
No Need to Teach New Tricks to Old Malware: Winning an
Evasion Challenge with XOR-based Adversarial Samples

Fabrício Ceschin
fjoceschin@inf.ufpr.br

Federal University of Paraná
Curitiba, Paraná, Brazil

Marcus Botacin
mfbotacin@inf.ufpr.br

Federal University of Paraná
Curitiba, Paraná, Brazil

Gabriel Lüders
gl19@inf.ufpr.br

Federal University of Paraná
Curitiba, Paraná, Brazil

Heitor Murilo Gomes
heitor.gomes@waikato.ac.nz

University of Waikato
Hamilton, Waikato, New Zealand

Luiz S. Oliveira
lesoliveira@inf.ufpr.br

Federal University of Paraná
Curitiba, Paraná, Brazil

André Grégio
gregio@inf.ufpr.br

Federal University of Paraná
Curitiba, Paraná, Brazil

ABSTRACT
Adversarial attacks to Machine Learning (ML) models became such
a concern that tech companies (Microsoft and CUJO AI’s Vulnera-
bility Research Lab) decided to launch contests to better understand
their impact on practice. During the contest’s first edition (2019),
participating teams were challenged to bypass three ML models in
a white box manner. Our team bypassed all the three of them and
reported interesting insights about models’ weaknesses. In the sec-
ond edition (2020), the challenge evolved to an attack-and-defense
model: the teams should either propose defensive models and attack
other teams’ models in a black box manner. Despite the difficulty
increase, our team was able to bypass all models again. In this pa-
per, we describe our insights for this year’s contest regarding on
attacking models, as well defending them from adversarial attacks.
In particular, we show how frequency-based models (e.g., TF-IDF)
are vulnerable to the addition of dead function imports, and how
models based on raw bytes are vulnerable to payload-embedding
obfuscation (e.g., XOR and base64 encoding).

CCS CONCEPTS
• Security and privacy→Malware and its mitigation.

KEYWORDS
malware detection, adversarial malware, machine learning

ACM Reference Format:
Fabrício Ceschin, Marcus Botacin, Gabriel Lüders, Heitor Murilo Gomes,
Luiz S. Oliveira, and André Grégio. 2020. No Need to Teach New Tricks to
Old Malware: Winning an Evasion Challenge with XOR-based Adversarial
Samples. In Reversing and Offensive-oriented Trends Symposium (ROOTS’20),
November 19–20, 2020, Vienna, Austria. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3433667.3433669

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ROOTS’20, November 19–20, 2020, Vienna, Austria
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8974-7/20/11. . . $15.00
https://doi.org/10.1145/3433667.3433669

1 INTRODUCTION
Malicious programs have been a major security concern during
the last four decades, with a plethora of proposed solutions over
time to counter their threat. More recently, Machine Learning (ML)
approaches have been widely applied to malware detection and
classification. Although ML has significant advantages over other
approaches, such as signature-based ones, it also has significant
limitations (e.g., ML models are vulnerable to adversarial attacks).

In the malware context, adversarial attacks consist of modifying
samples so as to disturb the classifier to the point of a malware
sample being classified as a legitimate, non-malicious software. The
field of adversarial attacks has been growing, both academically
and industrially, since those attacks are increasingly common in
practice.

Adversarial attacks aiming at ML models became so popular that
tech companies decided to launch a contest to better understand
their actual impact: The Machine Learning Security Evasion Com-
petition (MLSEC). In this contest, the organizers provide working
malware binaries to participants, in addition to classifiers able to
detect all malware samples given. The participants are then chal-
lenged to transform the binaries of the provided samples in a way
that those new malware bypasses the classifiers, while maintaining
their same previous/original behavior when executed in a sandbox.

In the first contest edition (2019), the teams were challenged to
bypass three ML models in a white box manner. Our team bypassed
all models and reported interesting insights about models’ weak-
nesses. In the second edition (2020), the challenge evolved to an
attack-and-defense model, with teams proposing defensive models,
as well as attacking the models produced by other teams in a black
box manner. Although the use of a black box approach certainly
increased the challenge difficulty, our team was still able to bypass
all models and, consequently, the first team to achieve maximum
scoring in the context.

In this paper, we describe the experience gathered in the 2020’s
MLSEC contest, and the insights gained on both attacking ML mod-
els and defending them from adversarial attacks. On the one hand,
our experience in the development of defensive models showed that
the function distribution in 32-bit and 64-bit Windows libraries,
and between their Debug and Release compilations are different,
which affects detection. On the other hand, our experience in at-
tacking models showed that embedding the malware payload into

https://doi.org/10.1145/3433667.3433669
https://doi.org/10.1145/3433667.3433669

ROOTS’20, November 19–20, 2020, Vienna, Austria Fabrício Ceschin, Marcus Botacin, Gabriel Lüders, Heitor M. Gomes, Luiz S. Oliveira, and André Grégio

another binary eliminates most detection capabilities presented by
the models.

In this year’s contest, we were challenged to bypass three models.
We discovered that: (i) the first model operates by looking into
Portable Executable (PE) header features, thus being evaded by
embedding malicious payloads in a dropper executable; (ii) the
second model classifies function imports and libraries using a TF-
IDF method, being evaded by the addition of fake imports to the
dropper; (iii) the last model also checks for strings in the embedded
content, being evaded by the encoding of the payload using XORing
or base64 techniques.

One of the main contributions of this paper is to show that
adversarial attacks are more practical in real life models than previ-
ously thought. Whereas there are approaches for adversarial attacks
generation based on complex techniques, some even leveraging
the same ML techniques used to defend against attacks (e.g., rein-
forcement learning [19]), we show that it is possible to generate
attacks using known, simple techniques, such as XORing strings
and encoding binaries in base64. Unlike automated attack genera-
tors, our approach is fully explainable and our insights can be used
as feedback for the development of more robust models.

We highlight the impact of these techniques in practice by demon-
strating that the detection rate of antiviruses (AV) from Virus Total
decreased when the evasive samples were submitted to scanning
(in comparison to the original malware), even though no specific
AV was targeted in the competition. Since adversarial attacks pose a
significant problem, we decided to make our attack and defense so-
lutions available to the community, so anyone can train with it and
design new security solutions. More specifically, we are releasing
the source code of a dropper, and a Web interface in which users
are able to generate adversarial malware using this dropper and
test the transformed samples against multiple classifiers, including
the those present in the previous challenge editions.

In summary, our contributions are as follows:

• We describe the experience in an ML-based malware detec-
tion evasion challenge.

• We describe our defensive ML model and discuss considera-
tions to be made when developing a detection model.

• We present the attack techniques we leveraged in the contest
to bypass all ML models.

• We discuss the impact of adversarial malware in practice via
the detection rate of the evasive samples when inspected by
real AVs.

• We release code and a platform for the development of ex-
periments with adversarial malware.

This paper is organized as follows: in Section 2, we present the
contest and our accomplished achievements there; in section 3, we
discuss the reasons why defending from adversarial attacks may be
hard; in Section 4, we discuss our findings and how they provide
insights and feedback for future security solutions; in Section 5f,
we present the related work; finally, we draw our conclusions in
Section 6.

2 THE CHALLENGE
We start this section presenting the contest rules, and the provided
samples andmodels. Then, we detail howwemanaged to implement
a defensive model. Finally, we show how we attack the models.

2.1 Definitions
In 2019, tech companies (Elastic, Endgame, MRG-Effitas, and VM-
Ray) launched a contest challenging participants to bypass ML-
based malware detectors with adversarial samples [2]. In this con-
test, the organizers provided participants with working malware
binaries and malware classifiers (white box model) that initially de-
tected all these malware samples. The participants were challenged
to provide new binaries for the same malware samples, and those
new malware should be able to bypass the classifiers, whereas still
presenting the same original behavior when executed in a sandbox.
Our team joined this challenge and we were able to generate ad-
versarial samples that bypassed all the three models. Our findings
were reported in a previous paper [14].

In 2020, other tech companies (Microsoft and CUJO AI’s Vulner-
ability Research Lab) joined the mission of exercising adversarial
attacks in practice. That second edition of the Machine Learning
Security Evasion Competition (MLSEC) [5] was an incremental
version of its previous edition. In this year’s competition, the orga-
nizers added one extra step: the generation of defensive solutions
to be further attacked by the participants.

In the “defender’s challenge”, the participants were free to de-
velop their own machine learning defensive solutions, with models
of their own choice and trained using any dataset. The entire defen-
sive solution should be saved by the participants in a docker image,
which was then tested using an unknown dataset with three require-
ments: (i) the model should accomplish less than 1% of False Positive
Rate (FPR), (ii) less than 10% of False Negative Rate (FNR), and (iii) it
must return a response within 5 seconds for any presented sample.
In total, three models met the proposed requirements: ember (pro-
vided by the organizers), needforspeed (our model), and domumpqb
(provided by another team that published their solution after the
final results [31]). We do not know how many teams participated
in this step of the challenge, apart from the fact that only those
aforementioned models have met the requirements. Furthermore,
the results of this part of the challenge would depend on how the
attackers perform against each model, i.e., the one that performs
better against adversarial attacks wins.

In the “attacker’s challenge”, all models that achieved the pre-
vious requirements were made available to be attacked by further
black box attacks. Thus, the attackers would have access only to
the output produced by those models, without directly accessing
them [22]. Black box attacks were conducted with 50 unique Win-
dows malware samples provided by the contest organizers, which
should be modified in order to bypass their detection in the defense
solutions. Each new sample produced by the participants should
have its behavior identical to the original malware sample from
which it was based on. Behavioral validation is accomplished based
on running the modified sample in a sandbox made available in the
Web site of the contest, which should result in the same Indicators of
Compromise (IoCs) of the original ones. Thus, each bypassed classi-
fier for each binary accounts for 1 point, summing up to 150 points.

No Need to Teach New Tricks to Old Malware: Winning an Evasion Challenge with XOR-based Adversarial Samples ROOTS’20, November 19–20, 2020, Vienna, Austria

Moreover, as a tiebreaker rule in case of similar bypass scores, the
competition also stores the number of ML queries (number of times
that samples are tested) used by each participant. Therefore, the
team that achieves the lowest number of queries wins.

We submitted the 50 samples provided by the organizers to
the Virus Total API and then used AVClass [36] to normalize the
resulting labels. In Figure 1a, we show the number of samples
distributed in malware families, with two families with higher
prevalence (gamarue and remcos) and 30 families in total. Notice
that all malware available for this challenge consist of real samples
and have already been seen in the wild, such as the family that steal
crypto-currency from its victims [8]. The gamarue family can give
a malicious hacker control of the PC, stealing sensitive information
and changing security settings [27]. In addition, the remcos family
embed a XML code that allows for any binary with parameters to be
executed, in this case a REMCOS RAT, which gives the attackers full
control over the infected PC, allowing them to run keyloggers and
surveillance tools [26]. Thus, despite of being just a competition,
all the malicious samples presented in this work may present real
risks.

2.2 Defenders challenge
To develop our defense solution, we selected a model developed by
our research team that achieved good metrics using textual features
(TF-IDF) on top of static analysis and Random Forest classifier [15]
as baseline. We considered this challenge as an opportunity to test
our research model against adversarial attacks in practice.

Initially, we considered using our baselinemodel as it is originally
presented in our paper [15], with malware samples collected in
the Brazilian cyberspace as the training set. Our choice is usually
enough to reach good result metrics (almost 98% of f1-score with a
low false-negative rate). When we tested our baseline model against
the samples provided by the organization in the 2019 edition of the
competition, the results were surprisingly bad and totally different
from what we expected them to be. We hypothesized that those
results might be biased due to the distinct characteristics of the
samples considered by the organizers in contrast to ours. More
specifically, since the threat landscape in Brazil is very different
from the rest of the world [11], we hypothesized that the classifiers
we used in Brazilian cyberspace were not the most suitable ones for
classifying the likely-global samples provided by the organization.

To validate this hypothesis, we decided to retrain the classifier
using the ember dataset as input, similar to the organizers’ ap-
proach to train their LightGBM model [3]. When we compared
the results of training our model by testing it with the Brazilian
and the Ember samples, we noticed that the latter indeed general-
ize better. In Figure 2, we show the False-Negative Rate (FNR) of
the two versions of our model (trained with Brazilian and Ember
samples, respectively) after evaluation against a subset of these
same datasets. We noticed that each classifier works marginally
well in their own region, in a way that they could detect malware
without too many false-positives, i.e., the model trained with global
samples presents high detection rate, but performs extremely bad
with Brazilian samples, and vice-versa.

Consequently, if these classifiers were applied in actual scenarios
as a generalization of global threats, they would let many threats

originated from other regions than the ones they were trained to
be executed without raising warnings. Thus, we conclude that ML
models must be specially crafted for each region in which they are
going to operate, given that they may detect more samples and
be more effective. For the remainder of this paper, we refer to our
model as the one trained with EMBER, since that was the more
suitable dataset for the task at hand. It is worth to mention that
the competition organizers also made all the adversarial samples
from last year challenge available, but we decided to not use them
in the training step, so we could use them to verify our model’s
robustness in the testing step.

To create our definitive model for the competition, we selected
the attributes from the EMBER datasets [3] (both 2017 and 2018
version) we believed to be less prone to be affected by adversaries,
according to our previous experience. We categorized the attributes
in three types: numerical, which are integer or float numbers; cate-
gorical, which represents categories; and textual, which are a set
of strings. To train our model, we used the EMBER’s 1.6 million
labeled samples as input to the scikit-learn Random Forest [34]
with 100 estimators. Below, we list the attributes we selected for
our model. The detailed description of all of them is available in
the EMBER’s dataset paper and source code [3].

(1) Numerical
• string_paths
• string_urls
• string_registry
• string_MZ
• virtual_size
• has_debug
• imports
• exports
• has_relocations
• has_resources
• has_signature
• has_tls
• symbols
• timestamp
• numberof_sections
• major_image_version
• minor_image_version
• major_linker_version
• minor_linker_version
• major_operating_system_version
• minor_operating_system_version
• major_subsystem_version
• minor_subsystem_version
• sizeof_code
• sizeof_headers
• sizeof_heap_commit

(2) Categorical
• machine
• magic

(3) Textual
• libraries
• functions
• exports_list

ROOTS’20, November 19–20, 2020, Vienna, Austria Fabrício Ceschin, Marcus Botacin, Gabriel Lüders, Heitor M. Gomes, Luiz S. Oliveira, and André Grégio

ag
en

sla
av

em
ar

ia
bo

bi
k

bu
er

ak
cr

ys
is

de
lf

de
ym

a
fa

re
it

ga
m

ar
ue

he
ye

hi
gh

lim
er

at
m

as
slo

gg
er

m
az

e
na

no
bo

t
na

no
co

re
ne

tto
ol

ne
tw

ire
dr

c
no

on
qb

ot
ra

ce
al

er
ra

ck
ra

zy
re

m
co

s
sa

lit
y

so
di

no
ki

bi
sw

isy
n

tri
ck

bo
t

tri
ck

st
er

zb
ot

Family

0
2
4
6
8

10
12
14
16
18
20

Nu
m

be
r o

f S
am

pl
es

Original Malware Family Distribution

(a) Original malware family distribution. In total, 30 different fami-
lies were present in the samples provided this year, 9more than last
year (21 families).

bo
bi

k
bu

er
ak

cr
ys

is
de

ym
a

do
th

et
uk

ga
m

ar
ue

he
ye

lim
er

at
na

no
bo

t
ne

tto
ol

no
ne

qb
ot

ra
ce

al
er

ra
zy

re
m

co
s

so
di

no
ki

bi
tri

ck
st

er
xe

gu
m

um
un

e
zb

ot
zlo

b

Family

0
2
4
6
8

10
12
14
16
18
20

Nu
m

be
r o

f S
am

pl
es

Adversarial Malware Family Distribution

(b) Adversarial malware family distribution. From the 30 original
families, our samples were re-classified into only 19 ones, and 3 of
them could not be classified at all.

Figure 1: Malware families distribution. Differences between original malware samples and adversarial ones are notable.

Brazilian Malware and
Pristine Windows Apps

MLSEC 2019 Malware and
Pristine Windows Apps

Test Dataset

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

Fa
lse

 N
eg

at
iv

e
Ra

te
 (%

)

Regional Datasets Comparison
Our Baseline Model Ember

Figure 2: Regional datasets and models. Each model per-
forms better in their own region, indicating that detectors
must be specially crafted for a given region.

• dll_characteristics_list
• characteristics_list

The categorical attributes machine and magic were obtained
from the PE header and transformed into one-hot encoding ar-
ray [33] where each binary column represent a value (1 for present,
0 otherwise). The textual features, such as libraries and functions
used by a software, were also obtained from the PE header and
transformed into texts, separated by spaces. These texts were used
as input to TF-IDF [35], transforming every text into a sparse ar-
ray containing the TF-IDF values for the 300 top words in all the
texts created (the ones with most frequency). The numerical fea-
tures were all extracted from the PE header, except string_path,
string_urls, string_registry, and string_MZ, which extracts
the number of strings that contains a system paths, URLs, reg-
istries, and MZ headers, respectively. Finally, after we transformed

all attributes into numerical features, we normalized them using
MinMaxScaler [32] to use as input of our model. Given that EMBER
dataset is available in CSV format (with all the attributes already
extracted), we also created a module that extracts the very same
attributes from raw PE binaries. This module is used to test attack-
ers’ samples, and it also could be used by any real-world testing
solution.
“The sad state of PE parsing” (Part 1): The lack of a standard and
complete library for PE parsing and manipulation is a long-term
complaint [24] and this affected the development of both the de-
fensive and the attacking solutions. In the first case, here reported,
our original solution was deployed on top of PEfile [13], but it
did not achieve the required performance by the challenge, result-
ing in classification timeout (some samples were taking more than
5 seconds to be parsed). We then ported our implementation to
lief [30], since this was the tool used for binary parsing in the con-
test demonstration script. Lief is in fact much faster than PEfile
(the same aforementioned samples were taking about 2 seconds
when using lief as parser), but its parsing results are a bit different.
Due to this fact, we had to slightly change our model to consider
some features as categorical instead of numerical, since fields such
as machine and magic, which are parsed as integer numbers by
PEfile, are represented by strings (flags) in lief (it ended up not
affecting the results of our classifier but it could).

To fine tune our model, we created a new prediction function
that uses the model class probabilities as input. To do so, we defined
a threshold𝑇 and used it to define the output class: if the probability
of being a “goodware” is greater than 𝑇 , the current sample will
be classified as a goodware. Otherwise, it will be classified as a
malware. It was required to make our classifier perform as required
by the competition, achieving less than 0.1% of FPR with a threshold
𝑇 = 80%. This technique has proven to be much better than using
the default Random Forest prediction function, which achieved a
FPR of 8.5%.

No Need to Teach New Tricks to Old Malware: Winning an Evasion Challenge with XOR-based Adversarial Samples ROOTS’20, November 19–20, 2020, Vienna, Austria

Our model vs. last year adversaries: The initial test of our model
consisted of submitting the adversarial samples provided by the
organizers from last year’s challenge to it, and then analyzing the
resulting detection rate. In total, there a were 594 samples, all of
them variations of the 50 original samples from last year’s challenge.
Our model was able to detect 88.91% of the samples. Considering
that all 2019 models were bypassed by those samples, we have
agreed that this was a significant good result. It also confirmed
our findings from the previous challenge, i.e., that models based
on parsing PE files are better than the ones that make use of raw
data [14].

2.3 Attackers challenge
We started our attacks by trying to replicate the strategy leveraged
in the previous year (2019) with this year’s (2020) classifiers and
samples. Thus, we first appended goodware strings and random
bytes to the original samples. This strategy resulted in 44 points,
with 36 samples bypassing ember, 8 bypassing needforspeed, and
none of them bypassing domumpqb. These results show that this
year’s models were really stronger than the previous ones.

Then, we moved to the next strategy that was successful last
year: embedding the original sample in a “Dropper”, a new binary
that embeds the original malware sample as a resource, writes it
to a file in runtime, and launches it from there. In most cases, the
samples were executed directly, as they were typical PE files. In
one of the cases, the original malware sample was a DLL. Thus,
we modified our Dropper from last year to inject this DLL into a
host process. As this DLL did not export any function, we launched
its main function, invoking it from its ordinal number (rundll32
dll_name,#1). This approach succeeded on fully bypassing the first
model (ember), which was based on PE headers. However, while
this step was the final one in the last year’s challenge, now we just
accomplished the first third of the challenge.

Despite bypassing the first detector, the droppermalwarewas not
able to fully bypass the other detectors. We then focused our atten-
tion in bypassing our own model, since we could leverage previous
knowledge on the attack. As our model is based on the library im-
ports and their respective functions, we guessed that our model was
detecting the dropper as malicious. This might be happening, for
instance, due to the presence of a function such as FindResource,
which is largely used by malware droppers (and also by a few be-
nign applications). Our first thought was to hide the FindResource
API calls from the classifier. To do so, we tried to compress our
samples with Telock [45], PELock [29], and Themida [44] packers.
Interestingly, reducing the number of imports only increased the
confidence on the malware label, which reinforces our last year’s
claim that most classifiers learn packers as malicious feature re-
gardless of the binary content. This phenomenon was also reported
to happen for real AVs [1].

The remaining alternative to bypass this model was to search
for some benign sample likely used to test the model that present
the same imports. Interestingly, the Calculator (calc.exe) presents
these characteristics, importing a series of functions, including
FindResource, and was report as benign with 100% of confidence
level by our classifier. Thus, our goal turned into building a new
dropper binary mimicking the calculator.

1 import lief
2 # Parse
3 gw = lief.parse(GOODWARE)
4 mw = lief.parse(MALWARE)
5 # Get Sections
6 gw_sections = [s for s in gw.sections]
7 mw_sections = [s for s in mw.sections]
8 # Add Missing Sections
9 sec_diff = len(gw_sections) - len(mw_sections)
10 for i in range(1,sec_diff):
11 mw.add_section(gw_sections[i])
12 for lib in gw.imports:
13 lib_name = lib.name
14 # Add Missing Libs
15 if lib_name not in mw.libraries:
16 mw.add_library(lib_name)
17 # Add Missing Functions for the Lib
18 for func in lib.entries:
19 func_name = func.name
20 if func_name != '':
21 if func_name not in [f.name for f in mw.

imported_functions]:
22 mw.add_import_function(lib_name ,func.name)
23 # Build New Binary
24 builder = lief.PE.Builder(mw)
25 builder.build_imports(True)
26 builder.patch_imports(True)
27 builder.build()
28 builder.write(NEW_MALWARE)

Code 1: Lief script example. Automatic Section and Function
Inclusion.

1 void dead()
2 {
3 ShellMessageBox(NULL ,NULL ,NULL ,NULL ,NULL);
4 RegEnumKeyExW(NULL ,NULL ,NULL ,NULL ,NULL ,NULL ,NULL);
5 BSTR_UserFree(NULL ,NULL);
6 CoInitialize(NULL);
7 IsThemeActive ();
8 ...
9 }

Code 2: Dead code insertion. These functions play no role in
the Dropper execution.

“The sad state of PE parsing” (Part 2): The lack of a standard library
for PE manipulation also affected the development of the adversar-
ial samples. PEfile has no native support for section inclusions
and whereas it can be extended for this task [16], the whole pro-
cess is manual and laborious. In turn, the lief solution has native
methods for adding sections and even function imports. We imple-
mented a code on top of it to perform this task, as shown in Code 1.
Unfortunately, lief has some known issues [41] regarding these
functions and it ended up breaking all malware binaries (although
it worked with the simplest test cases we developed).

Since the existing solutions did not allow us to patch the compiled
binaries, we opted to compile the Dropper with the extra function.
However, as these functions do not play any role regarding the
Dropper’s operation, we added them as dead code into a never
called function, as shown in Code 2. We compiled the code without
optimization, since these functions are not eliminated. Therefore,
their imports were available to the ML models, but they did not
affect the Dropper execution. This strategy resulted in the complete
bypass of our model.

It is important to notice that the correct working of this approach
depends on the complete mimicry of all libraries and functions,
which includes compiling the code for the same architecture and

ROOTS’20, November 19–20, 2020, Vienna, Austria Fabrício Ceschin, Marcus Botacin, Gabriel Lüders, Heitor M. Gomes, Luiz S. Oliveira, and André Grégio

CO
M

CT
L3

2.
dl

l

W
IN

M
M

.d
ll

GD
I3

2.
dl

l

AD
VA

PI
32

.d
ll

KE
RN

EL
32

.d
ll

Ux
Th

em
e.

dl
l

OL
EA

UT
32

.d
ll

SH
EL

L3
2.

dl
l

RP
CR

T4
.d

ll

ol
e3

2.
dl

l

SH
LW

AP
I.d

ll

US
ER

32
.d

ll

M
SV

CR
11

0.
dl

l

M
SV

CR
11

0D
.d

ll

DLL

0
5

10
15
20
25
30
35
40
45
50
55
60

Co
un

t

Dropper: 32 VS 64 Bits
32 Bits 64 Bits (Release) 64 Bits (Debug)

Figure 3: Number of functions in each library. Compiling
libraries for 32-bit and 64-bit systems and in the Debug or
in the Release mode affect their distribution.

linking it with the same libraries as the goodware binary. Otherwise,
the sample could still be detected due to the combination of the
extracted functions and libraries.

In Figure 3, we show the impact of multiple compilation settings
on the import of the same functions. We observed that changing
the compilation from 32 to 64 bits results in the addition of three
additional imports to the MSVCR110.dll. Even worse, compiling
the code in the Debug mode results in the linkage of a distinct
library MSVCR110D.dll—the debug version—with a distinct number
of function imports. Since we considered the Calculator binary as
goodware, and it was compiled with Release configurations and
for the 64-bit architecture, all dropper binaries were configured the
same way. The evasion was only possible using this setting.
Black box is harder, but not impossible. So far, we have bypassed two
of the three models. Although we performed the black box tests, we
have some degree of previous knowledge about the models because
they were either deployed in the last year’s contest, or developed
by us. To bypass the last model, we had to deploy a full black box
attack.

At this point, a few samples had already bypassed the third model
(21 samples). Since all droppers were similar by construction, we
hypothesized that the third model was detecting some part of the
embedded payload, as it was the only part allowed to change from
one compilation to another. Therefore, we should hide the embed-
ded payload to bypass this detector. We tested two approaches for
this task: (i) encoding the malware binary as a base64 string; and
(ii) XORing the malware binary with a key. In the former case, the
resource must be decoded before being written in disk, whereas
in the latter, the same XOR key can be used to decode the buffer
before it is dumped to the file system.

These strategies are enough to bypass most of the verification
performed by the model, as it hides the original strings and magic
numbers. For instance, the MZ flag of the embedded payload is not
present anymore in the resource section, thus not being identi-
fied by mechanisms that look for embedded files (as is the case of
our own model). In addition, XORing strings often result in non-
printable characters that are not handled by the strings utility. By

Table 1: Average number of queries. We bypassed all models
with an average rate lower than 5 queries per sample.

Team Bypasses Queries Average
Ours 150 741 4.94
2nd 47 162 3.44
3rd 44 150 3,40
4th 1 78 78

combining these strategies, we were able to fully bypass the third
model. Thus, despite requiring additional reasoning and implemen-
tation efforts, the black box bypass of ML detectors is completely
viable.

It is worth to emphasize the robustness of this approach, despite
its relative simplicity. We first hypothesized that the dropping ap-
proach could be detected by a model that considers section entropy
values as a feature (e.g., histogram of section’s entropy), because
packing, compression, and embedding often result in entropy in-
crease [47]. In practice, this effect was not observed. In Figure 4, we
show the section maximum entropy values for the original samples
and for the multiple dropper variations. We observe that most of the
dropper’s section maximum entropy values are equal to the ones
of the original samples (in most cases, these values were already
high). In some cases, noticeably when using base64, the values are
even lower than the original samples. Therefore, the embedding of
content in the droppers would not be detectable in an indistinguish-
able manner when compared to the high entropy of the original
binaries.

In Table 1, we show the total and average number of queries
performed until breaking all the models. On average, it took us less
than 5 queries per sample to bypass the three models. We consider
this number very low, even when considering that we had previous
knowledge about some models, which can also be expected from a
skilled, motivated attacker performing targeted attacks against real
systems. Worse than that, if these results hold true for an actual
security solution, it is plausible to hypothesize that five attempts is
even below the threshold of a typical Intrusion Detection System
(IDS), thus an intrusion could occur unnoticeable.

To better demonstrate the impact of adversarial attacks over
real systems, we submitted samples to the Virus Total service [46]
and compared the detection rate of the original and the evasive
samples. Figure 5 shows that the AVs were also affected by the
samples’ modifications, even though the challenge originally did
not target any AV. This happens because (i) hiding the payload
from the ML models also hides them from the AV scanners; and (ii)
the ML models used by the AVs are also affected by the changes
in the binaries features introduced by the malware dropper. This
latter phenomenon can be clearly observed in practice if we focus
on the detection labels provided by the AVs that claim to use ML [6,
9, 17, 18, 28], as shown in . Table 2 for the samples that less (22)
and most (27) affected AV detection. We highlight that even the
samples which less affected AVs bypassed at least one ML-based
malware detection solution.

The impact of hiding the payload from the AV can also be ob-
served in the assigned labels, as shown in Figure 1b. We noticed that

No Need to Teach New Tricks to Old Malware: Winning an Evasion Challenge with XOR-based Adversarial Samples ROOTS’20, November 19–20, 2020, Vienna, Austria

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Sample

0

2

4

6

8

En
tro

py

Samples Entropy

Original Droppers Dropppers Base Droppers XOR

Figure 4: Sample’s maximum section entropy. Embedding the original malware samples into binary droppers did not generate
sections with greater entropy values.

Table 2: ML and AntiVirus. AVs that claim to use ML are also affected by our adversarial malware samples.

AntiVirusSample Version CrowdStrike [17] Cylance [9] Cynet [18] Elastic [6] Paloalto [28]

Original True (100%) True True (100%) True (high confidence) True22 Adversarial True (60%) True False False False

Original True (100%) True True (100%) True (high confidence) True27 Adversarial False False False True False

1 5 10 15 20 25 30 35 40 45 50
Sample

0

10

20

30

40

50

60

70

80

90

100

De
te

ct
io

n
Ra

te
 (%

)

Antiviruses Detection Rate

Original Adversarial

Figure 5: Detection rate of AVs. Real AVs were also affected
by our deployed evasion techniques.

the labels assigned to the adversarial samples were significantly dif-
ferent from those assigned to the original samples, which suggests
that they were detected using distinct rules, heuristics, patterns etc.
In our case, the majority of the samples (20) were turned into razy
family, which consists in malware that attack browser extensions to
steal crypto-currency [8]. We believe that this phenomenon might
be related to the fact that many razy samples are distributed in the
form of a dropper.

A side-effect of embedding the payloads into a dropper is that
the dropper binaries become similar, as they share the same head-
ers, instructions, libraries, and so on. In Figure 6, we present the
samples similarity according to ssdeep [40]’s scores. It shows that
embedding the original malware samples into dropper binaries in-
creased the number of samples reported as similar, even though
reducing the relative frequency of very similar sample’s scores. The

first effect occurs because the dropper’s similarities are identified by
the similarity matching solution. In turn, the second effect occurs
because the similar bytes between two binaries are “diluted” among
the dropper’s bytes, thus reducing the similarity score.

45 50 55 60 65 70 75 80 85 90 95 100
Similarity (%)

0
5

10
15
20
25
30
35
40
45
50
55
60

Pr
ev

al
en

ce
 o

f S
am

pl
es

 (%
)

Prevalence of Similar Samples (ssdeep)
Original Adversarial

Figure 6: Sample’s similarity. Encoding the payload reduces
the sample’s similarity score.

We believe that the first phenomenon might provide an inter-
esting mechanism for the detection of the adversarial malware. If
similarity scores were considered by a security solution in addition
to the ML model’s verdicts, the solution could be able to use it
to correlate a detected dropper with an evasive sample. From the
attacker’s perspective, it would be now required to bypass all ML
models all the time, instead of risking that a single similar, detected
dropper raises a detection warning.

ROOTS’20, November 19–20, 2020, Vienna, Austria Fabrício Ceschin, Marcus Botacin, Gabriel Lüders, Heitor M. Gomes, Luiz S. Oliveira, and André Grégio

Table 3: Original vs updated model. Training with adversar-
ial malware does not help to improve classification perfor-
mance.

Train
Dataset

Test
Dataset

False Negative
Rate (FNR)

False Positive
Rate (FPR)

EMBER
only MLSEC 2020

Original Samples
and Pristine

Windows Apps

0% 0.1%

EMBER and
MLSEC 2019
Adversaries

0% 78.54%

EMBER
only Our MLSEC

2020 Adversaries
and Pristine

Windows Apps

100% 0.1%

EMBER and
MLSEC 2019
Adversaries

0% 78.54%

3 WHY DEFENDING IS HARDER?
A frequent question related to the bypass of ML models is why clas-
sifiers did not detect the adversarial samples. In the hereby reported
case, the adversarial samples we produced in the attackers challenge
were not detected by any model because we made them look like
a goodware application (the Calculator), as shown in the previous
section. In face of this scenario, it is common to hear proposals for
training the models with adversarial samples so as to harden them
against evasion. If this were effective, it would increase the security
coverage of most security solutions. For instance, AVs would be
allowed to update their models to detect adversarial samples as
soon as some previously undetected samples were uncovered.

To test this hypothesis, we compared our original model—the
one submitted to the competition—with a new one, trained with
the same EMBER datasets, but including the 594 MLSEC 2019 ad-
versarial samples provided by the organizers. Then, we tested these
models with two datasets: one containing the adversaries we devel-
oped, and another containing the original samples. Both of them
included the same pristine Windows applications as the “goodware”
set.

In Table 3, we present the results for the multiple training and
test sets combinations. On the one hand, when we trained our
model using only EMBER datasets, it detected all the competition
original malware samples (𝐹𝑁𝑅 = 0%) and correctly labelled almost
all the goodware samples (𝐹𝑃𝑅 = 0.1%). However, the model was
unable to detect our developed adversarial malware (𝐹𝑁𝑅 = 100%).
On the other hand, when we trained our model with last year’s’
adversarial samples in addition to the EMBER datasets, it was able
to detect all malware samples from both original and adversarial
datasets (𝐹𝑁𝑅 = 0$). However, the accomplished results incurred
in a very high rate of false-positives (𝐹𝑃𝑅 = 78.54%), i.e., our model
started to recognize the majority of goodware as a malware.

The presented results indicate that the adversarial malware sam-
ples created by our attack are very difficult to distinguish apart
from goodware, even if we use an updated ML model. This happens
because they present the same features of goodware applications.
Therefore, our updated model started to consider plenty of good-
ware samples as malware.

In practice, the problem of detecting adversarial samples might
be even more complicated. AV companies will not have all adversar-
ial samples at once, but will collect them over time as soon as they
are uncovered. Hence, the problem of adversarial attacks mixes
with the concept drift problem [15], when samples context shifts
from time 𝑇 to time 𝑇 + 1. In our particular scenario, the malware
samples evolve to prevent being detected. Whereas there are exist-
ing approaches to detect concept drift, these might face difficulties
to handle adversarial samples, On the one hand, approaches that
consider all the models at once [48] might be vulnerable to poi-
soning [42], which fall backs to the aforementioned scenario. On
the other hand, approaches that perform partial retraining (e.g.,
ADWIN [7], DDM [20], and EDDM [4]) could increase the FP rate,
since they discard goodware concepts to reduce the classifier’s con-
fusion between the classes. Therefore, there is a long path towards
the development of effective and real-world solutions to handle
adversarial malware attacks.

4 DISCUSSION
In this section, we revisit our findings after beating the MLSEC
2020, and discuss their implications for ML-based anti-malware.

IncreasingMLRobustness.Our results suggest that ML-based
malware detectors must be more robust against adversarial attacks
to be practical, effective defenses. This type of detector should
consider the great variety of malware samples, which may be dis-
tributed by attackers with simple modifications on them and, at the
same time, exhibit the intended behavior/malicious actions. Despite
being more resistant to attackers than previous year’s models, all
the models submitted in this year’s competition were easily evaded.
This indicates that the selected features are not robust enough to en-
sure a good detection model. The problem persisted even when we
trained a new classifier with similar adversarial samples. Therefore,
the investigation of new, more robust ways to represent malware
is still a long path to be followed in future research work.

Explainable Attacks & Defenses. Although there are many
existing automated approaches for adversarial attacks, we hereby
presented attacks to ML models based on the attacker’s knowledge
about the models and binary implementations. This approach is
more laborious, but it has the significant advantage of providing
feedback information for the development of the next generation
of security solutions. In an analogy, deep learning models are often
criticized for not being explainable, despite being effective. We here
extend the criticism to automated attacks, which are not explainable,
despite their effectiveness. We believe that knowing when an ML
model fails is extremely important to understand how to correct it.

Adversarial Attacks for the Masses. Our results show that
adversarial attacks really happen, and they are effective. Thus, we
claim that these attacks must be taken into account in threat mod-
els, training, and experiments. To encourage this practice, we are
publicly releasing the code of our dropper to the community, so
anyone may be able to practice with it (and improve it), as well
as to consider adversarial attacks in their own research. Moreover,
we are also making available a Web-based, automated solution to
generate adversarial samples based on files uploaded by the user.
Each submitted file is checked against multiple ML classifiers, in-
cluding the ones from 2019’s challenge and our classifier for the

No Need to Teach New Tricks to Old Malware: Winning an Evasion Challenge with XOR-based Adversarial Samples ROOTS’20, November 19–20, 2020, Vienna, Austria

2020’s challenge. With that, we hope to allow users in checking the
robustness of multiple models and the viability of attacking them.

Feedback for Future Work & Arms-Race. We believe that
our findings might provide valuable feedback for the development
of the next-generation security solutions. We discuss some insights
that might lead to ML models improvement, and how they can
be potentially attacked. Our findings show that embedding pay-
loads into a binary is a simple yet effective way to defeat classifiers.
Hence, the next-generation ML classifiers cannot be limited to look
only into the first binary layer (the Dropper), but they will need to
extract embedded payloads (e.g., via file carving) to classify them.
When this strategy become mainstream, attackers will probably
streamline the encoding of the payloads (e.g., using XOR, as we
demonstrated). To handle this case, feature extractors should also
try to guess the XOR key [39]. In the challenge, these steps were not
performed due to the artificial timing constraints imposed to simu-
late the actual performance constraints of real systems. Therefore,
performance-efficient tools for tasks such as key guessing need to
be developed so as to make those approaches become practical. Al-
ternatively, a possibility that might tackle the issue of ML detection
using static features would be to change the samples representa-
tion, aiming at covering less mutable features. In the Dropper case,
a representation based on the instruction disassembly would be
more suitable than one based on the PE characteristics, since all
Droppers perform the same actions before dumping the payload
to the file system. However, in a future in which this detection
approach becomes more popular, attackers will likely inject tons
of dead code constructions into the binaries (as we did for func-
tion imports) to defeat the classifier. Therefore, we can expect the
reemergence of the arms-race started in the signature-based mal-
ware detection realm and its extension to the ML-based malware
detection scenario.

5 RELATEDWORK
In this section, we present related work that propose defense or
attack solutions for malware detection using machine learning in
the literature.

There are many works in literature that propose defense so-
lutions using machine learning. The majority of them consider
using dynamic analysis, but they are not recommended for sce-
narios where a decision must be fast, given that a sandbox envi-
ronment is required in order to extract dynamic attributes [49].
Thus, static analysis is performed in these cases, looking at the
content of the samples without requiring their execution by ex-
tracting byte Sequences, opcodes, API and system calls, strings,
disassembly code, control-flow and data-flow graphs, or PE file
characteristics [3, 15, 21, 49]. Some solutions also consider strate-
gies to defend (or to be more robust) against adversarial attacks,
such as Label-based Semi-supervised Defense (LSD), Clustering-
based Semi-supervised Defense (CSD) [43], the use of control-flow
graphs loop instructions as features [25], or generative adversarial
networks (GANs) as classification model [23].

In response to many of these defense solutions, attackers may
try to evade them thought a great variation of attacks. Some of
them consider the machine learning model being used, such as

the perturbations used to attack neural networks and deep learn-
ing models [12], Silhouette Clustering-based Label Flipping Attack
(SCLFA) [42], or the samples generated by Generative Adversarial
Networks (GANs), which may be used to attack other models [23].
Other strategies consists in generating new variants of malware by
using different packers [1], creating binary mutations by applying
transformations such as code replacement, instruction swapping,
variable changes, dead code insertion and control flow obfusca-
tion [10, 37], or by creating automated binary exploitation that
automatically discover flaws and exploits [38].

In contrast to these related work, this research presents a prac-
tical experience from the 2020 edition of the Machine Learning
Security Evasion Competition (MLSEC) regarding on attacking ML
models and its effects on them and AVs, producing useful insights
for future community’s research work.

6 CONCLUSION
In this paper, we reported our experience on a malware detection
evasion contest (MLSEC 2020) and presented our insights on how to
attack and defend machine learning models focused on classifying
programs into malicious or not. We were challenged to bypass the
detection of 50 samples, all of them submitted to three distinct ML
models in a black box manner. We were able to bypass all models
and were the first team to reach 150 points (perfect score) in the
contest. During the period of the contest, we discovered that: (i)
the first model operate by looking to PE header characteristics,
thus being evaded by embedding malicious payloads in a dropper
executable; (ii) the second model classified function imports and
libraries via a TF-IDF method, being evaded by the addition of fake
imports to the dropper; (iii) the last model also checks for strings in
the embedded content, being evaded by the encoding of the payload
using XORing or base64 techniques. We highlighted the impact of
these techniques in practice by demonstrating that the detection
rate of the Virus Total AVs decreased when the evasive samples
were considered in comparison to the original ones, even though
no specific AV was targeted in the competition. By describing the
steps we took during the competition, we present how attackers
and defenders reason about the problem and the challenges they
face. We expect that this work might help those being introduced
to the field of adversarial attacks.

Reproducibility. The source code of the developed dropper was
released as open-source and it is available on github: https://github.
com/marcusbotacin/Dropper. The source code of the tool used to ap-
pend goodware data to our adversaries is open-source and available
on github: https://github.com/ludersGabriel/BreakingGood. The
source code of our detectionmodel is also open-source and available
on github: https://github.com/fabriciojoc/mlsec2020-needforspeed.
A Web-based version of our obfuscation mechanism is available on
the corvus platform: https://corvus.inf.ufpr.br.

Acknowledgments. Fabrício would like to thank the Coordina-
tion for the Improvement of Higher Education Personnel (CAPES,
PhD Scholarship, process 88882.382195/2019-01). Marcus would
like to thank the the Brazilian National Counsel of Technologi-
cal and Scientific Development (CNPq, PhD Scholarship, process

https://github.com/marcusbotacin/Dropper
https://github.com/marcusbotacin/Dropper
https://github.com/ludersGabriel/BreakingGood
https://github.com/fabriciojoc/mlsec2020-needforspeed
https://corvus.inf.ufpr.br

ROOTS’20, November 19–20, 2020, Vienna, Austria Fabrício Ceschin, Marcus Botacin, Gabriel Lüders, Heitor M. Gomes, Luiz S. Oliveira, and André Grégio

164745/2017-3). We also want to thank the 2020 Machine Learn-
ing Security Evasion Competition (MLSEC) organizers (especially
Hyrum Anderson and Zoltan Balazs) and their sponsors (Microsoft,
CUJO AI’s Vulnerability Research Lab, MRG Effitas, and VMRay)
for the opportunity to participate and to keep developing new com-
petitions that benefit the whole community.

REFERENCES
[1] Hojjat Aghakhani, Fabio Gritti, Francesco Mecca, Martina Lindorfer, Stefano

Ortolani, Davide Balzarotti, Giovanni Vigna, and Christopher Kruegel. 2020.
When Malware is Packin’Heat; Limits of Machine Learning Classifiers Based on
Static Analysis Features. In NDSS Proceedings (NDSS). NDSS, US, 1.

[2] Hyrum Anderson. 2019. Machine Learning Static Evasion Competition. https:
//www.elastic.co/pt/blog/machine-learning-static-evasion-competition/.

[3] Hyrum S. Anderson and Phil Roth. 2018. EMBER: An Open Dataset for Training
Static PE Malware Machine Learning Models. CoRR abs/1804.04637 (2018), 1.
arXiv:1804.04637 http://arxiv.org/abs/1804.04637

[4] Manuel Baena-Garćıa, José del Campo-Ávila, Raúl Fidalgo, Albert Bifet, Ricard
Gavaldà, and Rafael Morales-Bueno. 2006. Early Drift Detection Method.

[5] Zoltan Balazs. 2020. CUJO AI Partners with Microsoft for the Machine Learning
Security Evasion Competition 2020. https://cujo.com/machine-learning-security-
evasion-competition-2020/.

[6] Shay Banon. 2020. Introducing Elastic Endpoint Security. https://www.elastic.
co/blog/introducing-elastic-endpoint-security.

[7] Albert Bifet and Ricard Gavaldà. 2007. Learning from Time-Changing Data with
Adaptive Windowing, In SIAM Int. Conf. on Data Mining. SIAM Int. Conf. on
Data Mining.

[8] David Bisson. 2019. Razy Trojan Installs Malicious Browser Extensions to
Steal Cryptocurrency. https://securityintelligence.com/news/razy-trojan-installs-
malicious-browser-extensions-to-steal-cryptocurrency/.

[9] BlackBerry - Cylance. 2020. Hard on viruses, light on your computer. https:
//shop.cylance.com/us/.

[10] Jean-Marie Borello and Ludovic Mé. 2008. Code obfuscation techniques for
metamorphic viruses. https://doi.org/10.1007/s11416-008-0084-2. JICVHT. (2008).

[11] Marcus Botacin, Anatoli Kalysch, and André Grégio. 2019. The Internet Banking
[in]Security Spiral: Past, Present, and Future of Online Banking Protection Mech-
anisms Based on a Brazilian Case Study. In Proceedings of the 14th International
Conference on Availability, Reliability and Security (2019-01-01) (ARES ’19). ACM,
Canterbury, CA, United Kingdom, 49:1–49:10. https://doi.org/10.1145/3339252.
3340103

[12] Nicholas Carlini and David Wagner. 2017. Towards Evaluating the Robustness of
Neural Networks. In 2017 IEEE Symposium on Security and Privacy (SP). 39–57.
https://doi.org/10.1109/SP.2017.49

[13] Ero Carrera. 2019. PEfile python handler. https://pypi.org/project/pefile/.
[14] Fabrício Ceschin, Marcus Botacin, Heitor Murilo Gomes, Luiz S Oliveira, and

André Grégio. 2019. Shallow Security: On the Creation of Adversarial Variants
to Evade Machine Learning-Based Malware Detectors. In Proceedings of the 3rd
Reversing and Offensive-Oriented Trends Symposium (2019-11-28) (ROOTS’19).
Association for Computing Machinery, Vienna, Austria. https://doi.org/10.1145/
3375894.3375898

[15] Fabrício Ceschin, Felipe Pinage, Marcos Castilho, David Menotti, Luis S Oliveira,
and André Gregio. [n.d.]. The Need for Speed: An Analysis of Brazilian Malware
Classifers. IEEE Security Privacy 16, 6 ([n. d.]), 31–41. https://doi.org/10.1109/
MSEC.2018.2875369

[16] Alexandre Cheron. 2017. Code Injection with Python. https://axcheron.github.
io/code-injection-with-python/.

[17] CrowdStrike. 2020. Falcon Prevent: Cloud-native Next-Generation Antivirus
(NGAV). https://www.crowdstrike.com/endpoint-security-products/falcon-
prevent-endpoint-antivirus/.

[18] Cynet. 2020. NEXT-GEN ANTIVIRUS. Proactively Block Zero Day Attacks.
https://www.cynet.com/platform/threat-protection/nextgen-anti-virus/.

[19] Bobby Filar. 2020. Malware Bypass Research using Reinforcement Learning.
https://github.com/bfilar/malware_rl.

[20] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. 2014. A Survey on Concept Drift Adaptation. ACM Comput. Surv.
(2014).

[21] Ekta Gandotra, Divya Bansal, and Sanjeev Sofat. 2014. Malware Analysis and
Classification: A Survey. Journal of Information Security 5, 2 (2014), 56–64.

[22] Chuan Guo, Jacob R. Gardner, Yurong You, Andrew Gordon Wilson, and Kilian Q.
Weinberger. 2019. Simple Black-box Adversarial Attacks. CoRR abs/1905.07121
(2019), 1. arXiv:1905.07121 http://arxiv.org/abs/1905.07121

[23] Weiwei Hu and Ying Tan. 2017. Generating Adversarial Malware Examples for
Black-Box Attacks Based on GAN. CoRR abs/1702.05983 (2017). arXiv:1702.05983
http://arxiv.org/abs/1702.05983

[24] lucasg. 2017. The sad state of PE parsing. https://lucasg.github.io/2017/04/28/the-
sad-state-of-pe-parsing/.

[25] Aravind Machiry, Nilo Redini, Eric Gustafson, Yanick Fratantonio, Yung Ryn
Choe, Christopher Kruegel, and Giovanni Vigna. 2018. Using Loops For Malware
Classification Resilient to Feature-Unaware Perturbations. In Proceedings of the
34th Annual Computer Security Applications Conference (San Juan, PR, USA)
(ACSAC ’18). Association for ComputingMachinery, New York, NY, USA, 112–123.
https://doi.org/10.1145/3274694.3274731

[26] Malwarebytes Labs. 2017. Trojan.Remcos. https://blog.malwarebytes.com/
detections/trojan-remcos/.

[27] Microsoft Security Intelligence. 2017. Win32/Gamarue. https:
//www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-
description?Name=Win32/Gamarue.

[28] Palo Alto Networks. 2020. Advanced Endpoint Protection Protects You From
Dated Antivirus. https://www.paloaltonetworks.com/cyberpedia/advanced-
endpoint-protection-protects-you-from-dated-antivirus.

[29] PELock. 2016. PELock. https://www.pelock.com/.
[30] Quarkslab. 2019. Lief. https://lief.quarkslab.com/doc/stable/api/python/pe.html.
[31] Erwin Quiring, Lukas Pirch, Michael Reimsbach, Daniel Arp, and Konrad Rieck.

2020. Against All Odds: Winning the Defense Challenge in an Evasion Competi-
tion with Diversification. arXiv:2010.09569 [cs.CR]

[32] scikit learn. 2020. MinMaxScaler. https://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.MinMaxScaler.html.

[33] scikit learn. 2020. OneHotEncoder. https://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.OneHotEncoder.html#sklearn.preprocessing.
OneHotEncoder.

[34] scikit learn. 2020. RandomForestClassifier. https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.RandomForestClassifier.html.

[35] scikit learn. 2020. TfidfVectorizer. https://scikit-learn.org/stable/modules/
generated/sklearn.feature_extraction.text.TfidfVectorizer.html.

[36] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. 2016. AV-
class: A Tool for Massive Malware Labeling. In Research in Attacks, Intrusions, and
Defenses, FabianMonrose, Marc Dacier, Gregory Blanc, and Joaquin Garcia-Alfaro
(Eds.). Springer International Publishing, Cham, 230–253.

[37] Peng Shao and Randy K. Smith. 2009. Feature Location by IR Modules and Call
Graph. In ACM-SE 47.

[38] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In IEEE Symposium on Security and Privacy.

[39] Alex Smirnov. 2016. Xor-Decrypt. https://github.com/AlexFSmirnov/xor-
decrypt.

[40] ssdeep. 2017. ssdeep - Fuzzy hashing program. https://ssdeep-project.github.io/
ssdeep/index.html.

[41] stevielavern. 2017. Cannot add section and rebuild PE on Windows 10 #109.
https://github.com/lief-project/LIEF/issues/109.

[42] Rahim Taheri, Reza Javidan, Mohammad Shojafar, Zahra Pooranian, Ali Miri, and
Mauro Conti. 2019. On Defending Against Label Flipping Attacks on Malware
Detection Systems. arXiv:1908.04473 [cs.LG]

[43] Rahim Taheri, Reza Javidan, Mohammad Shojafar, Zahra Pooranian, Ali Miri, and
Mauro Conti. 2020. On Defending Against Label Flipping Attacks on Malware
Detection Systems. arXiv:1908.04473 [cs.LG]

[44] Oreans Technologies. 2011. Themida. https://www.oreans.com/Themida.php.
[45] Telock. 2008. Telock. http://www.telock.com-about.com/.
[46] Virus Total. 2020. Virus Total. https://www.virustotal.com.
[47] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas. 2015. SoK: Deep

Packer Inspection: A Longitudinal Study of the Complexity of Run-Time Packers.
In 2015 IEEE Symposium on Security and Privacy. IEEE, US, 659–673.

[48] K. Xu, Y. Li, R. Deng, K. Chen, and J. Xu. 2019. DroidEvolver: Self-Evolving
AndroidMalware Detection System. In 2019 IEEE European Symposium on Security
and Privacy (EuroS P).

[49] Yanfang Ye, Tao Li, Donald Adjeroh, and S. Sitharama Iyengar. 2017. A Survey
on Malware Detection Using Data Mining Techniques. ACM Comput. Surv. 50, 3,
Article 41 (June 2017), 40 pages. https://doi.org/10.1145/3073559

https://www.elastic.co/pt/blog/machine-learning-static-evasion-competition/
https://www.elastic.co/pt/blog/machine-learning-static-evasion-competition/
https://arxiv.org/abs/1804.04637
http://arxiv.org/abs/1804.04637
https://cujo.com/machine-learning-security-evasion-competition-2020/
https://cujo.com/machine-learning-security-evasion-competition-2020/
https://www.elastic.co/blog/introducing-elastic-endpoint-security
https://www.elastic.co/blog/introducing-elastic-endpoint-security
https://securityintelligence.com/news/razy-trojan-installs-malicious-browser-extensions-to-steal-cryptocurrency/
https://securityintelligence.com/news/razy-trojan-installs-malicious-browser-extensions-to-steal-cryptocurrency/
https://shop.cylance.com/us/
https://shop.cylance.com/us/
https://doi.org/10.1007/s11416-008-0084-2
https://doi.org/10.1145/3339252.3340103
https://doi.org/10.1145/3339252.3340103
https://doi.org/10.1109/SP.2017.49
https://pypi.org/project/pefile/
https://doi.org/10.1145/3375894.3375898
https://doi.org/10.1145/3375894.3375898
https://doi.org/10.1109/MSEC.2018.2875369
https://doi.org/10.1109/MSEC.2018.2875369
https://axcheron.github.io/code-injection-with-python/
https://axcheron.github.io/code-injection-with-python/
https://www.crowdstrike.com/endpoint-security-products/falcon-prevent-endpoint-antivirus/
https://www.crowdstrike.com/endpoint-security-products/falcon-prevent-endpoint-antivirus/
https://www.cynet.com/platform/threat-protection/nextgen-anti-virus/
https://github.com/bfilar/malware_rl
https://arxiv.org/abs/1905.07121
http://arxiv.org/abs/1905.07121
https://arxiv.org/abs/1702.05983
http://arxiv.org/abs/1702.05983
https://lucasg.github.io/2017/04/28/the-sad-state-of-pe-parsing/
https://lucasg.github.io/2017/04/28/the-sad-state-of-pe-parsing/
https://doi.org/10.1145/3274694.3274731
https://blog.malwarebytes.com/detections/trojan-remcos/
https://blog.malwarebytes.com/detections/trojan-remcos/
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Gamarue
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Gamarue
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Gamarue
https://www.paloaltonetworks.com/cyberpedia/advanced-endpoint-protection-protects-you-from-dated-antivirus
https://www.paloaltonetworks.com/cyberpedia/advanced-endpoint-protection-protects-you-from-dated-antivirus
https://www.pelock.com/
https://lief.quarkslab.com/doc/stable/api/python/pe.html
https://arxiv.org/abs/2010.09569
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html#sklearn.preprocessing.OneHotEncoder
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html#sklearn.preprocessing.OneHotEncoder
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html#sklearn.preprocessing.OneHotEncoder
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://github.com/AlexFSmirnov/xor-decrypt
https://github.com/AlexFSmirnov/xor-decrypt
https://ssdeep-project.github.io/ssdeep/index.html
https://ssdeep-project.github.io/ssdeep/index.html
https://github.com/lief-project/LIEF/issues/109
https://arxiv.org/abs/1908.04473
https://arxiv.org/abs/1908.04473
https://www.oreans.com/Themida.php
http://www.telock.com-about.com/
https://www.virustotal.com
https://doi.org/10.1145/3073559

	Abstract
	1 Introduction
	2 The Challenge
	2.1 Definitions
	2.2 Defenders challenge
	2.3 Attackers challenge

	3 Why Defending is Harder?
	4 Discussion
	5 Related Work
	6 Conclusion
	References

