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Publication

Figure: Source: https://link.springer.com/chapter/10.1007/978-3-031-97623-0 1
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It is a long-term trend

It is a long-term trend

Figure: Drift tendency vs. instantaneous detection. Drift points reported by ADWIN.
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The trend is in the data

You increase the training size, but the drift is always there!

Figure: Concept drift in practice. The classification accuracy decreases regardless of the
initial training set size/period.
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The trend is in the data

You change the policy, but the drift is always there!

Figure: Comparing algorithms and policies. Each one detects a different number of drift
points/events and at different times.
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Classes are affected differently

Classes are affected differently

Figure: Separating detection rates per class reveals that the drift in the MW class causes
the global performance degradation.
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Classes are affected differently

Classes drift differently

Figure: Main class vs. sub-classes. A different number of drift points is identified in each
class and at different epochs.
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Our theory of drift events

Key Hypothesis: Concepts and Frontiers are different things

Figure: Initial Training. Figure: Additional Data. Figure: Multiple Drifts.
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Our theory of drift events

Proposing a drift taxonomy (1/2)

Type 1: Main Classifier Drift. It detects whether a significant number of samples
of any class crossed the detection frontier or not within a sampling window to the
point of already harming the final classification result.
Type 2: Sub-Class Drift. It detects whether a significant number of samples of a
specific class crossed the detection frontier or not within a sampling window to
the point of being noticeable but without guarantees that it affects the final
classification result (contingent upon Type 1 detection).
Type 3: Concept Change. It detects if a significant number of samples of a
specific class do not match the previous knowledge the classifier had about that
class, regardless of the correct class assignment (Type 1 and 2 events).
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Our theory of drift events

The concept evolution direction matters

Figure: Direction-Change Drift Detection.
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Our theory of drift events

Proposing a drift taxonomy (2/2)

Type 3: Concept Change. It detects if a significant number of samples of a
specific class do not match the previous knowledge the classifier had about that
class, regardless of the correct class assignment (Type 1 and 2 events). The
implications of the concept change causing drift or not are contingent on the
following cases:

Case A: Concept change without drift risk. If the concept changes in a direction
that does not go toward the decision frontier, it cannot cause drift events.
Case B: Concept change with imminent drift risk. If the concept changes towards
the decision frontier (Type 2), it will eventually cause drift when crossing the
frontier (Type 1). This point is a candidate for early retraining.
Case C: Current Drift due to concept change. If the concept changes towards the
frontier (Type 2) and crosses it (Type 1), concept drift is detected late.
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Our theory of drift events

The final drift taxonomy

Table: Explaining Drift Events. Information types for each combination of triggered
detectors. Representing Triggered Detectors (X) and Possible (4) and Not-Applicable (Ø)
cases. Omitting Impossible cases.

Main Type Cases ConclusionType 1 Type 2 Type 3 Case A Case B Case C
Ø Normal Operation

X 4 Early Concept Change with no impact on frontier
X 4 Early Concept Change with imminent impact on frontier

X Ø Bad Frontier detected without concept change hold by imbalance in main class
X X 4 Bad Frontier detected with concept change hold by imbalance in main class

X Ø False Positive Drift Detection
X X 4 False Positive with concept change in non-impactful direction
X X Ø Bad Frontier detected without concept change, with impact in the main class
X X X 4 Concept Change with Immediate Impact and Identification
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How to monitor drift events

Agnostic model monitor with external meta-models
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Figure: Drift-Explainable Architecture.
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The results do make sense
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The results do make sense

The concept classes indeed measure different things

Figure: GW class self-recognition rate. Figure: MW class self-recognition rate.
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The results do make sense

The concept classes indeed drift

Figure: Drift in the classes self-recognition rates. Drifts are represented both for the MW
and GW meta-classifiers.
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Explaining events by examples

Every point can be explained.

Figure: Explaining all operational points and all drift occurrences. Omitting points of
normal operation.
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Explaining events by examples

The effect of dataset imbalance is also explained.

Figure: Explaining all drift detection points (2:1 balance). We observe fewer frontier
problems and more False Positives.
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Explaining events by examples

Calibrating drift detectors is essential

Figure: Drift Detector Calibration. False Positives and bad frontiers are explained by the
proposed approach.
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Explaining events by examples

Explaining concepts lead to better accuracies via early retrain

Figure: Early retraining on concept changes leads to improved accuracy than retraining
only upon main class drift.
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Explaining events by examples

Early retrain is more effective

Figure: Retrain Effectiveness. The vast majority of the proposed drift detection triggers lead
to increased accuracy gains than the original Type 1 drift detector trigger.
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Explaining events by examples

Early retrain is more efficient

Figure: Retrain Efficiency. The best cost-benefit between the amount of retrains and
accuracy increase is achieved by identifying concept changes.
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Generalization

False Positives always increase with imbalances

Figure: DREBIN: FP Results Distribution
for different imbalances. FPs grow with the
imbalance for most detectors.

Figure: ANDROZOO: FP Results
Distribution for different imbalances. FPs
grow with the imbalance for most detectors.
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Generalization

Bad Frontiers always decrease with imbalances

Figure: DREBIN: Detectors’ Results
Distribution. Frontier problems for different
undersamplings. The bigger the
undersampling, the more frontier problems.

Figure: ANDROZOO: Detectors’ Results
Distribution. Frontier problems for different
undersamplings. The bigger the
undersampling, the more frontier problems.
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Generalization

Early retrain is always the best option

Figure: DREBIN: Average Retraining
Results. Average F1-score Under Time
increase over the baseline when triggering
retrains using different policies vs. the
multiple dataset imbalances.

Figure: ANDROZOO: Average Retraining
Results. The imbalance effect is less
pronounced in this dataset, but the Type-3
retraining strategy is still the superior one in
all scenarios.
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Performance Drawbacks

Explanation comes at the performance cost

Table: Runtime Performance Overhead for DREBIN and AndroZoo. The cost of
individual retrains is reduced, but the total execution time cost increases.

DREBIN AndroZoo

Models (#) Retrain Total Time / Cost / Overhead / Total Time / Cost / Overhead /
Policy Retrains (#) Normalized Retrains (#) Normalized

1 Type 1 11.65s / 5 2.73s / 0x / 0x 470.4s / 5 94s / 0x / 0x
3 Type 1 53.53s / 5 10.7s / 3.92x / 3.92x 1688.6 / 5 337.7s / 3.6x / 3.6x
3 Type 2 105.77s / 13 8.13s / 7.74x / 2.98x 3563.9s / 15 237.6s / 7.5x / 2.5x
3 Tyoe 3 102.70s / 13 7.90s / 7.52x / 2.89x 4161.3s / 19 219s / 8.84x / 2.32x
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Labeling Issues

Limitations & Future Works

Heterogeneous Architectures.
Virtual Drifts.
Intra-Class Drifts.
Label Delays.

Figure: Label Delays. Too much delay
nullifies the retraining benefits.
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Publications

Figure: Source:
https://www.sciencedirect.com/science/article/abs/pii/S0167404824004279
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How to Evaluate the Classification Impact?
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Figure: Classification Precision.
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How to Evaluate the Drift Impact?
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Figure: Absolute Exposure and Drift.
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What if Labels are not available?
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Figure: Absolute Exposure and Drift.
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The Pseudo-Label Delay Mitigation

Figure: Architecture with Pseudo-Labels.
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Malware Detection under Concept Drift: Science and Engineering 43 / 46 Purdue/CERIAS 2025



Concept Drift Understanding Drift Testing the Hypothesis Demonstration Real-World Considerations Engineering Solutions Conclusions

Closing Remarks

Agenda

1 Concept Drift
It is a long-term trend
The trend is in the data

2 Understanding Drift
Classes are affected differently
Our theory of drift events

3 Testing the Hypothesis
How to monitor drift events
The results do make sense

4 Demonstration
Explaining events by examples
Generalization

5 Real-World Considerations
Performance Drawbacks
Labeling Issues

6 Engineering Solutions
7 Conclusions

Closing Remarks

Malware Detection under Concept Drift: Science and Engineering 44 / 46 Purdue/CERIAS 2025



Concept Drift Understanding Drift Testing the Hypothesis Demonstration Real-World Considerations Engineering Solutions Conclusions

Closing Remarks

Recap

Science
Explaining drift is not the same as explaining the classification.
Classifier concept and frontier are not the same thing.
Meta-classifiers can separate concepts and frontiers.
We can explain every drift event.

Engineering
Labels are not immediately available.
Too long delays eliminate the benefits of classifier retrain.
Pseudo-Labels mitigate label delays.
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Closing Remarks

Thanks!
Questions? Comments?

botacin@tamu.edu
@MarcusBotacin
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