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Research

e Malware at high-level: ML-based detectors.
@ Malware at mid-level: Sandboxes and tracers.

o Malware at low-level: HW-based detectors.

Current Project

@ NSF SaTC: Hardware Performance Counters as the next-gen AVs.
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It is a long-term trend
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@ Concept Drift
@ It is a long-term trend
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It is a long-term trend

It is a long-term trend

Classifier Accuracy vs. Train and Test Sets
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Figure: Drift tendency vs. instantaneous detection. Drift points reported by ADWIN.
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The trend is in the data
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@ Concept Drift

@ The trend is in the data
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The trend is in the data

You increase the training size, but the drift is always there!

Classifier Accuracy vs.

Train and Test Sets
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Figure: Concept drift in practice. The classification accuracy decreases regardless of the
initial training set size/period.
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You change the policy, but the drift is always there!
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Figure: Comparing algorithms and policies. Each one detects a different number of drift

points/events and at different times.
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Classes are affected differently
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© Understanding Drift
o Classes are affected differently
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Classes are affected differently

Classes are affected differently

Classifier Accuracy vs.

100 Train and Test Sets
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00000

=

oy

E 60 Accumulated Test Accuracy; Overall

3 (Test/Acc/Main)

8 Accumulated Test Accuracy; Malware Class
< 0 (Test/Acc/MWClass)

(Test/Acc/GWClass)

Accumulated Test Accuracy; Goodware Class

0 3 6 9 12 15 18 21 24 27 30
Bins (Id)

33

000

Figure: Separating detection rates per class reveals that the drift in the MW class causes

the global performance degradation.
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Classes are affected differently

Classes drift differently

Classifiers Accuracies vs. Train and Test Sets
(Drift Detector: ADWIN; Policy: Reset on Detection)
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Figure: Main class vs. sub-classes. A different number of drift points is identified in each

class and at different epochs.
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Our theory of drift events
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Key Hypothesis: Concepts and Frontiers are different things

3.5 Model before Drift
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Figure: Initial Training.  Figure: Additional Data.  Figure: Multiple Drifts.
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Our theory of drift events

Proposing a drift taxonomy (1/2)

e Type 1: Main Classifier Drift. It detects whether a significant number of samples
of any class crossed the detection frontier or not within a sampling window to the
point of already harming the final classification result.

@ Type 2: Sub-Class Drift. It detects whether a significant number of samples of a
specific class crossed the detection frontier or not within a sampling window to
the point of being noticeable but without guarantees that it affects the final
classification result (contingent upon Type 1 detection).

o Type 3: Concept Change. It detects if a significant number of samples of a
specific class do not match the previous knowledge the classifier had about that
class, regardless of the correct class assignment (Type 1 and 2 events).
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Our theory of drift events

The concept evolution direction matters

Model During Early Drift
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Figure: Direction-Change Drift Detection.
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Our theory of drift events

Proposing a drift taxonomy (2/2)

o Type 3: Concept Change. It detects if a significant number of samples of a
specific class do not match the previous knowledge the classifier had about that
class, regardless of the correct class assignment (Type 1 and 2 events). The
implications of the concept change causing drift or not are contingent on the
following cases:

e Case A: Concept change without drift risk. If the concept changes in a direction
that does not go toward the decision frontier, it cannot cause drift events.

e Case B: Concept change with imminent drift risk. If the concept changes towards
the decision frontier (Type 2), it will eventually cause drift when crossing the
frontier (Type 1). This point is a candidate for early retraining.

e Case C: Current Drift due to concept change. If the concept changes towards the
frontier (Type 2) and crosses it (Type 1), concept drift is detected late.

Malware Detection under Concept Drift: Science and Engineering 17 /46 Purdue/CERIAS 2025



Concept Drift Understanding Drift Testing the Hypothesis Demonstration Real-World Considerations Engineering Solutions Conclusions
00000 00000000e 00000 00000000000 0000 00000 [elele)

Our theory of drift events

The final drift taxonomy

Table: Explaining Drift Events. Information types for each combination of triggered
detectors. Representing Triggered Detectors (v') and Possible (A) and Not-Applicable (©)
cases. Omitting Impossible cases.

Main Type Cases Conclusion
Typel Type2 Type3 Case A Case B Case C
[) Normal Operation
v A Early Concept Change with no impact on frontier
v A Early Concept Change with imminent impact on frontier
v [9) Bad Frontier detected without concept change hold by imbalance in main class
v v A Bad Frontier detected with concept change hold by imbalance in main class
v [1) False Positive Drift Detection
v v VAN False Positive with concept change in non-impactful direction
v v [7] Bad Frontier detected without concept change, with impact in the main class
v v v JAN Concept Change with Immediate Impact and ldentification
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How to monitor drift events
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© Testing the Hypothesis
@ How to monitor drift events
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How to monitor drift events

Agnostic model monitor with external meta-models

Known/ "
® Drift Type 3 Drift|
\ Malware { Detector (Malware)
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w Detector (Goodware)
oodware

Figure: Drift-Explainable Architecture.
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The results do make sense

Agenda

© Testing the Hypothesis

@ The results do make sense
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The results do make sense

The concept classes indeed measure different things

Goodware Classifier Accuracy vs.

Malware Classifier Accuracy vs.
Train and Test Sets
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Figure: GW class self-recognition rate.
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Figure: MW class self-recognition rate.
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The concept classes indeed drift

Classifiers Accuracies vs. Train and Test Sets
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Figure: Drift in the classes self-recognition rates. Drifts are represented both for the MW

and GW meta-classifiers.
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Explaining events by examples
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Explaining events by examples

Every point can be explained.

Classifiers Accuracies vs. Train/and Test Sets
(Drift Detector: ADWIN; Policy: Reset on Detection)
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Figure: Explaining all operational points and all drift occurrences. Omitting points of
normal operation.
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Explaining events by examples

The effect of dataset imbalance is also explained.

Classifiers Accuracies vs. Train/and Test Sets
(Drift Detector: ADWIN; Policy: Reset on Detection)
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Figure: Explaining all drift detection points (2:1 balance). We observe fewer frontier
problems and more False Positives.
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Explaining events by examples

Calibrating drift detectors is essential

Drift Errors and Bad Frontiers vs.

Different Undersampling
+9 Order Sensitivity E=0 +1 Order Sensitivity
+7 Order Sensitivity 2 Default Sensitivity
+5 Order Sensitivity wum Bad Frontiers
+3 Order Sensitivity [ False Positive Drifts

25

N
S

-
&

False Positives/
Bad Frontiers

511

:Undersa:nmpling

Figure: Drift Detector Calibration. False Positives and bad frontiers are explained by the
proposed approach.
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Explaining events by examples

Explaining concepts lead to better accuracies via early retrain

Classifiers Accuracies vs. Train/and Test Sets
(Drift Detector: ADWIN; Policy: Reset on Detection)

— Ideal ---- Typel,Type2 or Type3*
os — Typel ---- Type3*

\/\ —— Type2 or Type3 — Typel
% \/_\ — Type3

85

Accuracy (%)

75

70

1 2 27 30 33
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Figure: Early retraining on concept changes leads to improved accuracy than retraining
only upon main class drift.
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Explaining events by examples

Early retrain is more effective

Average Improvement per Retraining vs.
Resetting Configurations

Ideal -
125/ | -ll*lTo_Rei;ralnmg g oores
ained on
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| Main
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Engineering Solutions Conclusions

00000

Most Improved

Different Configuration Reset Policies

000

Figure: Retrain Effectiveness. The vast majority of the proposed drift detection triggers lead

to increased accuracy gains than the original Type 1 drift detector trigger.
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Early retrain is more efficient
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Figure: Retrain Efficiency. The best cost-benefit between the amount of retrains and
accuracy increase is achieved by identifying concept changes.
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Generalization

False Positives always increase with imbalances

s False Positives vs. Und pling ) False Positives vs. Undersampling
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Figure: DREBIN: FP Results Distribution  Figure: ANDROZOO: FP Results

for different imbalances. FPs grow with the Distribution for different imbalances. FPs
imbalance for most detectors. grow with the imbalance for most detectors.
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Generalization

Bad Frontiers always decrease with imbalances

» Bad Frontiers vs. Undersampling Bad Frontiers vs. Undersampling
pie = EDDM ADWIN(Calibrated) 0 = EDDM ADWIN(Calibrated)
22 EEE DDM Average Cases of 2 == DDM . Average Cases of
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Figure: DREBIN: Detectors’ Results Figure: ANDROZQO: Detectors’ Results
Distribution. Frontier problems for different  Distribution. Frontier problems for different
undersamplings. The bigger the undersamplings. The bigger the
undersampling, the more frontier problems. undersampling, the more frontier problems.
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Early retrain is always the best option
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Figure: DREBIN: Average Retraining
Results. Average Fl-score Under Time
increase over the baseline when triggering
retrains using different policies vs. the
multiple dataset imbalances.
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Figure: ANDROZQOO: Average Retraining
Results. The imbalance effect is less
pronounced in this dataset, but the Type-3
retraining strategy is still the superior one in
all scenarios.
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Performance Drawbacks
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@ Performance Drawbacks
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Performance Drawbacks

Explanation comes at the performance cost

Table: Runtime Performance Overhead for DREBIN and AndroZoo. The cost of
individual retrains is reduced, but the total execution time cost increases.

Conclusions
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DREBIN AndroZoo
Models (#) Retrain Total Time / Cost / Overhead / Total Time / Cost / Overhead /
Policy Retrains (#) Normalized Retrains (#) Normalized
1 Type 1 11.65s / 5 2.73s / Ox / Ox 470.4s / 5 94s / Ox / Ox
3 Type 1 53.53s / 5 10.7s / 3.92x / 3.92x  1688.6 / 5 337.7s / 3.6x / 3.6x
3 Type2 105.77s /13 8.13s/ 7.74x / 2.98x  3563.9s / 15  237.6s / 7.5x / 2.5x
3 Tyoe 3 102.70s / 13 7.90s / 7.52x / 2.89x  4161.3s / 19 219s / 8.84x / 2.32x
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Labeling Issues
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Labeling Issues

Limitations & Future Works

@ Heterogeneous Architectures.
@ Virtual Drifts.

@ Intra-Class Drifts.

o Label Delays.

Malware Detection under Concept Drift: Science and Engineering

Demonstration Real-World Considerations Engineering Solutions Conclusions
o o I °

Malware Exposure over time
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Figure: Label Delays. Too much delay
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How to Evaluate the Drift Impact?
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Figure: Absolute Exposure. Figure: Absolute Exposure and Drift.
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What if Labels are not available?
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Figure: Absolute Exposure and Drift. Figure: Delayed ground-truth labels.
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The Pseudo-Label Delay Mitigation
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Figure: Architecture with Pseudo-Labels. Figure: New Drift Points.
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Closing Remarks

Agenda

@ Conclusions
@ Closing Remarks

Malware Detection under Concept Drift: Science and Engineering 44 / 46 Purdue/CERIAS 2025




Concept Drift Understanding Drift Testing the Hypothesis Demonstration Real-World Considerations Engineering Solutions Conclusions
00000 000000000 00000 00000000000 0000 00000 oceo

Closing Remarks

Recap

Science

@ Explaining drift is not the same as explaining the classification.
o Classifier concept and frontier are not the same thing.

o Meta-classifiers can separate concepts and frontiers.

@ We can explain every drift event.

@ Labels are not immediately available.
@ Too long delays eliminate the benefits of classifier retrain.
@ Pseudo-Labels mitigate label delays.
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Closing Remarks

Thanks!

Questions? Comments?
botacin@tamu.edu
©@MarcusBotacin
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