper binaries become similar:** share same headers, instructions, libs
- Using dropper: increased the number of samples reported as similar
 - Reducing the relative frequency of very similar sample's scores
- **Dropper's similarities:** identified by the similarity matching solution
- Similar bytes: "diluted" among the dropper's bytes, reducing similarity

MLSEC 2020

MLSEC 2021

Defense Solution: Some Changes

- Based on previous model: improved some aspects
- **Removed features:** related to strings (number of paths, URLs, registry keys, and MZ headers)
- More textual attributes: exports_list, dll_characteristics_list e characteristics_list (from EMBER dataset)
- New feature extractor: HashingVectorizer
 - Features most resistant to attacks
 - **Online learning procedures (real-world solutions):** does not require updating the vocabulary as time goes by

¹https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.HashingVectorizer.html

Introduction

The Challenge

MLSEC 2019

MLSEC 2020

MLSEC 2021

Conclusion

Defense Solution: Testing with Adversaries*

	Model	F-Sc	ore	Recall	Precision
La (1	ast Year's Challenge FF-IDF, 2020 Model)	0.6	2%	0.31%	100%
TF-IDF without String Features and with more Textual Features			36%	11.65%	100%
Hashing Feature Fe	gVectorizer without St es and with more Text atures (2021 Model)	ring ual 43. 1	2%	27.48%	100%
*Tested using	MLSEC 2019/2020 adversa	ries provided by organize	ers as malware, pi	ristine Windows apps as	goodware
Introduction	The Challenge	MLSEC 2019	MLSEC 2020	MLSEC 2021	Conclusion

• Considering two factors:

- Training Dataset:
 - EMBER labeled samples (~1mi)
 - EMBER labeled samples (~1mi) and MLSEC 2019 adversarial samples (594)
 - EMBER labeled samples and MLSEC 2020 adversarial samples (50 samples)
- **Model Threshold T:** probability considered by the classifier to consider a given binary a goodware

*Tested using MLSEC 2019/2020 adversaries provided by organizers as malware, pristine Windows apps as goodware

Introduction The Challenge MLSEC 2019 MLSEC 2020 MLSEC 2021 Conclusion

*Tested using MLSEC 2019/2020 adversaries provided by organizers as malware, pristine Windows apps as goodware

Introduction The Challenge MLSEC 2019 MLSEC 2020 MLSEC 2021 Conclusion

*Tested using MLSEC 2019/2020 adversaries provided by organizers as malware, pristine Windows apps as goodware

Introduction The Challenge MLSEC 2019 MLSEC 2020 MLSEC 2021 Conclusion

*Tested using MLSEC 2019/2020 adversaries provided by organizers as malware, pristine Windows apps as goodware

Introduction The Challenge MLSEC 2019 MLSEC 2020 MLSEC 2021 Conclusion

Defense Solution: Comparing Our Model

*Tested using MLSEC 2019/2020 adversaries provided by organizers as malware, pristine Windows apps as goodware

Introduction	The Challenge	MLSEC 2019	MLSEC 2020	MLSEC 2021	Conclusion

Defense Solution: Testing Multiple Models with Distinct Goodware Samples

Defender Challenge: Results

Model			# of Bypasses		
secret (our model)			162		
A1			193		
kipple			231		
scanner_only_v1			714		
model2_thresh_90			734		
submission 3			1840		
Introduction	The Challenge	MLSEC 2019	MLSEC 2020	MLSEC 2021	Conclusion

Attack Solution: First Thoughts

- Assumption: bypassing our model would be enough to bypass the others
- **Problem:** didn't find any goodware sample with a significant number of imports classified as goodware to mimic
- Native Windows NTDLL: classified as goodware and had a significant number of exports
 - Mimic it: add fake exports with the same name as the ones from NTDLL to our dropper
- **Conversion:** dropper from EXE to DLL
- New rule in 2021: no filesystem dropping was allowed

Attack Solution: Adapting our Solution

- Filesystem to Memory: memory-based approach (*RunPE* or *ProcessHollowing*), embedding encoded payload and extract it in memory
- **Problem with Sandbox:** *rundll32* process used to run our Dropper DLL doesn't work, even though it worked in our local machines
- Solution: a process that "likes" to be injected and patched
 - **Restriction:** it shouldn't be detected by the classifiers when dropped the disk
- Another bias in our model: .Net executables (mscoree library)
- Hello World in .Net: dropped file turned into malicious in run-time by injecting the original malware payload in it

Nickname Total		Best Score per User	Total API Queries	Average
secre	t	196	600	3.06
amsq	amsqr 167		3004	17.98
rwchsfde		114	55701	488.61
vftuemab		113	3772	33.38
qjykdxju		97	3302	34.04
nomnomnom		86	14981	174.19
pip		74	534	7.21
dtrizna		68	4085	60.07
vxcuwzhg		13	108	8.31
fysvbqd	q	12	773	64.41
Introduction	The Challenge	MLSEC 2019	MLSEC 2020	MLSEC 2021 Conclusion

Attack Solution: Number of Bypasses by Model

Attack Solution: Original VS Adversarial AV Detection Rates

Conclusion

Adversarial Attacks for the Masses

- Adversarial attacks: really happen and are effective
 - Must be taken into account in threat models, datasets, and experiments
- **To encourage this practice:** publicly released our codes to the community
 - Anyone may be able to practice with them (and improve them a LOT!)
 - Consider adversarial attacks in their own research
- Web-based solution¹: generate adversarial samples with our method
 - **Each submitted file:** tested in multiple ML models
- Check: robustness of multiple models and viability to attack them

¹<u>https://corvus.inf.ufpr.br</u>

No state

corvus.inf.ufpr.br

Introduction

MLSEC 2019

MLSEC 2020

MLSEC 2021

Conclusion

Upload Your Files

the appropriate of party states and the summaries around the states of the summaries of the states o

Q _____

Files Report

contraction and an inclusion failed

th

Statistics

and the second sec

Save Reports

About

Finance, is a default and the generality further any provide America, Long. And that and FEP1. Advanced interaction are during particular to classify any provide antimizer and the organization.

Feedback for Future Work

- **Our findings:** valuable feedback for next-gen security solutions
 - **Embedding payloads into binary:** simple yet effective way to defeat classifiers
- Next-generation solutions: cannot be limited to look only into the first binary layer
 - Extract embedded payloads (e.g., via file carving) to classify them
- Change features representation: cover less mutable features
 - "Features need to be discriminative and invariant"

Reproducibility: Everything is Open-source!

MLSEC 2020: Need for Speed Malware Detection Model Created by fabriciojoc

Source code of our detection model 1 FORK 4 STAR

https://github.com/fabriciojoc/mlsec2020-needforspeed

2021 Machine Learning Security Evasion Competition Created by fabriciojoc

Our 2021 Machine Learning Security Evasion Competition source code 1 FORK 6 STAR https://github.com/fabriciojoc/2021-machine-learning-security-evasion-competition

Dropper Created by marcusbotacin

Source code of the developed dropper 2 FORK 9 STAR

https://github.com/marcusbotacin/Dropper

Introduction

The Challenge

MLSEC 2019

MLSEC 2020

MLSEC 2021

Our Papers Related to this Work: We are Open to Collaborations!

- Ceschin, F., Pinage, F., Castilho, M., Menotti, D., Oliveira, L. S. and Grégio, A. (2018). The need for speed: An analysis of brazilian malware classifiers. IEEE Security & Privacy.
- Ceschin, F., Botacin, M., Gomes, H. M., Oliveira, L. S. and Grégio, A. (2019). Shallow security: On the creation of adversarial variants to evade machine learning-based malware detectors. Proceedings of the 3rd Reversing and Offensive-Oriented Trends Symposium, ROOTS'19, Vienna, Austria.
- Botacin, M., Ceschin, F., de Geus, P. and Grégio, A. (2020b). We need to talk about antiviruses: Challenges & pitfalls of av evaluations. Computers & Security.
- Ceschin, F., Botacin, M., Lüders, G., Gomes, H. M., Oliveira, L. S. and Grégio, A. (2020). No need to teach new tricks to old malware: Winning an evasion challenge with xor-based adversarial samples. Proceedings of the 4th Reversing and Offensive-Oriented Trends Symposium, ROOTS'20, Vienna, Austria.
- Botacin, M., Ceschin, F., Sun, R., Oliveira, D., Grégio, A (2021). Challenges and Pitfalls in Malware Research. Computers & Security, pp. 102287, 2021, ISSN: 0167-4048.
- Ceschin, F., Gomes, H. M., Botacin, M, Bifet, A., Pfahringer, B., Oliveira, L. S., Grégio, A. (2021). arXiv:2010.16045

Introd	luction
111100	uction

ML SEMINAR OCTOBER 13/14TH 2021 SECRET.INF.UFPR.BR

All You Need to Know to Win a Cybersecurity Adversarial Machine Learning Competition and Make Malware Attacks Practical

Fabrício Ceschin Federal University of Paraná, BR @fabriciojoc fjoceschin@inf.ufpr.br

Marcus Botacin Federal University of Paraná, BR @MarcusBotacin mfbotacin@inf.ufpr.br