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ABSTRACT
The use of Machine Learning (ML) techniques for malware de-
tection has been a trend in the last two decades. More recently,
researchers started to investigate adversarial approaches to bypass
these ML-based malware detectors. Adversarial attacks became so
popular that a large Internet company has launched a public chal-
lenge to encourage researchers to bypass their (three) ML-based
static malware detectors. Our research group teamed to participate
in this challenge in August/2019, accomplishing the bypass of all
150 tests proposed by the company. To do so, we implemented an
automatic exploitation method which moves the original malware
binary sections to resources and includes new chunks of data to
it to create adversarial samples that not only bypassed their ML
detectors, but also real AV engines as well (with a lower detec-
tion rate than the original samples). In this paper, we detail our
methodological approach to overcome the challenge and report our
findings. With these results, we expect to contribute with the com-
munity and provide better understanding on ML-based detectors
weaknesses. We also pinpoint future research directions toward the
development of more robust malware detectors against adversarial
machine learning.
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1 INTRODUCTION
Malware detection is an ever growing research field due to the
challenges imposed by constant evolving threats. The current state-
of-the-art techniques for malware detection are Machine Learning
(ML)-based approaches. However, they are not perfect and still
have breaches to be exploited by attackers [15], despite solving
many previously existing problems, such as the classification of
dense volume of malware data. Therefore, the use of ML stimulated
the already existing arms race, with attackers generating malware
variants to exploit the drawbacks of ML-based approaches and
defenders developing new classification models.

Adversarial attacks against machines learning models have be-
come so popular to the point of an Internet company (Endgame,
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Inc) launching a challenge [10] in August/2019 to evaluate the re-
sistance of three static analysis-based ML models against malware
variants. Two of these models are deep neural networks which use
raw data as input, while the last model is a decision tree which uses
file metadata as input. Our team participated in this challenge and
was able to bypass the three models using modified versions of the
50 samples originally provided by the organizers. To generate the
adversarial malware, we implemented an automatic exploitation
method moving the original malware binary sections to resources
and including new chunks of data to it to create adversarial samples
that not only bypassed challenge’s detectors, but also real AVs as
well (with a lower detection rate than the original samples).

More than competing, our main goal was to investigate real
models robustness against adversarial malware samples. Our ex-
periments revealed that the models have severe weaknesses so that
they can be easily bypassed by attackers motivated to exploit real
systems. These findings motivated us to write this report pinpoint-
ing possible mitigation and future research work in the ML-based
malware detection field.

During our evaluation of the provided models, we discovered
that:

(1) ML models based on raw binary data can be bypassed by
appending data to the binaries.

(2) Frequency-based ML models can be bypassed by embedding
goodware strings in malware binaries.

(3) PE format-aware classifiers can be biased towards the detec-
tion of packers instead of actually learning the concept of a
malicious binary.

We propose three approaches to mitigate the drawbacks we
found:

(1) OS loaders should be more aware of binary inconsistencies
when loading files so as to avoid loading malformed binaries
derived from binary data insertion.

(2) ML models should focus more in the presence of malicious
features instead on their frequency to be more resistant to
data appendix.

(3) We advocate for the assessment ofmalware variant-robustness
in the evaluation of hereafter proposed ML-based malware
detectors.

In summary, our contributions are as follows:

(1) We describe our participation in a challenge to develop ad-
versarial attacks against ML-based malware detectors.
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(2) We describe the model’s weaknesses we found during our
experiments.

(3) We propose measures to the development of upcoming ML-
based malware detection research work.

The remainder of the paper is organized as follows: in Section 2,
we describe the challenge, datasets and models; in Section 3, we
show the model’s weaknesses by discussing our experiments and
results; in Section 4, we present howwe automated the exploitation;
in Section 5, we show the weaknesses identified by us and pinpoint
possiblemitigation; in Section 6, we present the relatedwork; finally,
we draw our conclusions in Section 7.

2 THE CHALLENGE
The challenge hereby described [10] is a competition run by an
Internet company whose winner is the one to first achieve more
points, up to 150. The challenge is composed of a total of 50 tasks, in
which each one of the 50 distributed distinct binaries are classified
by three distinct models. Each bypassed classifier for each binary
accounts for 1 point. Two of the models are based on raw data
classification and one is based on PE features. All models are based
on static analysis feature extraction procedures. However, all sub-
mitted binaries are executed on a sandboxed environment and must
produce the same Indicators of Compromise (IoCs) as the originally
distributed binaries. Thus, our objective was to create adversarial
malware that behave the same way the original do by moving their
binary sections and appending chunks of data (goodware bytes and
strings) to them.

The competition has started in August/2019 and it is still taking
place. We opted to report our findings even before its finish since
we already investigated all samples and gained insights that we
consider important to be shared with the community. During the
competition, the scoreboard (one can check the current scoreboard
online [26]) has been reset many times by the organizers due to
problems with the sandbox solution. After all resets, our team
figured among the top-scorer participants. In spite of that, our
main goal was not to win the competition but to investigate the
drawbacks of a real ML model deployed for the classification of
actual malware samples. We consider the investigation of third-
part models more realistic than developing our own because these
would be subject to our development biases.
The Dataset provided by the organizer is composed of 50 PE
(Portable Executable [24]) samples of variedmalware families (group-
ing of malware based on their common characteristics [19]) for Mi-
crosoft Windows. The variety of samples aims to ensure a diversity
of implementations so as the challenge also requires diversified
approaches to bypass sample’s detection. Figure 1 shows malware
families distribution according to VirusTotal [37] labels, normal-
ized using AVClass [32]. In total, there are 21 malware families
in which four of them have at least four samples. Emotet is the
most prevalent family in the dataset (5 samples) and is a banking
trojan malware that steals sensitive and private information (such
as credit card details) by downloading or dropping other banking
malware, typically started by phishing emails and spread to other
devices on the network after the infection [9]. Loki has 4 samples
in the dataset and is a malware built to steal private data (such as
stored passwords, login credentials and cryptocurrency wallets)

and exfiltrate it to a C&C (Command and Control) host via HTTP
POST [21]. Ramnit also has 4 samples in the dataset and is a worm
that can steal cookies, login credentials and files from the infected
machine. It is also able to create a backdoor that allows the attackers
to send all the data to the C&C server [35].Xtrat also has 4 samples
in the dataset and allows the attacker to interact with the victim
via one or more C&C servers. Attackers are able to manage the
infected machine’s registry keys, files, process, servers, and also
record content from any connected devices, such as webcameras
and/or microphones [13]
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Figure 1: Malware Family Distribution. The dataset is com-
posed of varied malware families, each one supposedly im-
plemented in a distinct way, thus requiring distinct ap-
proaches to bypass their detection.

All samples are real malware samples that actually executed
in sandboxed environments. We confirmed that by executing all
samples in an available monitoring solution [3], as the challenge’s
organizers have not initially provided access to their sandbox’s logs
to the competitors.
TheMLmodels provided by the organizers were: (i) MalConv [29];
(ii) Non-Negative MalConv [14]; and (iii) LightGBM [20]. All mod-
els were trained using the Ember 2018 dataset [1], which is com-
posed of 1.1M binary files: 900K training samples and 200K testing
samples. MalConv is an end-to-end deep learning model, which
takes as input raw bytes of a file to determine its maliciousness.
The model first creates a representation of the input using an 8-
dimensional embedding (which takes as input tokenized bytes).
The output of this embedding is then presented to a gated 1D con-
volution layer, with a filter width of 500 bytes, stride of 500 and
128 filters, followed by a fully connected layer of 128 units and a
softmax output for each class. Non-Negative MalConv has an iden-
tical structure to MalConv, but it has only non-negative weights,
forcing the model to look only for malicious evidences rather than
looking for both malicious and benign ones. LightGBM is a gradient
boosting decision tree which operates over a feature matrix. This
matrix is created using hashing trick and histograms based on the
inputted binary files characteristics, such as PE header information,
file size, timestamp, imported libraries, strings, etc.

We noticed that the models which use raw data are very biased
towards the detection of malware samples, which results in a high
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False Positive Rate (FPR) when handling benign data. Table 1 shows
FPR for the 448 exe and 2422 DLLs of a pristine Windows installation.

Table 1: False Positive Rate of native Windows files classi-
fication. The raw models are very biased towards the detec-
tion of malware samples.

FileType MalConv Non-Neg. MalConv LightGBM
EXEs 71.21% 87.72% 0.00%
DLLs 56.40% 80.55% 0.00%

3 MODEL’S WEAKNESSES
We conducted a series of experiments to identify model’s weak-
nesses before starting bypassing the models. In this section, we
present the conducted experiments and discuss their results.
Appending random data to the binaries might be a successful
strategy to bypass ML models based on raw binary inputs. We eval-
uated this hypothesis by repeatedly generating growing chunks of
random data, up to the limit of 5MB defined by the challenge’s or-
ganizers, and testing the resulting binaries’ detection by all models.
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Figure 2: Models FN after appending random data to mal-
ware binaries. ML models based on raw data are susceptible
to be evaded by this technique.

Figure 2 presents the false negatives of the multiple models for
the distinct random data chunks. We notice that some models, no-
ticeably the original Malconv, are more susceptible to this strategy
than others. It highlights the need of developing and evaluating
distinct classifiers and features for the same task, since some might
be more robust than others. We also discovered that the effects are
more severe for data chunks greater than 1MB. This type of evalua-
tion is important to understand the limits of the proposed solutions.
Finally, we notice that the model based on the PE structure is the
less affected by the appending of unrelated data.
Appending goodware strings to malware binaries might be a
successful strategy to bypass classifiers based on features frequency.

We evaluated this hypothesis by repeatedly retrieving strings pre-
sented by goodware files and appending them to the malware bina-
ries before submitting them to all ML models.

Figure 3 presents the FP rate of each ML model according to the
number of appended goodware strings. We notice that as for the
previous case, each model is affected by this technique in a distinct
manner. However, all models are significantly affected when 10K+
strings are appended. This result holds true even for the model that
also considers PE data.
Changing binary headers might be a successful strategy to by-
pass classifiers based on PE features. We evaluated this hypothe-
sis by replacing some header fields of malware binaries with the
values of header fields of goodware binaries. This replacement is
enabled by the project decision took by Microsoft when implement-
ing the Windows’ binary loader: it silently ignores some PE binary
fields [12], such as version numbers and checksums, thus allowing
even corrupted binaries to run.

We replaced all binaries automatically by developing a Python
script powered by the PEFile library [11], although the modifica-
tion could be manually performed by using any hexadecimal editor,
such as hteditor [31].
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Figure 3: Models FN after appending goodware strings to
binaries. All models are significantly affected by this tech-
nique.
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1 # open base gw
2 base_pe = pefile.PE(GWR_BASE)
3 # iterate over output samples , changing their PE

HEADER
4 for m in adv_list:
5 # open adversarial sample
6 m_pe = pefile.PE(m)
7 # update adversarial header
8 m_pe.OPTIONAL_HEADER.MajorLinkerVersion =

base_pe.OPTIONAL_HEADER.MajorLinkerVersion
9 m_pe.OPTIONAL_HEADER.MinorLinkerVersion =

base_pe.OPTIONAL_HEADER.MinorLinkerVersion
10 m_pe.OPTIONAL_HEADER.CheckSum = base_pe.

OPTIONAL_HEADER.CheckSum
11 m_pe.OPTIONAL_HEADER.MajorOperatingSystemVersion

= base_pe.OPTIONAL_HEADER.
MajorOperatingSystemVersion

12 m_pe.OPTIONAL_HEADER.MinorOperatingSystemVersion
= base_pe.OPTIONAL_HEADER.

MinorOperatingSystemVersion
13 m_pe.OPTIONAL_HEADER.MajorImageVersion = base_pe

.OPTIONAL_HEADER.MajorImageVersion
14 m_pe.OPTIONAL_HEADER.MinorImageVersion = base_pe

.OPTIONAL_HEADER.MinorImageVersion
15 # write updated sample
16 m_pe.write(m)

Code Snippet 1: PE header modification script. Modifying
header values did not significantly increased the FP rate.

Code Snippet 1 illustrates the script operation and which fields
were modified. This approach leads to the overall bypass of only
six samples in all models. This result suggests that the model based
on PE features learned other characteristics than the header values.
Packing and Unpacking samples with UPX, the popular open-
source packer [23], might be a successful strategy to bypass clas-
sifiers based on general PE features other than the headers. This
approach might succeed on bypassing models as the UPX solution
compresses entire PE into other PE sections, changing the external
PE binary’s aspect. We evaluated this hypothesis by packing and
unpacking the provided binary samples.

The obtained results showed that classifiers were easily bypassed
when strings were appended to the UPX-extracted payloads but
not when directly appended to the UPX-packed payloads. This
result suggested that the distributed model presented a bias against
the UPX packer, since any file packed with UPX was classified as
malicious. We evaluated this possibility in an exploratory fashion
by randomly picking 150 UPX-packed and 150 non-packed samples
from the malshare database [22] and classifying them using the
provided models.

Table 2: UPX-Packed Samples Detection. Results suggest
that models might have a bias against UPX-packed samples.

Dataset MalConv Non-Neg MalConv LightGBM
Originally Packed

UPX 63.64% 55.37% 89.26%
Extracted UPX 59.50% 53.72% 66.12%

Originally Non-Packed
Original 65.35% 54.77% 67.23%

UPX Packed 67.43% 56.43% 88.12%

Table 2 shows the overall detection results for the samples orig-
inally packed with UPX, their extracted version, the originally

unpacked samples, and their packed version. We notice that the
UPX-packed versions are more detected by all classifiers than the
unpacked versions, thus suggesting that the classifiers might be bi-
ased towards the detection of UPX binaries, despite their content. In
summary, although we were able to bypass one of the UPX-packed
binaries provided by the challenge via packer extraction and string
appendix, we decided to investigate additional approaches that
operate in context for which the classifiers are less biased.
Packing samples with a distinct packer might be a successful
strategy to bypass classifiers that present a bias against the popular
UPX.We evaluated this hypothesis by packing the provided samples
with TeLock [36]. This strategy might succeed because this packer
compresses and encrypts the original binary sections into a new one
so as the original content cannot be identified by the classifiers. This
strategy has proven to be effective on bypassing all models when
combined with data appendix. However, some samples such as the
ones from the Extreme RAT family [13] do not execute properly
when packed with this solution. Therefore, we opted to investigate
more alternatives.
Embedding samples in a dropper [17, 18] might be a successful
strategy to bypass classifiers and keep samples execution properly.
This strategy might succeed because despite embedding the binary
in a new section, this one is not encrypted nor compressed, avoiding
unpacking issues. We evaluated this hypothesis by embedding the
provided samples in the Dr0p1t dropper [7]. This approach along
data appendix has proven to be able to bypass all detectors with-
out breaking sample’s execution. However, this solution generates
binaries greater than 5MB, incompatible with the challenge’s rules.

4 AUTOMATIC EXPLOITATION
In this section, we present how we automated the exploitation of
the weaknesses previously identified in the ML models and also
present their impact on real AV detection engines.
Automating Models Exploitation. Once we discovered the ma-
jor weaknesses of the providedmodels, we automated the procedure
of generating malware variants able to bypass their detection.

In particular, our previous model’s analyses revealed that:
(1) Some samples, such as RATs, do not work well when data is

directly appended.
(2) LightGBM model detection is activated when unusual head-

ers and sections are present.
(3) LightGBM model can be bypassed by packing and/or em-

bedding the original binary within a dropper with standard
header and sections.

(4) Appending data to packed and embedded code samples al-
lows bypassing the Malconv-based models without nega-
tively affecting the dropped code execution.

Based on these findings, we automated the process of pack-
ing/embedding all payloads within a new file, with standard header
and sections, and after appending data by using a Python script. As
the challenge limited the maximum file size to 5MB, we were not
able to use existing solutions such as Telock [36] and Dr0p1t [7]
because they generated larger binary files. Instead, we implemented
our own dropper.

We implemented the dropper by embedding the original malware
sample as a PE binary resource [25]. Code Snippet 2 illustrates the
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dropper operation. It (i) retrieves a pointer to the binary resource
(line 3 to 5); (ii) creates a new file to drops the resource content (line
7); (iii) drop the entire content (line 8 to 10); and (iv) launches a
process based on the dropped file (line 13). We were able to bypass
all challenges without breaking samples execution by using this
technique.

1 int main(){
2 HMODULE h = GetModuleHandle(NULL);
3 HRSRC r = FindResource(h, ...);
4 HGLOBAL rc = LoadResource(h,r);
5 void* data = LockResource(rc);
6 DWORD size = SizeofResource(h,r);
7 FILE *f = fopen("dropped.exe","wb");
8 for(int i=0;i<size;i++){
9 unsigned char c1 = ((char*)data)[i];
10 fprintf(f,"%c",c1);
11 }
12 fclose(f);
13 CreateProcess("dropped.exe", ...);

Code Snippet 2: Malware Dropper. The original malware
file is embedded as a PE binary resource at compile time
and extracted in runtime.

Figure 4 shows an overview of the variant generation process,
which takes an original malware (mw) from the dataset to generate
an adversarial malware (mw+), as defined by Equation 1. More
specifically, the original malware (mw) is first used as input to an
embedding function (f ), which generates an entirely new file with
standard PE headers and section definitions to host the original
malware payload as a resource. We select one or more goodware
дwi from the set of all n goodware samples available, which, in our
case, consists of all system files from a pristine Windows instal-
lation. After that, we retrieve strings and/or bytes information of
each one of the goodware samples via an extraction function (data).
The extracted chunks data(дwi ) are appended to the new file cre-
ated using the function f (mw) so as to ensure a bias towards the
goodware class. The function outcome is an adversarial malware
sample (mw+). One can iterate this procedure so as to consider
multiple goodware samples, thus repeatedly appending data to the
end of f (mw). In the example shown in Table 3, the malware (mw),
a sample from the family xtrat (sample number 35 on Table 4),
was classified by the three models as malware, with 99.99% of con-
fidence by malConv and LightGBM, and with 75.05% of confidence
by Non-Negative Malconv. The ntoskrnl.exe goodware (дwi )
used to produce the appending data was classified as goodware
with 69.54% of confidence by MalConv, 73.32% by Non-Negative
MalConv and 99.99% by LightGBM. The resulting adversarial sam-
ple (mw+) completely deceived all classifiers into considering it as
being a goodware with 81.21%, 98.65% and 99.99% of confidence by
MalConv, Non-Negative MalConv and LightGBM, respectively. On
average, the confidence changed from 91.68% of being a malware
(mw) to 93.28% of being a goodware (mw+).

mw+ = f (mw) +

n∑
i
data(дwi ) (1)

Adversarial malware in real world. After we bypassed all chal-
lenge’s models, we investigated whether the strategies we deployed
for experimentation purposes could also be successfully leveraged
in practice by actual attackers. To do so, we submitted the original

and the modified samples to the VirusTotal service and retrieved
the overall detection rates, as shown in Figure 5.

We noticed that our approach also affected real AV engines;
the retrieved detection rates were smaller for all samples, in some
cases (sample 6) dropping almost in half. This result is explained by
current AV engines also being powered by ML models, which might
be subject to the same weaknesses and biases that we identified for
the challenge’s models. This result highlights the need of developing
more robust MLmodels and features for malware variants detection.

A practical drawback of generating adversarial malware samples
is that their binaries become larger than the original ones due to ad-
ditional data appended to the original malware. The appended data
is not even used by the malware, but must be there to create a bias
towards goodware class. Figure 6 presents a comparison between
original and ML-evasive samples per malware family. We discov-
ered that adversarial malware (whose maximum size is around
5MB due to the limits imposed by the challenge organizers) are,
in general, at least around twice the size of original ones (whose
maximum size is around 1.5MB).

5 DISCUSSION
Bypassing a detector means that one reasoned about an implemen-
tation and/or technology and identified weaknesses. In this section,
we present the weaknesses identified by our team and pinpoint
possible mitigation.
Susceptibility to appended data is a major weakness of rawmod-
els. In most cases, this simple strategy was enough to defeat the
two raw data-based models, indicating that the concept learned by
these models is not robust enough against adversarial attacks.
Appending data affects detection but not PE loading, since
the Windows loader ignores some PE fields and even resolve con-
flicting sizes and checksums in runtime [12]. This lax policy allows
attackers to append content to the binaries without affecting its
functionalities. We advocate for more strict loading policies so as to
mitigate the impact of this type of bypass technique. For instance,
the loader should check if a binary has more sections than declared
in its header and/or if the section content exceeds the boundaries
defined by the section size header field.
Adversarial malware aremuch bigger than original ones due
to additional data appended to them, which are needed to bypass
classifiers, such as strings and bytes. These data create a bias to-
wards goodware class but also make their size greater, which can
make it difficult for attackers to distribute them for new victims.
We consider this as a challenge to be considered by any attacker,
which needs to create an adversarial sample with the minimum size
as possible.
Developingmodels based on the presence of features instead
on their frequency is an strategy that should be adopted to miti-
gate the impact of appended data on classification models. We dis-
covered that most classifiers changed their decision from malware
to goodware when goodware strings were added to the binary, thus
masking the impact of malware strings in the overall model. The
use of pertinence models mitigate this effect as malicious strings
need to be still present in the binaries to keep its functional.
Domain-specific models might present biases and not effec-
tively learn a concept.We discovered that the model based on PE
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Figure 4: Adversarial malware generation. By just using an embedding function to add malware payloads within a new file
and adding goodware data to it, such as strings and bytes from a set of goodware, we can change classifiers’ output.

Table 3: Models’ confidence when classifying a malware (mw), a goodware (дwi ) and an adversarial malware (mwi ). Results
show that the adversarial sample is classified as goodware with higher confidence than a real goodware.

Malware (mw) Goodware (дwi ) Adversarial Malware (mw+)
Model Classification Confidence Classification Confidence Classification Confidence

MalConv Malware 99.99% Goodware 69.54% Goodware 81.22%
Non-Neg. MalConv Malware 75.09% Goodware 73.32% Goodware 98.65%

LightGBM Malware 100.00% Goodware 99.99% Goodware 99.97%
Average Malware 91.69% Goodware 80.95% Goodware 93.28%
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Figure 5: Samples Detection Rate. The developed malware
variant samples were also less detected by the Virustotal’s
AV engines in addition to bypassing the challenge’s models.

binaries features presented a bias against the UPX packer, used by
most malware but also present in benign software. Packing benign
software with UPX revealed that the detector learned to mistakenly
always flag UPX binaries as malicious.
Adopting malware variants robustness as a criteria to assess
ML-based detectors is an essential step to moving forward the
malware detection field. Our results revealed that even deep learn-
ing models might be easily bypassed, which makes them less effec-
tive in practice. We advocate for the adoption of variants robustness
testing as a criteria for assessing the further developed malware
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Figure 6: Comparison between original and adversarial mal-
ware size inMBytes bymalware family. Adversarial samples
are much bigger than the original ones due to the additional
data used to bypass classifiers.

classifiers so as to contribute for more real world-targeted solutions.
This criteria might be included in the process of correct evaluating
a malware detector, which already includes handling concept drift
and evolution, class imbalance, degradation, etc [5, 8, 28]
Creating a robust representation is another essential step for
malware detection field, given that attackers might include good-
ware characteristics into their malware to evade any model. Thus,
creating a representation that is invariant to these characteristics
is fundamental to avoid adversarial malware.
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Checking file resources and embedded PE files should be part
of ML feature extraction procedures. It would allow classifiers to
detect embedded malicious payload instead of being easily deceived
by malware droppers.
Converting samples into downloaders [30] is also a successful
strategy to bypass static detectors. In this case, the malicious pay-
load is retrieved from the Internet whereas the undetected loader
is submitted to ML scan. This shows that defenders should not
only focus in the classifier accuracy rate but also should reason
about the whole threat model to cover all attack possibilities. We
implemented downloader versions of all malware samples provided
by the challenge organizers, but we did not submit them to the chal-
lenge validation system because the challenge’s sandbox solutions
was network-isolated.
Generating adversarial samples tomalware detector is a par-
ticular case of adversarial attacks, that can be performed against
multiple domains and targets, such as image classifiers [15]. De-
spite of having the same goal of bypassing a classification, different
techniques are required depending on the problem domain. For
some image classifiers, for example, adversarial images should look
similar to the original ones (usually being indistinguishable to the
human eye). In contrast, for malware detectors, adversarial malware
only need to perform the same action as the original ones, even
if they are completely different in their structures, as we did by
embedding the original malware into a dropper. Therefore, simply
adding a noise to a malware (as done in adversarial images [15])
might generate an invalid adversarial malware that does not work
or does not perform the same action as the original one.

6 RELATEDWORK
In this section, we present related work that provide insights about
malware evasion techniques and countermeasures. We believe that
these related work might be useful in future community’s research
work, although they are not directly related to the described mal-
ware evasion challenge.
Adversarial Machine Learning are techniques aimed to defeat
ML models. These techniques can rely on manual, heuristics or
even ML-based strategies. A noticeable example of the latter are
Generative Adversarial Networks (GANs). GANs are 2-part, cou-
pled deep learning systems in which one part is trained to classify
the inputs generated by the other. The two parts simultaneously
try to maximize their performance. As a side effect, the input gen-
erator learns the best way to defeat its corresponding classifier. In
this sense, GANs have been successfully used to create adversarial
samples to bypass malware detectors [16]. In some cases, even pro-
posed defensive solutions, such as the use of defensive distillation,
a procedure to train deep neural networks that are more robust
to perturbations [27], are prone to adversarial machine learning
attacks (in this case, just by using different attack algorithms [4]).
We believe that the use GANs will be the standard approach to solve
future challenges such as the one that our team participated due to
their classification power and scalability to large-scale datasets.
Binary Mutations were the so-far prevalent techniques to gener-
ate malware variants. These techniques implement transformations
such as code replacement, instruction swapping, variable changes,
dead code insertion and control flow obfuscation to bypass malware

detectors [2]. These techniques can also be applied In the context of
this work. However, they are now targeting implicit neural-network
models instead of the previously clear-defined behavioral [6] or
Intermediate Representation (IR)-defined [33] models.
Automated Binary Exploitation are techniques to automatically
discover flaws and binaries and exploit them. These type of tech-
niques have also been the subject of public challenges (e.g., DARPa
challenge [34]). We believe that this type of technique can also
be applied for malware detection evasion, despite being originally
designed for a distinct purpose. The automatic identification of a
critical execution path might indicate potential binary regions to
be patched by an attacker.

7 CONCLUSION
In this paper, we reported the participation of our team in a pub-
lic challenge launched by an Internet company in August/2019 to
develop adversarial attacks against Machine Learning-based mal-
ware detectors. It challenged the participants to simultaneously
bypass three distinct static analysis-based ML models. Our team
developed custom binaries able to bypass all 150 challenges. We dis-
covered that models leveraging raw binary data are easily evaded
by appending additional data to the original binary files. We also
discovered that models based on the Windows PE file structure
learn malicious section names as suspicious, such that these de-
tectors can be bypassed by replacing section names. We suggest
the adoption of malware variant-resilience testing as an additional
criteria for the evaluation and assessment of future developments
of ML-based malware detectors. This ensures that the developed
detectors can be applied to actual scenarios without the risk of
being easily bypassed by attackers.

Reproducibility. The source code of the developed prototype to
embed malware samples into unsuspicious binaries was released
as open source and it is available on github: https://github.com/
marcusbotacin/Dropper. All analysis reports of evasive and non-
evasive samples execution and their similarities are available on
the corvus platform: https://corvus.inf.ufpr.br/.
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Table 4: Class (M formalware and G for goodware) and confidence (%) of each original and adversarial sample when classifying
them using the three ML models proposed by the challenge. All adversarial samples are considered as being a goodware, the
majority of them with a high confidence level.

MalConv Non-Neg. MalConv LightGBM
Original Adversarial Original Adversarial Original AdversarialSample Family

Class % Class % Class % Class % Class % Class %
001 gandcrab M 97.83% G 65.96% M 54.30% G 90.53% M 100.00% G 87.83%
002 cerber M 96.28% G 85.34% M 63.96% G 98.65% M 99.91% G 82.83%
003 xtrat M 99.60% G 76.84% M 60.81% G 98.41% M 100.00% G 51.56%
004 lethic M 95.33% G 83.61% M 63.33% G 98.65% M 100.00% G 99.28%
005 tinyloader M 66.92% G 65.96% M 59.90% G 98.47% M 100.00% G 80.86%
006 tinyloader M 64.22% G 78.18% M 94.85% G 95.35% M 100.00% G 90.82%
007 sality M 99.69% G 83.25% M 63.81% G 98.65% M 100.00% G 99.98%
008 xtrat M 99.90% G 72.25% M 50.27% G 66.01% M 100.00% G 63.04%
009 emotet M 99.81% G 75.34% M 59.95% G 98.41% M 100.00% G 62.58%
010 sality M 87.27% G 73.72% M 66.53% G 98.41% M 100.00% G 78.61%
011 lethic M 61.42% G 87.97% M 59.80% G 98.41% M 100.00% G 96.74%
012 mirai M 53.11% G 68.05% M 64.03% G 98.65% M 100.00% G 99.91%
013 nanocore M 59.90% G 78.98% M 50.03% G 98.41% M 100.00% G 94.55%
014 ramnit M 99.80% G 87.12% M 54.61% G 98.65% M 100.00% G 99.84%
015 emotet M 97.46% G 73.52% M 67.72% G 98.41% M 99.79% G 99.70%
016 emotet M 96.13% G 81.04% M 52.18% G 98.41% M 99.96% G 99.72%
017 ramnit M 88.61% G 87.86% M 66.76% G 95.20% M 100.00% G 99.97%
018 emotet M 95.95% G 70.34% M 51.16% G 98.41% M 99.73% G 99.75%
019 trickbot M 65.76% G 85.18% M 50.07% G 97.98% M 100.00% G 51.74%
020 yakes M 92.88% G 74.48% M 63.52% G 98.41% M 99.78% G 99.93%
021 azorult M 99.17% G 90.95% M 83.35% G 81.54% M 100.00% G 56.41%
022 wapomi M 97.75% G 84.08% M 51.15% G 98.65% M 100.00% G 99.91%
023 loki M 78.93% G 65.96% M 64.89% G 98.79% M 100.00% G 60.90%
024 cutwail M 98.86% G 89.39% M 57.83% G 90.54% M 99.38% G 95.07%
025 trickster M 67.38% G 75.15% M 58.97% G 98.41% M 100.00% G 97.77%
026 ursnif M 99.43% G 76.26% M 61.83% G 98.78% M 99.93% G 99.66%
027 ramnit M 71.84% G 84.76% M 66.78% G 98.65% M 100.00% G 99.94%
028 lethic M 99.71% G 80.90% M 51.98% G 98.41% M 100.00% G 99.57%
029 loki M 96.29% G 67.93% M 94.36% G 96.67% M 100.00% G 59.55%
030 tinyloader M 90.86% G 76.63% M 79.99% G 95.35% M 100.00% G 90.60%
031 kovter M 95.08% G 94.44% M 63.90% G 97.27% M 99.99% G 88.78%
032 cerber M 98.84% G 71.65% M 51.51% G 98.41% M 100.00% G 65.99%
033 wapomi M 74.44% G 65.96% M 57.32% G 97.46% M 100.00% G 82.24%
034 azorult M 61.45% G 79.49% M 66.28% G 98.41% M 100.00% G 99.82%
035 xtrat M 99.99% G 81.22% M 75.09% G 98.65% M 100.00% G 99.97%
036 ursnif M 95.56% G 78.34% M 57.14% G 98.41% M 100.00% G 81.82%
037 loki M 62.48% G 65.96% M 77.32% G 98.41% M 100.00% G 64.30%
038 xtrat M 100.00% G 87.43% M 59.22% G 95.36% M 100.00% G 99.95%
039 loki M 70.72% G 79.54% M 62.07% G 98.41% M 100.00% G 50.10%
040 cutwail M 98.79% G 65.96% M 50.89% G 66.29% M 100.00% G 98.94%
041 ramnit M 97.61% G 82.01% M 55.83% G 98.65% M 100.00% G 99.91%
042 mansabo M 74.98% G 65.96% M 77.01% G 98.41% M 100.00% G 81.72%
043 qbot M 87.64% G 65.96% M 51.17% G 98.87% M 100.00% G 99.02%
044 wapomi M 86.50% G 82.33% M 70.80% G 98.65% M 100.00% G 99.98%
045 sality M 58.42% G 86.55% M 81.19% G 92.57% M 100.00% G 82.26%
046 azorult M 99.52% G 69.33% M 98.83% G 94.59% M 100.00% G 73.76%
047 emotet M 98.84% G 74.40% M 51.48% G 98.41% M 100.00% G 65.38%
048 ursnif M 99.96% G 93.20% M 51.36% G 81.54% M 99.99% G 76.67%
049 nanocore G 95.83% G 74.79% M 50.59% G 98.41% M 100.00% G 94.56%
050 trickbot M 99.92% G 66.87% M 58.13% G 98.41% M 100.00% G 80.62%
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