
ML-Based Behavioral Malware Detection Is Far
From a Solved Problem

Yigitcan Kaya
UC Santa Barbara
yigitcan@ucsb.edu

Yizheng Chen
Univ. of Maryland, College Park

yzchen@umd.edu

Marcus Botacin
Texas A&M University

botacin@tamu.edu

Shoumik Saha
Univ. of Maryland, College Park

smksaha@umd.edu

Fabio Pierazzi
University College London

f.pierazzi@ucl.ac.uk

Lorenzo Cavallaro
University College London

l.cavallaro@ucl.ac.uk

David Wagner
UC Berkeley

daw@cs.berkeley.edu

Tudor Dumitraş
Univ. of Maryland, College Park

tudor@umd.edu

Abstract—Malware detection is a ubiquitous application of
Machine Learning (ML) in security. In behavioral malware
analysis, the detector relies on features extracted from program
execution traces. The research literature has focused on detectors
trained with features collected from sandbox environments and
evaluated on samples also analyzed in a sandbox. However, in
deployment, a malware detector at endpoint hosts often must
rely on traces captured from endpoint hosts, not from a sandbox.
Thus, there is a gap between the literature and real-world needs.

We present the first measurement study of the performance of
ML-based malware detectors at real-world endpoints. Leveraging
a dataset of sandbox traces and a dataset of in-the-wild program
traces, we evaluate two scenarios: (i) an endpoint detector trained
on sandbox traces (convenient and easy to train), and (ii) an
endpoint detector trained on endpoint traces (more challenging to
train, since we need to collect telemetry data). We discover a wide
gap between the performance as measured using prior evaluation
methods in the literature—over 90%—vs. expected performance
in endpoint detection—about 20% (scenario (i)) to 50% (scenario
(ii)). We characterize the ML challenges that arise in this domain
and contribute to this gap, including label noise, distribution shift,
and spurious features. Moreover, we show several techniques
that achieve 5–30% relative performance improvements over
the baselines. Our evidence suggests that applying detectors
trained on sandbox data to endpoint detection is challenging.
The most promising direction is training detectors directly on
endpoint data, which marks a departure from current practice.
To promote progress, we will facilitate researchers to perform
realistic detector evaluations against our real-world dataset.

I. INTRODUCTION

Detection of malware threats is crucial for governments,
enterprises, and end users as there are significant (and grow-
ing) financial and safety harms of malware infections [1],
which has created a $7 Billion industry in 2022 with many
players [2]. Malware detection appears to be remarkably
effective: industry-standard evaluations of commercial anti-
malware products [3], and prior research on malware detection
using machine learning (ML) methods [4], [5], routinely report
that over 99% of malware samples in a standard corpus can
be detected, with very few false positives.

This work has been accepted for publication in the IEEE Conference on
Secure and Trustworthy Machine Learning (SaTML). The final version will
be available on IEEE Xplore.

Malware detection is often performed at endpoints, where
an endpoint security solution [8] monitors host devices to
detect threats. In practice, these solutions employ a chain of
techniques [9], including static analysis and dynamic analysis.
Static methods, such as blocklists and signatures, operate
without executing the program. As static methods can readily
be bypassed via obfuscation or polymorphism [10], [11],
dynamic analysis has become a standard offering [12].

Dynamic analysis relies on observing the execution be-
haviors of a sample to detect whether it displays malicious
behaviors. The typical paradigm for obtaining a behavioral
detector is to detonate (execute) a large set of known samples
(malware and benign) in a controlled environment (a sandbox),
collect their execution traces, and learn to separate malicious
and benign behaviors. Several ML models have been effective
in this task [5], [6], [7], [13]. Unfortunately, endpoint detection
models cannot use sandbox traces to decide whether a sample
under observation is malicious, as detonation cannot be done in
real time, despite advances such as on-premise sandboxes [14].
Consequently, these models must rely on traces observed at
real-world hosts to detect malware.

Research has outlined several challenges associated with
this task. First, program behaviors are environment-sensitive,
and, especially for malware, two traces of the same sample
from two different hosts often have little overlap [15]. As
a result, an ML model trained on a trace captured on one
host might fail to generalize to others. Second, techniques
frequently employed to evade sandbox analysis [16], [17]
can mislead models trained on sandbox traces into learning
spurious features that do not capture actual malware behaviors.
Although these challenges have been previously articulated
in the research literature [6], [15], [18], [19], we lack an
understanding of how they manifest and can be addressed.

Our work conducts the first quantitative study into the effi-
cacy of ML-based methods for endpoint detection to demystify
these challenges. We specifically focus on two scenarios: (i)
an endpoint detector trained using only sandbox traces and (ii)
an endpoint detector trained using real-world endpoint traces.
Existing techniques can conveniently gather large datasets of
sandbox traces, making (i) a practical and accessible option.

Training data Test data Method TPR @ 1%FPR

Sandbox traces Sandbox traces Standard classifier ∼95% [5], [6], [7]
Sandbox traces Endpoint traces Standard classifier ∼17% (ours)
Endpoint traces Endpoint traces Standard classifier ∼49% (ours)
Sandbox traces Endpoint traces Training set resampling + invariant learning ∼22% (ours)
Endpoint traces Endpoint traces Soft labels + invariant learning ∼52% (ours)

TABLE I: Performance of ML-based behavioral malware detection under different settings.

On the other hand, collecting endpoint traces is attainable
mainly by vendors who receive telemetry data from the wild,
as simulating such data at scale in controlled environments
(such as sandboxes) is still an open problem [20], [21], [22].
This makes (ii) a less accessible but likely a more effective
option. Consequently, both scenarios are relevant in practice,
which motivates us to study their challenges.

We evaluate three ML approaches [5], [6], [7] that reach
95% true-positive rate (TPR) at 1% false-positive rate (FPR)
when evaluated on sandbox traces. We use a dataset from Avl-
lazagaj et al. [15] containing around 1M endpoint traces from
26K samples, recorded on real-world hosts by an anti-malware
vendor. The malicious samples in this dataset were undetected
by the vendor’s defenses at that time and caused real-world
infections. Consequently, this data reflects the realistic threats
that behavioral detectors must combat. Additionally, we collect
a dataset of traces (contemporaneous to our endpoint data)
from two sandboxes to realistically study scenario (i).

Our initial finding is that ML methods perform poorly in
both scenarios (i) (∼17% TPR) and (ii) (∼49% TPR), in
contrast with their excellent performance on sandbox traces
(see Table I). We study the low performance in (i) from the
lens of distribution shift, a problem that plagues ML in many
applications [23]. Similarly, the security community has articu-
lated the challenge of concept drift, where the data distribution
shifts over time [24]. We attempt to address the differences in
data distribution between sandbox vs. endpoint traces using
classification with rejection (an existing tool against concept
drift [24]) and found that it does not improve the performance
enough. Interestingly, endpoint traces of benign samples are
also rejected as “drifting” in high proportions, whereas in prior
work concept drift has mostly affected malware [25].

Investigating why existing methods perform poorly, we first
discovered that endpoint detectors are applied to a different
distribution of samples than considered in prior work: they
are typically applied only to the hardest-to-classify samples.
Past research has trained and evaluated detectors on a corpus
of samples from repositories [5], [6], [26] such as Malware-
Bazaar [27]. However, endpoint malware detection systems
employ a pipeline where basic methods (e.g., static signatures)
attempt to categorize samples first, and ML-based classifiers
are applied only to samples that remain unresolved [9]. Con-
sequently, in the wild, endpoint classifiers are only applied
to samples that tend to be harder to classify than an average
sample in a standard corpus. Prior research has overlooked
this factor, and we find that it causes a significant drop in
performance: it reduces the performance of classifiers trained
on sandbox traces from 95% (for samples from a standard

corpus) to ∼60% TPR (when we adjust the distribution of
samples to take into account earlier stages in the pipeline).
This shows that prior evaluations have vastly overestimated
the effectiveness of behavioral detectors in the wild.

Second, we study the impact of variable program behaviors
across different environments. We discovered large differences
between a sample’s sandbox trace and its endpoint traces.
Sandbox traces lack diversity: collecting multiple traces by
running a group of related samples, e.g., from the same
malware family, in a sandbox produces very similar traces.
This introduces spurious features that do not generalize to
other environments. In contrast, endpoint traces are diverse,
which hurts performance by making a model’s predictions on
different traces of the same sample inconsistent. Moreover, we
provide the first evidence that sandbox-evading malware (40–
80% of all malware [17]) biases a model in scenario (i) to
classify very short traces (often an indication of evasion [28])
as malware. This correlation is spurious as it is absent in
endpoint traces; thus, it causes prior evaluations using sandbox
traces to overestimate the accuracy of endpoint classifiers.

Characterizing these challenges allows us to explore avenues
for performance improvements. To improve the performance
on the distribution of difficult-to-classify samples, we use
soft labeling (effective against label noise [29]) and more
accurate distributions for training. Against variable behaviors,
we employ a technique popular in other areas of ML: in-
variant learning [30]. In particular, we train our models to
make consistent predictions on different traces of the same
sample, forcing them to learn robust, environment-independent
features. Together, these strategies lead to moderate gains,
from 17% to 22% TPR in scenario (i) and from 49% to 52% in
scenario (ii) (30% and 5% relative improvement, respectively).

We believe our results should serve as a call to action
for the community. Prior research has suggested that it is
possible to achieve over 95% TPR, which might leave the
impression that progress is saturated and there is not much
room for improvement in behavioral malware detection using
ML. We show that the reality is different: the problem is not
solved, the actual performance on malware in the wild is far
worse, and there are major unsolved challenges and significant
room for further improvement. Moreover, ML methods that
have shown success on standard benchmarks, such as group
robustness [31], struggle due to the complexities of this
domain. We plan to stimulate progress on this problem by
releasing our sandbox dataset and metadata and offering a
pipeline that allows researchers to evaluate their behavioral
malware detectors against our real-world endpoint data. Our
public website (https://malwaredetectioninthewild.github.io/)

https://malwaredetectioninthewild.github.io/

includes the details on this evaluation pipeline and data release.
Contributions. (I) We measure the performance discrepancy
of ML-based malware detectors between sandbox-only and
endpoint settings. (II) We characterize the ML challenges,
such as distribution shifts, behind this discrepancy. (III) We
explore ML methods to improve the endpoint performance.

II. BACKGROUND AND RELATED WORK

Dynamic Malware Analysis. Most work in dynamic analysis
focuses on analyzing the behaviors of a sample detonated in
controlled environments, such as sandboxes [32], [33]. As
dynamic analysis has become a staple, malware has started
including checks that suppress malicious activities if the
environment is fingerprinted as a sandbox, known as evasive
malware [34]. Although many strategies have been developed
to prevent fingerprinting [35], this is still an ongoing arms
race [21]. Even the methods that analyze samples in bare metal
environments [16], [18] struggle to prevent evasion [21]. To
our knowledge, we have taken the first step toward measuring
the implications of evasion for ML-based detectors at end-
points. A recent large-scale measurement study over variable
program behaviors in the wild has found that a given malware
sample can behave significantly differently across time and
in different real-world hosts [15]. Our work connects to this
line of work as we are interested in quantifying the impact of
these challenges, such as evasion or variability, on a malware
detector deployed for endpoint detection at hosts in the wild.
ML for Malware Detection. ML-based methods are widely
used in research and practice with static [4] and behavioral
features [36]. In behavioral detection, methods that treat a
program’s execution trace as a text document (a sequence
of tokens) and adapt existing ML architectures have shown
promise [5], [6], [7]. Most of these methods are trained and
tested on the traces from a pre-configured sandbox for samples
collected from public repositories (see [37] for the popular
ones). We aim to understand the implications of these practices
and the efficacy of popular ML approaches for detecting
malware with behavioral features in real-world hosts.
Distribution Shifts in ML. Distribution shift occurs when
a model’s training and testing distributions have significant
differences, which hurts the performance [23]. For example,
as new malware variants emerge and old ones disappear over
time, the performance of a detector that has not been kept
up-to-date will deteriorate, known as concept drift [38]. An
effective way to deal with concept drift is deploying drift
detectors to reject samples that would have been misclassified
and training on them later to update the model [24], [25],
[39]. We deploy a drift detector to characterize how the
distribution shifts in our problem differ from concept drift. The
ML community has also proposed other ideas to tackle dis-
tribution shifts in different contexts, such as domain invariant
features [40], [41], distributionally robust optimization [31], or
continuous learning [39]. We adapt some of these ideas, such
as invariant learning, to assess their benefits in our problem.

Limitations of ML for Security. Research suggests that pop-
ular ML methods have many pitfalls when applied to security
tasks [42]. For example, in malware detection, the success of
many methods has been overestimated due to impossible time
splits of training and testing sets [38]. Another line of work
focuses on how ML methods successful in lab-only evaluations
break down in the real world due to distribution shifts, e.g.,
in the context of network anomaly detection [43], website
fingerprinting [44] or malware detection [45], [46]. In these
contexts, models are known to learn spurious features, such as
specific IP addresses [43], that are artifacts of the experimental
setup and do not apply to realistic settings. We investigate the
limitations of ML methods specifically in behavioral malware
detection when they are trained and evaluated in controlled
settings (e.g., using sandboxes) but deployed in the wild.

III. ENDPOINT MALWARE DETECTION

Terminology. A sample is an executable program identified by
its unique SHA-256 hash. A trace is a sequence of behavioral
actions (such as file accesses or process creations) performed
by a sample when it is executed in a computing environment.
We refer to an in-the-wild endpoint environment as a host.
Our work focuses on Windows hosts and executable samples.
In our endpoint dataset, the anti-malware system in each host
recorded the traces of samples executed by the host that were
not determined to be benign or malicious at an earlier stage of
the detection pipeline. Each sample can have multiple traces
recorded at multiple hosts at different times. A sandbox (SB)
is a synthetic environment that provides tools for analyzing
samples and recording their traces with controlled executions.
Our sandbox dataset contains traces collected from two com-
mercial sandboxes: Tencent HABO [47] and VirusTotal [48],
which we will refer to as SB1 and SB2, respectively.
Notation. We denote an individual sample in our dataset as
Pi and its ground truth label as yi, where yi = 0 and yi = 1
indicate a benign and malware sample, respectively. If Pi is a
malware sample, it is also tagged with a family label si that
is useful for grouping samples with similar characteristics. A
trace of Pi is xj

i , where j denotes the execution environment,
specifically, j =0 refers to the endpoint hosts and j ∈ {1, 2}
refers to the sandboxes. As there are multiple endpoint traces
per sample, we refer to the k-th one as x0

i,k, and the endpoint
traces of a sample are enumerated by their timestamps. The
timestamp of its earliest observed trace—x0

i,0—marks the first
time Pi was first seen in the wild, and x0

i,(t<h) is the set of
all endpoint traces recorded within h hours of this.

An ML-based detection model takes a trace xi of Pi as its
input and aims to infer yi. We split a model f into two parts: an
encoder enc and a classifier g. The encoder produces a vector
embedding zi = enc(xi) of the input trace and f(xi) = g(zi)
is the model’s predicted probability (score) that Pi is malware.
The predicted label ŷi is ŷi = 1 if f(xi) ≥ τ , or ŷi = 0,
otherwise. Here, τ is a tunable threshold, where a higher τ
reduces false positives in exchange for fewer true positives. In
§III-C, we discuss the tuning of τ in more detail.

The host wants
to execute the
sample 𝐏

1

1. Blocklists /
Allowlists
2. File
reputation
3. Signatures
4. ML with
static features

The anti-malware
first applies a
series of static
techniques on 𝐏

2

Is 𝐏
malware?

FileCreated
MutexCreated
RegistryEdit

If 𝐏 is undetected, it
is executed, and the
endpoint detector
observes its trace

𝐏

3

Undetected𝐏 is

Execution
Blocked

Execution
Allowed

Endpoint
Detector

Observe
the trace

Fig. 1: An overview of endpoint malware detection.

A. Malware Detection Pipeline

Figure 1 provides an overview of the pipeline for malware
detection at endpoints. In practice, vendors deploy a chain of
techniques [3], [9] to detect if a sample P encountered by a
host (e.g., from an e-mail attachment) is malware—step 2
and 3 . If one technique in the pipeline fails to classify the
sample as malware or benign conclusively, the next one is
invoked. First, it deploys high-precision methods (blocklists
and signatures), then less precise static ML approaches [4],
[49], and finally, dynamic and behavioral analysis. We focus
on ML-based behavioral malware detectors deployed in step
3 . Static techniques operate without executing the sample and

are deployed first as they are more efficient and secure—step
2 . This is sufficient for classifying most existing samples [26]

either as malware (P is prevented from executing) or benign
(P is allowed to execute). If P remains undetected after this
step, it will be executed if the host demands it, e.g., by clicking
on the attachment. If P is malware, executing it leads to a
real-world compromise—an infection. An endpoint detector
is the last line of defense that operates at the host in real-
time to identify whether P is malware by consuming the trace
resulting from this execution—step 3 . If P is detected as
malware during this step, anti-malware products often apply
remedies such as quarantining, deleting files, or alerting [8].

We identified two issues regarding this pipeline in past
research. First, prior work constructed evaluation sets for
behavioral malware detectors without considering their po-
sition in an end-to-end pipeline. As a result, the challenges
in performing behavioral detection on samples that bypassed
static methods are unknown. Second, endpoint detectors must
classify the sample based on an endpoint trace observed at
the end host. It is not feasible to first execute the sample
in a sandbox and then classify it based on the sandbox
trace, as running in a sandbox (whether in the cloud [50] or
on-premise [14]) introduces unacceptable delays. Prior work
has only evaluated ML detectors on sandbox traces, but in
deployment, the detectors will be applied to endpoint traces, so
their actual performance has not been accurately evaluated. We
tackle these issues by performing realistic evaluations using
our endpoint dataset that contains only the traces of undetected
samples—which reached the step 3 in the wild.
Assumptions and Limitations. Security vendors such as
VMRay [9], Palo Alto Networks [51], and Kaspersky [52] use
multi-tiered solutions that chain static and dynamic analysis

in their anti-malware products. We do not have access to
these proprietary pipelines. Instead, we consider a streamlined
one in Figure 1 based on public documentation by these
vendors. Such a pipeline should ideally be evaluated end-
to-end, starting with a large pool of samples from the wild,
where each component sees only the samples that previous
components cannot classify. We are unable to perform such
an evaluation as we do not have raw binaries (to extract
static features) of our endpoint samples (we could find less
than 10% of samples from public sources, mostly malware).
Prior malware detection datasets (e.g., SOREL [53]) only share
vectorized static features and not the binaries, preventing the
simulation of behavioral components. However, we can still
realistically isolate and evaluate behavioral ML methods at the
pipeline’s last stage as our endpoint dataset contains samples
that bypassed a real-world product’s static components. We
recommend future work to collect datasets (with static and dy-
namic features) that allow the evaluation of the whole pipeline
end-to-end or each component according to its position.

Moreover, a pipeline’s components constantly evolve in
practice. For example, a sample from a new malware family
might initially bypass static methods. Eventually, this family
can be caught at step 2 with new static signatures or updates
to static ML models. Evaluating this requires a dataset with
a large temporal span, whereas our endpoint data covers
only six months (insufficient for significant changes [25]).
Consequently, we perform our evaluation with fixed behavioral
ML models that are trained at a particular timestamp and tested
on future samples that bypass static methods.

B. Model Training and Evaluation Scenarios

There are two main phases for deploying an ML-based
endpoint detector: training and testing. In the training phase,
the vendor collects a set of samples. These samples are often
collected from large-scale repositories, either public, such as
MalwareBazaar [27], or private [54]. Most prior work in this
domain has followed this practice [5], [6], [26], [28], [55]. The
vendor can rely on a public platform, such as VirusTotal [48],
to label these samples or employ malware analysts in more
advanced cases [56]. Most commonly, the collected samples
are executed in sandboxes that can conveniently produce large-
scale datasets of traces for training. In contrast, collecting
a large-scale dataset of endpoint traces from hosts requires
a telemetry infrastructure, a permissive user agreement, and
a large enough user base—conditions that commercial anti-
malware vendors can meet but researchers typically cannot.
The collected traces are used to train an ML model that can
detect malware from runtime behaviors. During the test phase,
the model is deployed locally at each host. Training and testing
phases can also be interwoven as vendors continuously update
their models on new data [39].

Table II summarizes the detection scenarios, each defined
along four dimensions, considered in our work. The SAM-
PLES dimensions indicate the step of the pipeline training
or testing samples originate from: 1 —a broad distribution
of all programs hosts encounter—or 3 —a distribution of

programs that remained undetected after 2 . The ENV. (short
for environment) dimensions encode where the traces are
collected—from a sandbox or endpoint hosts.

Deployment
Scenario

Training Phase Testing Phase
Samples Env. Samples Env.

SB->SB Step 1 Sandbox Step 1 Sandbox
SB->EP Step 1 Sandbox Step 3 Endpoint
EP->EP Step 3 Endpoint Step 3 Endpoint

TABLE II: Scenarios for behavioral malware detection.
SB->SB is the scenario most prior work in our domain

considers: both training and testing samples are collected
from sample repositories and corpora, which represent the
distribution of all samples seen in the wild, and these samples
are executed in a sandbox [5], [6], [28], [55]. It is already
known (and also corroborated by our results) that detectors
excel (90%+ TPR) in this scenario [26].

In SB->EP and EP->EP scenarios, detectors are deployed
at 3 in Figure 1, i.e., on the endpoint traces of undetected
samples. In SB->EP, the detector is trained only on sandbox-
based data (same as SB->SB) but deployed for endpoint
detection. In EP->EP, the model is trained on the real-
world endpoint traces of undetected samples. This departs
from the norm in published research, as most prior detectors
have relied on sandbox traces for training. We study this
scenario to assess the success of a model trained explicitly
for endpoint detection. These scenarios represent a trade-off
between practicality (where SB->EP is favored) and detection
performance (where EP->EP is favored).

C. Success Metrics for Endpoint Detection

A conventional detector aims to detect as many malware
samples as possible, i.e., to maximize the true-positive rate
(TPR), while minimizing the number of benign samples mis-
classified, i.e., the false-positive rate (FPR). The defender can
control the TPR and FPR by tuning the detection threshold
τ ; a higher τ implies a lower TPR and FPR. Following prior
work [57], we evaluate our models regarding their TPR @1%
FPR on the test sets (reported as TPR). Additionally, we
report the area under the TPR-FPR curve, i.e., the receiver
operating characteristic curve, to gauge a model’s overall
ability to separate malware and benign classes (reported as
AUC). Note that a uniform random predictor, regardless of
the class proportions in the test set, would achieve 1% TPR
@1% FPR and 50% AUC.

Measuring TPR and FPR in SB->SB is straightforward
as there is a one-to-one mapping from samples to traces.
However, in endpoint detection (SB->EP and EP->EP), there
is a one-to-many mapping as multiple hosts may execute the
same sample at different times, and these resulting traces often
have high variability [15]. For example, a few malware sam-
ples have over 400 traces, each corresponding to a real-world
infection (see Figure 7a). To obtain a one-to-one mapping,
we consider “a representative trace” by randomly selecting
one endpoint trace of each sample to create an EP test set on

which we measure a model’s TPR. We repeat this process 100
times and report the average TPR over these runs as the final
TPR. This gives us a fair and unambiguous way to compare
performance across scenarios. We refine this metric further
based on practical considerations. 67% of traces of an average
malware sample (52% for benign) are seen within 24 hours of
its first execution at a host. As this ratio drops rapidly after
the first day (see Figure 7b) and malware samples die within
days [56], we only randomly select from the first-day traces—
x0
i,(t<24)—unless stated otherwise.

IV. TECHNICAL SETUP

A. Datasets

Training Testing
Dataset Mal. Ben. Mal. Ben.

EP 0.5K 16.5K 0.4K 8.1K
EP (Traces) 19.4K 531.6K 9.7K 412.5K

SB1 46.4K 16.7K 31.0K 16.4K
SB2 34.5K 7.8K 18.1K 7.3K
SB1 ∩ SB2 9.9K 5.3K 8.9K 5.5K

TABLE III: A summary of the samples in our datasets.

Endpoint (EP) Dataset. Provided by Avllazagaj et al. [15],
we use a dataset of program traces recorded on real Windows
hosts of a commercial anti-malware vendor from over 100
countries between January and July 2018. The vendor did
not know whether the samples were benign or malicious at
the time of execution. The samples were executed by the
users, who interacted with them naturally, and the vendor’s
behavioral component recorded the traces in a last-ditch effort
to discover unknown threats. We have reprocessed this dataset
for our problem and relabeled it by querying VirusTotal [48]
for more accurate labels. Our processed dataset contains
around 1M execution traces from 900 malware and 25K benign
samples. Each trace includes high-level actions (file, registry,
process, and mutex actions) of a sample that is executed until
its termination. To our knowledge, this is the only dataset that
allows us to evaluate endpoint detection at scale.
Sandbox (SB) Dataset. A realistic study of SB->EP requires
a sandbox dataset contemporaneous to our EP dataset. Because
the sandbox dataset will serve as the training set and the EP
dataset as the test set, we must collect samples seen in or
before 2018 to respect causality [38]. Moreover, we cannot
detonate samples in a sandbox, as it is commonly done [5],
[6], [28], [55], as behaviors of old programs today would
differ from their original behaviors. This is because malware
stops functioning when, for example, its remote infrastructure
dies [56] or it starts behaving differently over time [15].
Our solution is collecting traces from VirusTotal [48], where
third-party sandbox vendors publicly share behavior reports
on samples. To this end, we curate a list of SHA-256 hashes
of Windows samples from popular public malware detection
corpora, including EMBER [49], and SOREL [53], released
in 2017 or 2018. We then query VirusTotal with these hashes
to collect their sandbox traces when available. We discard

traces that came more than six months after the sample was
first seen to capture close-to-original behaviors. This results in
traces from two sandbox vendors for around 110K malware
and 40K benign samples. These vendors are well-known in
their countries of origin (SB1 is from China, and SB2 is from
the USA). There is a class imbalance as vendors on VirusTotal
are more inclined to share traces of malware samples.
Trace Standardization. Our traces from three sources (SB1,
SB2, and EP) have different formats, contents, and conven-
tions. We first pre-process our sandbox traces to keep only
the type of behaviors recorded in our EP traces, such as file,
process, mutex, and registry key creations. We then convert all
traces to a single standardized format (see §A-A for details).
As shown in §V, the resulting sandbox traces allow us to train
models with comparable performance to prior work (∼95%
TPR and 99% AUC) in the SB->SB scenario.
Temporal Splitting and Labeling. We split our datasets into
two portions based on the timestamps of the samples (the first-
seen dates) to ensure that the train and test samples are tem-
porally disjoint, avoiding a common pitfall in prior work [38],
[42]. Samples seen before April 1st, 2018, and their traces are
in the Training portion, and the samples seen after that are
in the Testing portion, on which we never train. As labels of
samples are known to change mildly over time [58], we make
the best effort to assign the training samples historical labels
that were available before April 1st, 2018. We could find such
historical labels for ∼24% and 100% of the samples in the EP
and SB training portions, respectively. For testing samples, we
query VirusTotal to obtain the most recent detection reports
and label samples detected by over five anti-malware engines
as malware, following the advice in [58]. Further, we use
AVClass2 [59] to assign family labels to our malware samples
based on their detection reports. We tag malware samples
that did not receive a family label as Generic malware.
This methodology ensures that our evaluation is realistic and
reflects the conditions the anti-malware vendor had to work
under when our endpoint data was collected.

B. Machine Learning Details

We experiment with three deep-learning-based approaches:
(i) a bag-of-n-grams-based model (NGR), (ii) a hybrid model
that combines convolution and attention (HYB), and (iii) a
self-attention-based sequence model (ATT). These approaches
cover a wide range of designs proposed by prior work in be-
havioral malware detection with ML, respectively, MalDy [5],
Neurlux [6] and, most recently, Nebula [7] (see §B for details
on these models). We address the class imbalance in our
training sets by oversampling the underrepresented classes
(malware in EP and benign in SB datasets). Note that our
goal is not to develop a new architecture or feature processing
routine but to evaluate the state-of-the-art ones at endpoint
malware detection. We make our ML improvements without
changing the fundamentals of existing approaches.
Model Selection. In each setting, we train a set of models with
a hyper-parameter grid over model capacity (layer widths),

learning rate, regularization (dropout), early-stopping, over-
sampling factor, and other setting-specific parameters, such as
α in §VII. From this set, we report the average performance of
the top-N models, selected according to the metric of interest
evaluated on a test set, e.g., TPR on SB1, TPR on EP, or AUC
on EP. We opt for performing model selection using the test
sets (instead of creating separate validation sets) because our
EP dataset contains only a small number of malware samples.
We set N =20 so that we can still attribute our results to
underlying learning approaches rather than having found a
lucky set of hyper-parameters using a test set.

V. ENDPOINT DETECTION EVALUATIONS

Table IV presents the detection performance of ML models
(based on the methodology in §IV-B), using three different
data sets (SB1, SB2, and EP) for training and testing, following
the scenarios in Table II. Here, for example, SB1->SB2 and
SB1->EP refer to the scenarios where the models are trained
on the SB1 training set and evaluated on the SB2 and EP
testing sets, respectively. See Table XIII for the AUC results.

A. Evaluating the SB->EP Scenario

We see wide performance gaps between SB->SB and
SB->EP scenarios. The gap widens when models are trained
and selected using the same sandbox, e.g., 95.0% vs. 11.2%
for NGR trained and selected using SB1. When models are
selected using a different sandbox, the gap shrinks, e.g.,
94.0% vs. 13.9% for NGR trained on SB1 and selected using
SB2. The gap is still substantial even when we select the
models based on their EP performance: e.g., 93.2% vs. 16.7%
for NGR trained on SB1 and selected using EP. Although
there is a gap between a model’s performances on different
sandboxes, e.g., SB1->SB1 vs. SB1->SB2, it is smaller than
the SB->EP gap. Overall, this gap persists regardless of the
training sandbox or the model type, hinting at the limitations
of sandbox-trained models for endpoint detection.

We observed that the gap widens when model training and
selection use traces from the same sandbox. In §C, we perform
an experiment showing this is a generally valid observation.
We believe this is because a model that performs better on the
traces from an unseen sandbox is less likely to have overfitted
to features specific to the training sandbox. We discuss such
features in more detail in §VII. This implies that studies
that rely on a single sandbox for training and evaluation in
SB->SB [5], [7], [28], [55] are at a higher risk of producing
worse models for SB->EP. Consequently, we recommend
performing model selection in SB->EP using traces from a
different, unseen sandbox.

Finally, we explore combining traces from two sandboxes
(SB1 and SB2) for training. However, this brings only minor
improvements for SB->EP over training on traces from one
sandbox. When we use EP traces for model selection, training
on both sandboxes achieves at most 17.5% TPR on the EP test
set for NGR (11.7% for HYB, and 13.9% for ATT). In §VII, we
show that the diversity between the traces of a sample from
two sandboxes is much lower than between its traces from two

Sel.
Test
Set

Trained on SB1 Trained on SB2 Trained on EP
SB1->SB1 SB1->SB2 SB1->EP SB2->SB1 SB2->SB2 SB2->EP EP->EP

NGR HYB ATT NGR HYB ATT NGR HYB ATT NGR HYB ATT NGR HYB ATT NGR HYB ATT NGR HYB ATT
SB1 95.0 94.2 93.2 60.7 53.7 56.7 11.2 8.0 4.5 48.5 31.8 32.7 85.5 59.2 83.7 14.2 7.2 12.3 43.5 34.0 25.7
SB2 94.0 93.1 92.2 70.4 61.2 64.3 13.9 7.1 5.5 17.6 10.0 14.7 92.6 91.4 90.8 7.5 6.3 11.4 43.4 37.6 26.4
EP 93.2 93.1 87.8 63.5 48.0 52.9 16.7 10.2 8.3 34.5 16.6 15.7 79.3 79.5 88.7 17.3 10.9 13.1 49.5 43.5 42.8

TABLE IV: The performance (TPR%) of three ML approaches (NGR, HYB, ATT) in seven detection scenarios (based on
Table II). The models are selected using the test set in each row, and the average TPR of the top 20 models is reported.

endpoint hosts. This lack of diversity makes combining SB1
and SB2 traces ineffective for increasing the EP performance.
The Impact of Trace Standardization. The standardized
trace format (see §IV-A) removes features from sandbox traces
unavailable in endpoint traces. In §A-B, to understand whether
this might hurt the SB->EP performance, we experiment
with training and testing models on unstandardized sandbox
traces. This shows that standardization moderately hurts the
in-domain performance (test traces from the training sandbox)
while improving generalization to other domains (traces from
other sandboxes). Consequently, we believe standardization
helps with improving out-of-domain performance in SB->EP.
Applying Drift Detection. We study the low performance in
SB->EP through the lens of distribution shift, which occurs
if the process generating inputs, i.e., program traces, changes
between the training and testing phases. Concept drift is a
highly-studied type of distribution shift in malware detection
that stems from malware evolution [38]. In past work on
malware concept drift, the distribution shift builds up over
time in concept drift, e.g., over 50% performance drop in
2 years [25]. In contrast, we find that in SB->EP, the shift
manifests immediately after the model is deployed.

One way to combat malware concept drift is to use a drift
detector (DD) to identify samples that might have drifted from
the training distribution [24], [25], [39], [60]. The classifier
then rejects such out-of-distribution (OOD) samples while
accepting the in-distribution (ID) ones on which predictions
are reliable [24], [60]. We apply drift detection to quantify
the distribution shift present in SB->EP. We employ a recent
technique ReAct [61] to assign an outlierness score to each
sample, among which the highest-scoring ones are rejected.
ReAct rectifies a model’s penultimate layer activations, which
calibrates the prediction probabilities of a model to be a better
indicator of outlierness. We selected ReAact due to its flexible
approach, which can be applied to any neural network model.

We experiment with a NGR model trained on the SB1
training set. We tune ReAct to reject K ∈ [0, 15]% of the
traces in the SB1 test set (i.e., the ID rejection rate) and
separately measure for EP and SB2 test sets (i) corresponding
rejection rates on the malware and benign traces; and (ii) the
TPR on the accepted traces. Table V presents the results.

Regarding (i), both EP and SB2 traces are rejected at much
higher rates than the ID samples, e.g., when K =10%, ReAct
rejects 53% and 38% of the malware traces in EP and SB2,
respectively. Malware traces in EP have the highest rejection
rate, suggesting that they are the most drifted from the
malware traces in the SB1 training set. That said, benign traces

are also likely to be rejected, e.g., when K =10%, 39% of the
EP, and 37% of the SB2 benign traces are rejected. This is a
critical distinction from past work on malware concept drift,
where malware samples are rejected at much higher rates than
benign samples [25]. The following sections aim to illuminate
this phenomenon both qualitatively and quantitatively.

Regarding (ii), classification with rejection increases the
performance for both EP and SB2 test sets. However, this
increase is less pronounced for EP, e.g., gaining ∼10% TPR
(over the baselines in Table IV) takes rejecting 67% and 22%
of malware traces in EP and SB2, respectively. This also
distinguishes the distribution shift in SB->EP from concept
drift; rejection rates must be high for meaningful performance
gains due to the magnitude of the shift.

(K) ID
Rej%

SB1->EP SB1->SB2
TPR Mal% Ben% TPR Mal% Ben%

5% 20.2% 31.1% 20.5% 79.2% 22.0% 21.5%
10% 23.5% 53.2% 39.0% 89.4% 38.2% 36.5%
15% 25.6% 67.7% 46.4% 88.3% 52.4% 53.6%

TABLE V: The TPR of an NGR model in SB1->SB2 and
SB1->EP scenarios, with increasing ID rejection rates and
the corresponding rejection rates of malw. and benign traces.

B. Evaluating the EP->EP Scenario

For our models in EP->EP, we select up to 4 EP traces per
sample to form our training set. As we will show in §VII,
the behavior variability among the real-world traces of a
sample [15] impacts the model’s predictions. Consequently,
including more traces per sample for training provides better
coverage of the behaviors in the wild. We find that using more
than 4 traces per sample provides diminishing returns, e.g., for
1, 2, 4, and 16 traces per sample, the TPR of NGR is 43.0%,
44.8%, 49.5%, and 49.9%, respectively.

In Table IV, we see a much higher EP performance in
EP->EP than in SB->EP, as expected. Although training
and testing sets are from similar distributions in EP->EP (as
opposed to SB->EP), the performance still lags behind the
SB->SB performance, e.g., 95% vs. 50% TPR and 99% vs.
88% AUC (Table XIII). In the following sections, we shed
light on this discrepancy and what makes endpoint detection
particularly more challenging than a sandbox-only scenario.

Takeaways: Distribution shift causes ML methods trained
on sandbox traces to perform poorly on endpoint traces
(70+% TPR drop). Even when trained on endpoint traces,
these methods’ endpoint performance still cannot reach their
sandbox-based performance (∼20% vs. 95% TPR), hinting
at the inherent challenges in endpoint detection.

VI. ENDPOINT DETECTION DEALS WITH
DIFFICULT-TO-CLASSIFY SAMPLES

As described in §III-A, an endpoint detector operates on
samples that cannot be classified statically—a subset of all
samples in the wild. The filtering effect this introduces on the
distribution of samples relevant to endpoint detection has not
been systematically measured before. To illustrate, we examine
(based on Table XIV) the top malware families in our EP
test set (undetected samples) and the SB test set (the samples
from public corpora). Although both datasets include only the
samples first seen in 2017-2018, they encode different priors
over samples. For example, generic malware (i.e., malware that
could not be placed into any known family) covers 23.8%
of the EP samples vs. 4.8% of the SB samples. In the EP
set, there are families such as Khalesi and Emotet that
were rampant in 2018 [62]. Conversely, in the SB set, we see
older families such as Sivis and Upatre (circa 2013-2014),
whose variants still spread to this day. Moreover, in Table XIV,
we share top benign sample publishers (extracted from the
code-signing certificates when available), indicating a similar
distribution difference in benign samples. Overall, the typical
distribution of training and testing samples used by prior work
in SB->SB [5], [6], [26] is substantially different than the
distribution of testing samples in SB->EP and EP->EP.
Borderline Samples and Label Noise. A common practice
in related work in malware detection with ML is discarding
borderline samples on which the anti-malware engines on
VirusTotal are not in consensus. Different works use dif-
ferent criteria; for example, they discard a sample if it is
detected by more than zero and less than five engines [28],
20 engines [63] or 40 engines [64]. Even works that do not
explicitly discard borderline samples may follow a biased
data collection process. For example, recent related work has
suggested that dynamic features have limited benefits over
static features [26]. The benign samples used in this work
were from a trusted Windows software repository, and 93%
of their malware samples were detected by 20+ engines.

We consider the samples detected by more than zero and
less than 20 engines borderline. This results in 27.7% bor-
derline samples in our EP test set (vs. 15.9% in the SB test
set). The prior practice would have discarded over a quarter of
the samples that a real-world endpoint detector encountered.
Next, we will show that this artificially inflates the measured
success of a model. As described in §IV-A, we do not discard
any samples and label a sample as malware if more than
five engines detect it. This threshold poses a trade-off for the
ground truth: as it increases, more malware samples may be
labeled as benign, and as it decreases, more benign samples

may be labeled as malware. We present a case study in §VI-B
to demonstrate how this trade-off plays out.

A. The Impact of Sample Distributions

Here, we measure how the distribution of samples in the test
set changes a model’s measured (and perceived) performance.
To this end, we resample our test sets according to some
criteria, e.g., following the malware family distribution in
the EP test set, and evaluate our models on these new test
sets. This simulates different distributions over a model’s test
samples and allows us to do controlled experiments. We focus
on NGR models due to their superior EP performance in §V.

EX#
SB1->SB1 SB1->EP EP->EP

TPR AUC TPR AUC TPR AUC

EX0 No Resampling - Orig. Distributions
93.2 99.0 16.7 78.4 49.5 87.5

EX1 Orig. Distributions w/o Generic Malware
95.6 99.5 18.6 81.4 56.8 91.4

EX2 Only Generic Malware
38.4 85.8 9.8 67.8 23.9 74.2

EX3 Discard Borderline Samples
96.7 99.5 22.6 83.9 66.9 94.2

EX4 Malw. Resampled Following EP Test (w/ Generic)
63.2 94.2 16.7 78.4 49.5 87.5

EX5 Malw. Resampled Following EP Test (w/o Generic)
72.1 97.2 18.6 81.4 56.8 91.4

TABLE VI: The impact of sample distributions in the test set
on model evaluations. EX0-5 denote different experiments.

Table VI presents the results of our resampling experiments.
We resample the test sets according to five criteria—denoted
as EX0-5 where EX0 is testing on the original test set of
each respective scenario. In EX1, leaving out generic malware
samples from original test sets leads to a significant boost
in performance, whereas keeping only generic malware in
EX2 causes a massive drop. This aligns with prior claims that
generic malware is at the borderline and harder to classify [54].
The fact that Generic has ∼ 5× higher coverage in the
EP test set than in the SB test set (23.8% vs. 4.8%) also
demonstrates the filtering effect that funnels more difficult
samples to the endpoint detector. Next, in EX3, we discard the
borderline samples (identified in the previous section) from
all test sets, simulating a common prior practice [26], [28],
[63]. This yields a significant boost in all scenarios: 5.9%
TPR boost in SB1->EP and 17.4% in EP->EP. In EX4
and EX5, we resample the test sets to match the distribution
of malware families in the EP test set, with and without
generic malware, respectively. Note that, for SB1->EP and
EP->EP, EX4 is equivalent to EX0 and EX5 is equivalent to
EX1. We observe a large decrease in the original SB1->SB1
performance, e.g., from 93.2% TPR to 63.2% in EX4 and to
72.1% in EX5. Despite neither including any generic malware,
the SB1->SB1 performance in EX5 is significantly lower

than EX1. This suggests that non-generic malware samples
relevant to endpoint detection are generally harder to classify
correctly, whether based on their sandbox or endpoint traces.
Consequently, the performance of prior behavioral detectors
may be overestimated as they are evaluated on samples that
are not representative of the distribution of samples faced
in endpoint detection. Although the distribution of malware
samples explains most of the performance loss when ML
classifiers are applied to EP traces, an unexplained gap remains
(63.2% vs. 49.5%), which we attempt to explain in §VII.

B. Case Studies

Next, we present two case studies illustrating sample distri-
bution challenges in endpoint malware detection.

Difficult Benign Samples. Table XIV lists Microsoft as the
top benign publisher in our EP test set, covering 7.8% of
all benign samples. This is counterintuitive as Microsoft is
a trusted publisher, and our EP dataset only records samples
that could not be classified statically as malware or benign.
We discovered that almost all (98%) Microsoft samples in our
EP test set share the AM_Delta prefix in their filenames,
which correspond to periodic patches to Windows Defender.
The NGR model in EP->EP outputs an average score of 37%
on AM_Delta endpoint traces, almost 2.5× of the average
score across all benign traces. Note that the score quantifies the
model’s confidence that the input trace belongs to a malware
sample. In EP->EP, on a test set containing only AM_Delta
samples as the benign samples, the model achieves only 62.6%
AUC, compared to 87.5% with all benign samples. Moreover,
there are reports [65] about anti-malware software falsely
flagging AM_Delta files. A popular configuration repository
for Sysmon—a tool to monitor process activities—includes an
allow-list rule specifically for AM_Delta [66]. These suggest
that AM_Delta samples are difficult to classify correctly as
they make sensitive modifications on hosts. In contrast, our
SB test set contains only two AM_Delta samples (less than
0.01% of all benign samples). This highlights that an endpoint
detector often faces difficult—false positive prone—benign
samples in addition to difficult malware families, which is a
root cause behind poor performance in SB->EP and EP->EP.
Label Noise in Borderline Samples. Roblox is a popular
game creation platform. Our EP train and test sets contain
19 and 29 samples from Roblox. Despite being from a
trusted publisher, there are reports about anti-malware products
flagging Roblox samples. Six (31%) of our 19 training
samples were labeled as malware because they were detected
by over five engines on VirusTotal, whereas none of the 29
test samples were labeled as malware. This causes a model to
associate Roblox samples with malware-ness during training,
potentially introducing false positives during testing. For ex-
ample, our NGR model in EP->EP outputs an average score
of 40% on the endpoint test traces from Roblox samples.
This demonstrates how borderline samples such as Roblox
can introduce label noise, particularly in endpoint detection,
where they are more common.

C. Combating Sample Distribution Challenges

Building on our observations, we propose two strategies to
improve the performance in SB->EP and EP->EP.

Soft-Labeling Against Label Noise in EP->EP. Malware
detectors are generally trained using hard binary labels—
0 for benign and 1 for malware. However, hard labels are
hazardous when noisy as they force the model to overfit to a
wrong prediction [67]. The high frequency of borderline, i.e.,
potentially noisy, samples exacerbates this problem in endpoint
detection. Research suggests that soft labels can be effective
against label noise [29] by preventing the model from getting
too confident on noisy labels during training. To improve the
EP->EP performance, we implement a function to assign soft
labels to our borderline training samples.

For a given sample Pi, our function computes its soft label
as yi =min

(
dθi /β

θ, 1
)
, where di is the number of VirusTotal

engines that detected Pi. This function outputs yi =0 when
di =0 (confident benign), and it saturates at yi =1 when di≥β
(confident malware). The hyper-parameter θ determines how
fast yi grows from 0 to 1 as di increases. We present three
curves this function generates when β=20 in Figure 8. We
set β=20 and θ=0.75 without careful tuning and train new
models on this soft-labeled EP training set. The results in
Table VII (first segment) show a significant gain for HYB
(5.7% higher TPR) and a moderate gain for NGR (1.1%
higher TPR). This suggests that HYB is more vulnerable to
label noise, which is expected as HYB is a more complex
architecture than NGR with a higher capacity for overfitting.
These improvements support our intuition regarding label
noise and its effect on ML-based detectors. We leave the
exploration of advanced methods against label noise, such as
semi-supervised learning [68], to future work.

Before After
NGR HYB NGR HYB

TPR AUC TPR AUC TPR AUC TPR AUC

Soft Labeling (EP->EP)
49.5 87.5 43.5 86.8 50.6 87.8 49.2 88.2

Resampled Training Set — Uniform (SB1->EP)
16.7 78.4 10.2 74.1 15.9 77.2 8.6 74.0

Resampled Training Set — EP Training (SB1->EP)
16.7 78.4 10.2 74.1 20.0 78.6 11.4 74.9

TABLE VII: Our strategies to improve the performance against
sample distribution challenges in endpoint detection.

More Accurate Training Distributions in SB->EP. Our
models in SB->EP were trained on the distribution of samples
captured in public corpora. Although this is standard for
obtaining the best SB->SB performance [6], [7], it is not ideal
for SB->EP where the test set follows a different distribution.
ML models are heavily influenced by the priors encoded in
their training sets because the empirical risk minimization
(ERM) paradigm minimizes the average loss over all training
samples. For example, 10% of the malware in the SB training

set is from the Virut family, which will be prioritized over
Emotet, which accounts for 0.3%.

To alleviate this discrepancy in SB->EP, we turn our atten-
tion to ML research, where group robustness techniques [31],
[69], [70] have been effective against a similar problem. These
techniques aim to train models that perform well on each sub-
group (e.g., demographic groups) instead of favoring groups
over-represented in the training set. We implement a prior
group robustness method [71] by creating an SB training set
with an equal number of samples from each malware family.
Unfortunately, as presented in Table VII (second segment), this
uniform sampling strategy ends up hurting the performance in
SB->EP. We attribute this shortcoming to the large number
of groups (families) in our problem, compared to standardized
ML benchmarks, over 600 vs. typically less than 10 [69],
[72]. Moreover, malware family labels are often incomplete or
noisy [59], [73]. For example, in our SB1 training set, there are
many noisy malware family tags such as vbkryjetor (13
samples). As a result, the model is forced to balance hundreds
of groups, which also might be inaccurately tagged. These
results highlight a key difference between real-world security
applications and simplified ML benchmarks, on which most
solutions are developed and evaluated, raising doubts about
whether an uninformed training strategy could work.

Finally, we experiment with an informed strategy where
the SB->EP training set is resampled to follow the family
distribution in the EP training set. Widely used threat intelli-
gence platforms can guide practitioners about which families
to include in training [74]. Table VII (third segment) shows
that this strategy brings moderate improvements: 3.3% and
1.2% higher TPR for NGR and HYB, respectively. We will use
this strategy to train models in the rest of our paper.

Takeaways: The distribution of samples selected evaluate
malware detectors must account for the detector’s position
in a pipeline. Accordingly, creating realistic test sets for
ML-based behavioral detectors (i.e., the final step in the
pipeline) reveals the overestimated performance in prior
evaluations done on broad distributions (63% vs. 93% TPR).

VII. ENVIRONMENT-SENSITIVE PROGRAM BEHAVIORS
HURT ENDPOINT DETECTION

We have shown the performance implications of the distri-
bution of samples encountered by endpoint detectors. How-
ever, even when we accounted for distribution differences
(EX4 in Table VI), the performance in SB->SB (63.2% TPR)
is higher than the performance in SB->EP (16.7% TPR) and
in EP->EP (49.5% TPR). In this section, we aim to illuminate
the remaining performance gap by studying the impact of
variable program behaviors on ML-based approaches.

It is known that program behaviors are environment sensi-
tive and, as a result, a sample can exhibit varying behaviors in
different environments [15], [16], [34]. Malware samples are
more environment-sensitive than benign samples because, for
example, they execute only if the host has specific software
vulnerabilities [15] or do not execute if they detect they are

running in a sandbox [21], [34]. Building on these insights, we
aim to characterize the impact of variable program behaviors
on ML-based detectors. We focus on the variability stemming
from environment differences between sandboxes and end-
point hosts (for the SB->EP scenario) and between different
endpoint hosts (for the EP->EP scenario). We perform our
experiments using the improved NGR models from §VI-C.

A. The Diversity Among Endpoint Traces

Table VIII shows how much traces vary when a set of
related samples (e.g., from the same malware family) is run
in different environments. We aggregate all the traces from
three malware families and two benign publishers in our SB1,
SB2, and EP datasets. To cover a range of samples, we
select Wannacry (ransomware), Emotet (banking trojan),
and Khalesi (info-stealer) as the families, and Opera (web
browser), Roblox (game platform) as the publishers. We re-
port the average pairwise distances between these traces within
an environment, e.g., between the traces from SB1 (SB1-
SB1), and between two environments, e.g., between the traces
from SB1 and EP (SB1-EP). We use normalized compression
distance, which has been used in similar contexts [15], [75].

Within Envs. Between Envs.
SB1-SB1 SB2-SB2 EP-EP SB1-SB2 SB1-EP SB2-EP

Wcry 0.16 0.11 0.44 0.28 0.67 0.50
Emot 0.48 0.35 0.50 0.55 0.65 0.53
Khal 0.33 0.29 0.48 0.52 0.62 0.57

Oper 0.05 0.07 0.69 0.43 0.70 0.75
Rblx 0.18 0.04 0.63 0.38 0.67 0.69

TABLE VIII: Avg. pairwise distances between traces of sam-
ples from three malware families and two benign publishers.

We observe: (i) traces from the same sandbox are almost
always very similar; (ii) traces from two endpoint hosts are
dissimilar (also shown in [15]); (iii) traces from different
sandboxes are dissimilar but much less so than one trace from
a sandbox and one trace from an EP host. The observation
(iii) can be detrimental for SB->EP, as the features learned
from SB traces might be irrelevant to EP traces, and (ii) is
potentially detrimental for both scenarios. The dissimilarity
between SB and EP traces implies that a model’s training set
in SB->EP follows a different distribution than its test set,
explaining the high drift detection in §V-A.

Next, we demonstrate how (iii)—the distance between SB
traces and EP traces—affects a model in SB1->EP. Figure 2
shows that the model is more confident for traces that are
more similar to SB traces. Here, each marker represents a
group of 30 traces of a malware family from endpoint hosts,
and the x-axis quantifies the average distance of these traces
to all traces of this family from SB1. The lower this distance,
the more similar a group of endpoint traces is to traces of
this family from SB1. For example, the model outputs a 90%
score for Emotet EP traces with an average distance of 0.60
to Emotet SB1 traces, which drops to 60% for an EP trace
with a distance of 0.75. Consequently, the less similar the

input EP trace is to the SB traces in the training set, the worse
decisions the model makes and performs poorly in SB->EP.

Fig. 2: Relationship between the avg. distance of an input EP
trace to the SB traces and the model’s output score in SB->EP.
Each marker represents the avg. of 30 input traces.

In line with our observation (ii), research shows that a
sample’s behaviors vary across hosts due to host-related or
external factors [15]. To study how this variability impacts
ML, we define Si,h as the set of a model’s prediction scores
on the EP traces of a sample Pi collected within h hours after
Pi was first seen—Si,h = {f(xi,j) | xi,j ∈ x0

i, (t<h)}.

Fig. 3: Prediction score std. deviations on the EP traces of
each sample in the EP test set; in SB1->EP and EP->EP.

Figure 3 presents two histograms of the standard deviations
of Si, h=24 (denoted as σi), measured over the samples in the
EP test set. With σi, we quantify the robustness of a model’s
predictions to the variability among different EP traces of
Pi. First, score variability is higher in SB->EP, indicating
that a model trained on sandbox traces is more sensitive to
behavior variability in the wild. Further, the average σi for
malware is higher than benign (9.9% vs 5.6% in EP->EP),
aligning with the finding that malware samples behave more
variably across hosts [15]. Score variability is also not uniform
across samples; some have nearly zero, and some have over
twice the average. This is dictated by the malware type, e.g.,
botnets execute custom commands, resulting in more variable
behaviors [15] and higher score variability. Overall, behavior
variability can manifest as score variability and trigger errors
(e.g., some traces of a malware sample classified as benign),
and ML-based detectors are not naturally robust to it.
The Impact of Sandbox Configurations. Our experiments
use sandbox traces obtained from commercial sandboxes with
configurations unknown to us, likely optimized to identify
malware from its sandbox behaviors. The configuration differ-
ences between sandboxes and endpoint hosts (e.g., operating
systems, software versions) lead to the large dissimilarity
between SB and EP traces we observed. This raises the
question of whether a sandbox can be configured to obtain

traces that approximate those from real-world hosts. Training
on such sandbox traces will likely result in higher performance
in SB->EP. We acknowledge this as a valid possibility, but
it remains an open research question in the current landscape.
There is no accepted standard to configure sandboxes in
such a manner, and some research suggests that it would
be challenging to replicate endpoint systems, e.g., simulating
user interactions [35] or diverse real-world configurations [22].
Nonetheless, currently, the research community collects train-
ing sets mainly from a single sandbox for ML-based detection
solutions [5], [55], [76]. We are unable to collect our own
sandbox traces with various configurations to analyze how
sandbox configurations affect detection performance, as this
would cause a disparity between our endpoint and sandbox
data (explained in §IV-A). We highlight this as an important
direction for future work.

B. Case Studies

Next, we present two case studies to illustrate the nature of
behavior variability and its impact on ML models.
Benign Behavior Variability. RobloxLauncher and
OperaPatcher are two benign samples on the opposite
ends of the behavior variability spectrum. RobloxLauncher
accepts user input through a graphical interface, such as mouse
clicks on menu items. We clustered the EP traces of this
sample to discover two main execution paths: (i) downloading
a long list of assets (such as .mp3 or .jpeg files), pre-
sumably to update the game; (ii) creating temporary Internet
files and starting a process, presumably for launching the
game. Our EP->EP model makes more accurate predictions
on the traces in (i) than (ii) (26% vs 38% average prediction
score). In its SB2 trace, the sample downloads a similar list
of assets, whereas, in its SB1 trace, it creates only a log
file and stops, likely because it could not access the Internet.
Neither sandbox triggers the game launch execution path, so
we expect a model trained on sandbox traces to struggle
to classify endpoint traces that launch the game. Applied
to a model trained on SB1 traces, a drift detector (§V-A)
consistently rejects the EP traces of this sample. We believe
this illustrates a broader challenge: emulating user interactions
in sandboxes is challenging [35], causing major differences in
the data distribution of sandbox vs endpoint traces from benign
samples. Conversely, OperaPatcher performs almost the
same actions in all its SB1, SB2, and EP traces: creating
localization and library files to patch a browser. This sample
executing without any user interaction eliminates behavior
(and score) variability across traces.
Non-Malicious Malware Traces. In behavioral malware de-
tection, most commonly, the label of a sample (e.g., obtained
from VirusTotal) is transferred to all traces from this sample,
which are then used for training and testing. This practice
implicitly assumes that all traces of a malware sample contain
some discernible malicious activity. However, this can be
problematic in cases where the sample has refused or failed to
execute, e.g., because its remote infrastructure is down [56].

To assess this approach, we study the Wannacry ran-
somware family. We select Wannacry as it is thor-
oughly dissected (unlike most families), and its indicators-
of-compromise (IOCs) are well-known, allowing us to gauge
whether a particular trace is associated with compromise. Us-
ing multiple sources, we create a list of IOCs for Wannacry
and look for them in our SB1, SB2, and EP traces. We
split the traces into two sets based on whether they contain
any IOC and then measure the average prediction scores of
our models on each set. Based on Table XV, we observe
(i) most traces contain at least one IOC (e.g., 97.7% of
the EP traces), (ii) the model’s average prediction score is
lower on the traces with no IOC (e.g., 97% vs. 52% in
EP->EP), which is still significantly higher than the averages
on benign traces (13%). The ability to associate malware
traces with no IOC with maliciousness is a strength of ML-
based methods over IOC-based detectors. Any malware that
reaches the execution stage is hazardous, regardless of whether
it successfully compromises the host.

C. Spurious Features From Sandboxes

We have shown that sandbox and endpoint traces for a given
sample are different. Next, we examine why they are different
and how this difference may trigger unreliable predictions from
the ML models in the SB->EP scenario.
Sandbox-Specific Artifacts. We found several sandbox-
specific features that are highly prevalent (seen in many traces)
and predictive (seen only in malware traces) but occur only in
one sandbox and not in the other environments. ML models
typically exploit such features to minimize the loss and may
overlook other predictive features [77], causing the model to
perform poorly on traces collected from a different sandbox or
from endpoint hosts. Table IX presents four of these features
(called artifacts) that we have found in SB1 and SB2 traces.
We have identified over 100 such artifacts, most frequently co-
occurring in traces. For each artifact, we report its prevalence
(Prv.) and its malware ratio (MalR.) in SB1, SB2, and EP
training sets. Prv. is the percentage of samples in which
the artifact is present, and MalR. is the percentage of these
samples labeled as malware.

File Name SB1 Traces SB2 Traces EP Traces
Prv. MalR. Prv. MalR. Prv. MalR.

SogouExp. 9.0% 100.0% 0.0% — 0.2% 0.0%
PersonalB. 3.3% 100.0% 0.0% — 0.0% —

Spotify 0.1% 0.0% 3.0% 100% 0.2% 0.0%
Python 0.0% — 3.1% 100% 0.1% 0.0%

TABLE IX: Some strong malware features found in specific
sandboxes that do not generalize to other environments.

These artifacts appear to be a result of the specific configu-
ration and particular apps pre-installed on the specific sandbox
(see §D). As real-world hosts and other sandboxes do not share
the same configuration, this explains why an endpoint classifier
trained on traces from one sandbox might fail to generalize to
endpoint traces seen in the wild.

The Impact of Sandbox Evasion. Sandbox evasion is a
common mechanism malware authors use to make a sample’s
sandbox trace dissimilar to its real-world traces. If running
in a sandbox, evasive malware attempts to avoid analysis
or terminate early [21], [78]. In §E, we present a series
of quantitative experiments to understand the implications of
sandbox evasion for ML-based detectors. We find that an ML-
based detector trained on sandbox traces predicts a higher
score of maliciousness for the shortest traces. This length
bias boosts the performance in the SB->SB scenario, where
very short traces are more likely from malware. The same
bias, however, hurts the performance in the SB->EP scenario,
where very short traces are not more likely from malware.
This makes trace length a spurious correlation learned from
sandbox traces that fails to generalize to endpoint traces. Our
evidence suggests that this correlation is introduced by evasive
malware, which tends to produce short sandbox traces [28].

D. Invariant Learning to Counter Environment-Sensitivity

We have shown that the environment-sensitivity of program
behaviors impacts the model. When the classifier exploits
features that are specific to the training environment (e.g., a
sandbox artifact), its predictions fail to generalize. Table IX
suggests that the artifacts of SB1 are absent in SB2, and
vice versa, as they are configured sufficiently differently. This
highlights an opportunity: learning features that are invariant
across two environments (e.g., both sandboxes) might yield
better generalization to endpoint detection.

Prior work has studied invariant learning in self-supervised
learning, e.g., viewpoint-invariant visual features [79]. We
employ the Siamese loss [80], which forces the model to
produce similar embeddings (measured by a distance metric)
on pairs of related inputs. In our case, each pair consists
of two traces of the same sample from different sandboxes
(in SB->EP) or from different EP hosts (in EP->EP). We
aim to make the model invariant to the differences in these
pairs (such as sandbox-specific artifacts) to gain robustness to
variable behaviors. The critical question is whether invariance
across SB traces translates to invariance across EP traces. We
represent a pair of traces of a sample Pi as (xi,0, xi,1) and the
set of all pairs as D; and define the following loss function
that is added to the standard ERM loss as a regularizer:

Linv =
1

|D|
∑

(xi,0,xi,1)∈D

−cos(enc(xi,0), enc(xi,1))

Lfinal = LERM + αLinv

Here, cos is the cosine similarity, and α controls the
intensity of invariance regularization: if set too high, the
embeddings might collapse into a single point. In SB->EP, D
contains the training traces in SB1∩SB2 (Table III), yielding
∼15K pairs. In EP->EP, we create D by randomly selecting
pairs of traces from each sample in our EP training set (∼88%
of the samples have more than one trace). Note that our
proposed solution for SB->EP relies on running a large set
of samples in multiple sandboxes. Although this is standard

practice in malware analysis [56], it is typically not done for
training ML models for behavioral detection.

Scenario α=0 α=0.02 α=0.08 α=0.32 α=1.28
SB1->EP 20.0% 19.1% 20.5% 21.6% 20.6%
EP->EP 50.6% 50.6% 50.6% 51.1% 51.8%

TABLE X: The impact of Linv on endpoint detection TPR.

We present the results in Table X. Here, we start from
(α=0) the improved NGR models in §VI-C. Both SB->SB
and SB->EP models mildly benefit (1–2% TPR boost) from
Linv, though at different values of α. We hypothesize that some
environment-dependent features are still useful, e.g., when a
malware family evades one sandbox but not the other, making
excessive invariance undesirable. We leave improvements, e.g.,
selective invariance to preserve useful features, or over more
than two sandboxes, to future work.

Fig. 4: The model’s embeddings with increasing values of α
for invariant learning. Sep quantifies the separability of the
SB1 and SB2 embeddings. t-SNE [81] visualization.

To ensure Linv is working as intended, in Figure 4, we com-
pare the embeddings that SB1->EP models produce on the
testing traces in SB1∩SB2. Increasing α brings the embedding
distributions on SB1 and SB2 traces visually closer. Quantita-
tively, this decreases the accuracy of an SVM classifier in sep-
arating these embeddings as coming from SB1 or SB2 (from
94% to 74%). Moreover, Figure 9 presents two histograms of
score standard deviations for our invariant models in SB->EP
and EP->EP. In both scenarios, the predictions on EP traces
have become less variable (compared to Figure 3). The average
standard deviation in EP->EP for benign samples decreases
significantly (from 5.6% to 0.8%), whereas it remains the same
for malware samples. The invariant model has become robust
to the variability across the traces of a benign sample, which
might not be possible for malware samples whose behaviors
vary more. Although we compute Linv using only SB1 and
SB2 traces in SB->EP, the resulting environment-invariance
has transferred to endpoint traces, giving us a performance
boost. The evidence shows that learning environment-invariant
features is promising and can offset the negative impact of
behavior variability on ML-based detectors.

Takeaways: An execution environment’s specific configu-
ration might introduce artifacts into program traces, hurting
behavioral detectors’ generalizability to other environments.
Learning invariant features over a sample’s traces from
multiple environments (e.g., two sandboxes) can enhance
ML models’ robustness to such artifacts, improving their
performance in real-world hosts with diverse configurations.

VIII. DISCUSSION AND LIMITATIONS

Dataset Bias, Size and Label Noise. Our study has some
limitations due to our endpoint data. First, this data was
collected from hosts that use a single vendor’s anti-malware
product. Although we cannot rule out selection bias, the fact
that these hosts are located in over 100 countries in both
enterprise and consumer settings suggests that our results
have broad applicability. Second, our data was collected six
years ago. This is a common limitation in malware studies as
collecting large-scale, up-to-date real-world data is infeasible
for researchers [25], [39], [60]. Nevertheless, to our knowl-
edge, our endpoint dataset (originally collected in [15]) is the
only dataset of endpoint malware behavior analyzed in the
literature. We focus on the gaps between sandbox-based and
endpoint detection and not on the specifics of the threats of
the time, making our observations still relevant today. Third,
our data consists of only Windows hosts and lacks network-
related actions. As 95% of malware is aimed at Windows [82]
and ML-based detectors can perform well without network
actions [6], we do not expect this to affect our findings.

Moreover, our endpoint dataset is much smaller than our
sandbox dataset and smaller than what is available to a security
vendor, potentially causing us to underestimate the EP->EP
performance in practice. However, consider Figure 6 where we
train models in EP->EP using increasing proportions of our
endpoint dataset. Here, the performance resulting from using
25%, 50%, and 100% of the data for training is 35%, 41%,
and 46% TPR, respectively. This hints that even with larger
endpoint dataset sizes, the performance in EP->EP is unlikely
to catch SB->SB due to fundamental challenges we exposed
(difficult-to-classify samples and behavior variability).

Finally, for a given sample, labels obtained from VirusTotal
(VT) are initially noisy and stabilize after around a year [83].
In our experiments (see §IV-A), we use the oldest label
available (e.g., from old VT reports) for the training samples
and the labels from VT reports collected four years later (in
2022) for the testing samples. This methodology approximates
the realistic conditions for deploying a malware model. To
gauge the impact of label noise on our measurements, we
compare the labels of training samples from recent VT reports
to the labels we used to train our models. In the SB and EP
training sets, old and new labels agree on 98% and 97% of the
samples, suggesting that the effect of label noise is minimal.
Early Detection of Malware. We study detectors that use the
whole execution trace of a sample, and thus can only detect
malware once it terminates. Although vendors offer ways to
undo the damage from malware after its execution, such as
quarantining [8], it is more desirable to catch malware in its
tracks, e.g., before a ransomware sample starts encrypting per-
sonal files. In that task, a detector has strictly less information
available to classify a sample, which makes our results an
upper bound on the performance of early malware detection.
Fine-Tuning a Sandbox-Based Model on Endpoint Traces.
In §F, we present an experiment where we first train a NGR
model only on sandbox traces; we then fine-tune this model

on increasing amounts of data from our EP training set. This
hybrid approach simulates a realistic scenario where low-cost
sandbox data is supplemented with high-cost endpoint traces
from the wild. We implement two strategies: fine-tuning all
layers of the model and fine-tuning only the last layer. We
find that adding a few EP traces improves performance, and
when very few EP traces are available, fine-tuning outperforms
training from scratch (3–5% higher TPR).
Attacks Against ML. All ML-based detectors, especially
deep-learning-based ones, are subject to adversarial attacks
due to their sensitivity to input perturbations [84], [85]. We
expect our models will also be vulnerable to such attacks, e.g.,
an adversary can inject dummy actions into the behaviors of
their malware sample designed to fool a model. We consider a
defense against these attacks to be out of scope for this work;
instead, we aim to show that naturally occurring pressures,
such as environment variability, also greatly degrade the per-
formance of ML-based malware detectors in the wild, posing
a critical security and trustworthiness challenge in practice.
Promoting Future Research. Our investigation relies on a
dataset of endpoint traces from the wild provided by Avl-
lazagaj et al., who collected and analyzed it in their prior
work [15]. Using this data, we have pinpointed the salient chal-
lenges in ML-based endpoint malware detection. Performing
evaluations only on lab-based data can obscure these chal-
lenges and produce biased or unreliable solutions inapplicable
to the real world [43], [44]. Although its terms of use prevent
us from sharing Avllazagaj et al.’s dataset, we built a pipeline
that allows the community to perform realistic evaluations of
ML-based behavioral malware detectors, aiming to minimize
this bias. Anyone may submit to us a pre-trained detector and
a feature extractor that converts a trace in the standardized
format (§IV-A) into an input to the detector. Upon receiving a
submission, we will evaluate it on our endpoint traces dataset
and return the submitter a detailed performance report to guide
their research. Further, if the submitter wishes, we will pub-
licly list their results and submission details on the leaderboard
on our website (https://malwaredetectioninthewild.github.io).
To assist participants, we will release the sandbox dataset we
collected and the metadata for over 200K samples used in
our work. The details of these artifacts can be found in §G.
Please refer to our website for technical details, data access
requests, and detector submission instructions. This pipeline
offers a blueprint for security vendors to drive research without
publicly sharing their sensitive data. We hope to spearhead it
into more applications of ML for security where evaluation
problems frequently hinder real progress.
Implications for Future Work. As described in §III-A, mal-
ware detection in practice involves a pipeline of techniques.
We believe ignoring this pipeline and treating each component
as a standalone solution causes critical evaluation problems.
Consider ML-based static malware detectors, an active re-
search area [4], [26], [49]. They are ideally evaluated after
filtering out the test samples that can already be detected by
the pipeline components preceding static ML, such as existing

blocklists, allowlists, and static signatures. However, to our
knowledge, this is not an established practice, which might
cause an overestimation of real-world performance (similar to
our findings in §VI). Our endpoint data allowed us to isolate
and realistically evaluate ML-based behavioral detectors, re-
vealing previously unknown challenges. This, however, still
falls short of an ideal end-to-end evaluation. Instead of mea-
suring the success of individual components, quantifying the
overall effectiveness of a pipeline yields more relevant insights
for users. For example, if static components detect 95% of the
active malware at a given time and the dynamic components
detect 80% of the remaining malware, the overall pipeline
would be at 99% TPR. Moreover, the inter-dependence in
components introduces poorly understood challenges, e.g., the
trade-off between minimizing the pipeline’s false positives
and classifying more samples statically to reduce infections.
Due to our dataset limitations, we are unable to perform
such analyses. We recommend that future research approach
malware detection holistically, treating it as a pipeline, and
collect suitable datasets for performing end-to-end evaluations.

Furthermore, prior work on ML-based behavioral detec-
tors has focused strictly on a sandbox-based scenario where
training and testing traces are collected from the same sand-
box. This obscures the impact of sandbox configurations on
models’ robustness when deployed on traces from diverse
environments, such as real-world hosts, as shown in §VII.
Our work had to rely on traces from two third-party sand-
boxes with unknown configurations, which prevented us from
conducting controlled experiments to study this impact, e.g.,
to increase the performance in SB->EP. Instead, we show that
invariant learning over traces on these two sandboxes might
increase robustness. While sandbox configuration is a well-
studied topic in malware analysis [21], [22], [35], its role
in generating training sets for ML-based detectors has been
overlooked. To address this gap, we recommend that future
work tackle realistic scenarios where behavioral models are
deployed in unpredictable environments, emphasizing the need
for robustness. Developing principled methods for configuring
sandboxes for this scenario is a promising research direction.

IX. CONCLUSION

Behavioral malware detection serves as a last line of defense
at endpoint hosts, providing security when all other measures
have failed. Malware samples that breach this last line cause
real-world infections and harm. A long-standing ambition
is to find the best way to detect such samples. Through a
systematic exploration of different scenarios, we provide some
clarity. State-of-the-art ML-based detectors trained on sandbox
execution traces degrade severely when deployed at real-world
endpoints. Though training on data from endpoints leads to
better performance, it still falls far short of expectations estab-
lished in prior evaluations. We characterize various challenges
ML approaches face in this domain and explore promising
techniques targeting them, achieving moderate improvements.
Ultimately, this task remains challenging. By exposing evalua-

https://malwaredetectioninthewild.github.io

tion pitfalls and ML shortcomings, we call on the community
to seek new solutions to these security-threatening problems.

X. ACKNOWLEDGEMENTS

This research was supported by the US Intelligence Com-
munity Postdoctoral Fellowship (Kaya), the US Department of
Defense (Dumitraş), UK EPSRC Grant EP/X015971/1 (Pier-
azzi), US National Science Foundation Grants CNS-2154873
(Wagner) and CNS-2327427 (Botacin), and generous research
awards from Google (Cavallaro and Wagner) and Amazon
(Dumitraş and Wagner). We would like to thank VirusTotal
for granting us academic access to their platform. Finally, we
thank Omer Faruk Akgul and David Acs for their support
in the earlier phases of our research and Erin Avllazagaj for
providing us access to their program traces in the wild dataset.
Any opinions, findings, conclusions, or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the supporting organizations.

REFERENCES

[1] J. Reddick, “US Treasury: Financial institutions reported $1.2 billion
in ransomware losses in 2021,” Nov 2022. [Online]. Available:
https://therecord.media/us-treasury-financial-institutions-reported-1-2-b
illion-in-ransomware-losses-in-2021

[2] I. Group, “Malware analysis market: Global industry trends, share,
size, growth, opportunity and forecast 2023-2028,” 2022. [Online].
Available: https://www.imarcgroup.com/malware-analysis-market

[3] AV-Comparatives, “Malware protection test March 2023,” 2023.
[Online]. Available: https://www.av-comparatives.org/tests/malware-pro
tection-test-march-2023

[4] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. K.
Nicholas, “Malware detection by eating a whole EXE,” in Workshops
at the Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[5] E. B. Karbab and M. Debbabi, “MalDy: Portable, data-driven malware
detection using natural language processing and machine learning tech-
niques on behavioral analysis reports,” Digital Investigation, vol. 28, pp.
S77–S87, 2019.

[6] C. Jindal, C. Salls, H. Aghakhani, K. Long, C. Kruegel, and G. Vigna,
“Neurlux: dynamic malware analysis without feature engineering,” in
Proceedings of the 35th Annual Computer Security Applications Con-
ference, 2019, pp. 444–455.

[7] D. Trizna, L. Demetrio, B. Biggio, and F. Roli, “Nebula: Self-attention
for dynamic malware analysis,” 2023.

[8] “Sophos - Endpoint Detection and Response (EDR),” Apr 2024.
[Online]. Available: https://www.sophos.com/en-us/cybersecurity-expla
ined/endpoint-detection-and-response

[9] VMRay, “Now, near, deep: The power of multi-layered malware analysis
& detection,” 2021. [Online]. Available: https://www.vmray.com/cyber-s
ecurity-blog/now-near-deep-multi-layered-malware-analysis-detection/

[10] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for mal-
ware detection,” in Twenty-Third Annual Computer Security Applications
Conference (ACSAC 2007). IEEE, 2007, pp. 421–430.

[11] Y. Song, M. E. Locasto, A. Stavrou, A. D. Keromytis, and S. J. Stolfo,
“On the infeasibility of modeling polymorphic shellcode,” in Proceed-
ings of the 14th ACM conference on Computer and communications
security, 2007, pp. 541–551.

[12] Kaspersky, “Behavior-based protection.” [Online]. Available: https:
//www.kaspersky.com/enterprise-security/wiki-section/products/behavi
or-based-protection

[13] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross,
and G. Stringhini, “MAMADROID: Detecting Android Malware by
Building Markov Chains of Behavioral Models,” in Annual Symposium
on Network and Distributed System Security (NDSS), 2017.

[14] “Bitdefender - sandbox analyzer,” Apr 2024. [Online]. Available:
https://www.bitdefender.com/business/gravityzone-platform/sandbox-a
nalyzer.html

[15] E. Avllazagaj, Z. Zhu, L. Bilge, D. Balzarotti, and T. Dumitras, , “When
malware changed its mind: An empirical study of variable program
behaviors in the real world,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 3487–3504.

[16] D. Balzarotti, M. Cova, C. Karlberger, E. Kirda, C. Kruegel, and
G. Vigna, “Efficient detection of split personalities in malware,” in
NDSS, 2010.

[17] N. Galloro, M. Polino, M. Carminati, A. Continella, and S. Zanero, “A
systematical and longitudinal study of evasive behaviors in windows
malware,” Computers & Security, vol. 113, p. 102550, 2022.

[18] D. Kirat, G. Vigna, and C. Kruegel, “BareCloud: Bare-metal analysis-
based evasive malware detection,” in 23rd USENIX Security Symposium
(USENIX Security 14), Aug. 2014, pp. 287–301.

[19] D. Kirat and G. Vigna, “Malgene: Automatic extraction of malware
analysis evasion signature,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, 2015, pp. 769–
780.

[20] Z. C. Schreuders, T. Shaw, M. S.-A. Khuda, G. Ravichandran, J. Keigh-
ley, and M. Ordean, “Security Scenario Generator (SecGen): A Frame-
work for Generating Randomly Vulnerable Rich-scenario VMs for
Learning Computer Security and Hosting CTF Events,” in ASE@
USENIX Security Symposium, 2017.

[21] N. Miramirkhani, M. P. Appini, N. Nikiforakis, and M. Polychronakis,
“Spotless sandboxes: Evading malware analysis systems using wear-and-
tear artifacts,” in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 1009–1024.

[22] A. Mills and P. Legg, “Investigating anti-evasion malware triggers using
automated sandbox reconfiguration techniques,” Journal of Cybersecu-
rity and Privacy, vol. 1, no. 1, pp. 19–39, 2020.

[23] P. W. Koh, S. Sagawa, H. Marklund, S. M. Xie, M. Zhang, A. Balsub-
ramani, W. Hu, M. Yasunaga, R. L. Phillips, I. Gao et al., “Wilds: A
benchmark of in-the-wild distribution shifts,” in International Confer-
ence on Machine Learning, 2021, pp. 5637–5664.

[24] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov,
and L. Cavallaro, “Transcend: Detecting concept drift in malware
classification models,” in 26th USENIX Security Symposium (USENIX
Security 17), 2017, pp. 625–642.

[25] F. Barbero, F. Pendlebury, F. Pierazzi, and L. Cavallaro, “Transcending
Transcend: Revisiting malware classification in the presence of concept
drift,” in 2022 IEEE Symposium on Security and Privacy (SP). IEEE,
2022, pp. 805–823.

[26] S. Dambra, Y. Han, S. Aonzo, P. Kotzias, A. Vitale, J. Caballero,
D. Balzarotti, and L. Bilge, “Decoding the secrets of machine learning
in malware classification: A deep dive into datasets, feature extraction,
and model performance,” in Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, 2023, pp. 60–
74.

[27] “MalwareBazaar,” May 2024. [Online]. Available: https://bazaar.abuse
.ch/

[28] A. Küchler, A. Mantovani, Y. Han, L. Bilge, and D. Balzarotti, “Does
Every Second Count? Time-based Evolution of Malware Behavior in
Sandboxes,” in NDSS, 2021.

[29] M. Lukasik, S. Bhojanapalli, A. Menon, and S. Kumar, “Does label
smoothing mitigate label noise?” in International Conference on Ma-
chine Learning, 2020, pp. 6448–6458.

[30] H. Zhao, R. T. Des Combes, K. Zhang, and G. Gordon, “On learning
invariant representations for domain adaptation,” in International Con-
ference on Machine Learning, 2019, pp. 7523–7532.

[31] S. Sagawa, A. Raghunathan, P. W. Koh, and P. Liang, “An investiga-
tion of why overparameterization exacerbates spurious correlations,” in
International Conference on Machine Learning, 2020, pp. 8346–8356.

[32] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic
malware analysis using CWSandbox,” IEEE Security & Privacy, vol. 5,
no. 2, pp. 32–39, 2007.

[33] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel, “A view
on current malware behaviors,” in Proceedings of the 2nd USENIX
Conference on Large-Scale Exploits and Emergent Threats: Botnets,
Spyware, Worms, and More, 2009, p. 8.

[34] M. Lindorfer, C. Kolbitsch, and P. Milani Comparetti, “Detecting
environment-sensitive malware,” in Recent Advances in Intrusion De-
tection: 14th International Symposium, RAID 2011. Springer, 2011,
pp. 338–357.

https://therecord.media/us-treasury-financial-institutions-reported-1-2-billion-in-ransomware-losses-in-2021
https://therecord.media/us-treasury-financial-institutions-reported-1-2-billion-in-ransomware-losses-in-2021
https://www.imarcgroup.com/malware-analysis-market
https://www.av-comparatives.org/tests/malware-protection-test-march-2023
https://www.av-comparatives.org/tests/malware-protection-test-march-2023
https://www.sophos.com/en-us/cybersecurity-explained/endpoint-detection-and-response
https://www.sophos.com/en-us/cybersecurity-explained/endpoint-detection-and-response
https://www.vmray.com/cyber-security-blog/now-near-deep-multi-layered-malware-analysis-detection/
https://www.vmray.com/cyber-security-blog/now-near-deep-multi-layered-malware-analysis-detection/
https://www.kaspersky.com/enterprise-security/wiki-section/products/behavior-based-protection
https://www.kaspersky.com/enterprise-security/wiki-section/products/behavior-based-protection
https://www.kaspersky.com/enterprise-security/wiki-section/products/behavior-based-protection
https://www.bitdefender.com/business/gravityzone-platform/sandbox-analyzer.html
https://www.bitdefender.com/business/gravityzone-platform/sandbox-analyzer.html
https://bazaar.abuse.ch/
https://bazaar.abuse.ch/

[35] S. Liu, P. Feng, S. Wang, K. Sun, and J. Cao, “Enhancing malware
analysis sandboxes with emulated user behavior,” Computers & Security,
vol. 115, p. 102613, 2022.

[36] W. Huang and J. Stokes, “MtNet: A multi-task neural network for
dynamic malware classification,” in Proceedings of 13th International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA 2016). Springer, July 2016, pp. 399–418.

[37] “Awesome malware analysis,” Apr 2024. [Online]. Available: https:
//github.com/rshipp/awesome-malware-analysis

[38] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
“TESSERACT: Eliminating experimental bias in malware classification
across space and time,” in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 729–746.

[39] Y. Chen, Z. Ding, and D. Wagner, “Continuous learning for android
malware detection,” in 32nd USENIX Security Symposium (USENIX
Security 23), Aug. 2023, pp. 1127–1144.

[40] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by
backpropagation,” in International Conference on Machine Learning,
2015, pp. 1180–1189.

[41] B. Gong, K. Grauman, and F. Sha, “Connecting the dots with landmarks:
Discriminatively learning domain-invariant features for unsupervised
domain adaptation,” in Proceedings of the 30th International Conference
on Machine Learning, 2013, pp. 222–230.

[42] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi, C. Wress-
negger, L. Cavallaro, and K. Rieck, “Dos and don’ts of machine learning
in computer security,” in 31st USENIX Security Symposium (USENIX
Security 22), Aug. 2022.

[43] A. S. Jacobs, R. Beltiukov, W. Willinger, R. A. Ferreira, A. Gupta,
and L. Z. Granville, “AI/ML for Network Security: The Emperor has
no Clothes,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, 2022, pp. 1537–1551.

[44] G. Cherubin, R. Jansen, and C. Troncoso, “Online Website Finger-
printing: Evaluating Website Fingerprinting Attacks on Tor in the Real
World,” in 31st USENIX Security Symposium (USENIX Security 22),
2022, pp. 753–770.

[45] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose,
“SoK: The challenges, pitfalls, and perils of using hardware performance
counters for security,” in 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 2019, pp. 20–38.

[46] H. Aghakhani, F. Gritti, F. Mecca, M. Lindorfer, S. Ortolani,
D. Balzarotti, G. Vigna, and C. Kruegel, “When malware is packin’heat;
limits of machine learning classifiers based on static analysis features,”
in Network and Distributed Systems Security (NDSS) Symposium 2020,
2020.

[47] “Tencent HABO Sandbox,” May 2024. [Online]. Available: https:
//habo.qq.com/

[48] “Virustotal,” Apr 2024. [Online]. Available: https://www.virustotal.com
[49] H. S. Anderson and P. Roth, “EMBER: An Open Dataset for Train-

ing Static PE Malware Machine Learning Models,” arXiv preprint
arXiv:1804.04637, 2018.

[50] “Broadcom – Perform Sandbox Analysis in the Cloud,” 2024. [Online].
Available: https://techdocs.broadcom.com/us/en/symantec-security-sof
tware/web-and-network-security/content-analysis/3-1/about_sandboxin
g/services_sandboxing_scsb.html

[51] P. A. Networks, “WildFire Administrator’s Guide,” 2021. [Online].
Available: https://www.niap-ccevs.org/MMO/Product/st_vid11286-agd
3.pdf

[52] K. Lab, “Behavior-based protection,” 2024. [Online]. Available:
https://www.kaspersky.com/enterprise-security/wiki-section/products/be
havior-based-protection

[53] R. Harang and E. M. Rudd, “SOREL-20M: A Large Scale Benchmark
Dataset for Malicious PE Detection,” 2020, arXiv:2012.07634.

[54] X. Ugarte-Pedrero, M. Graziano, and D. Balzarotti, “A close look at a
daily dataset of malware samples,” ACM Transactions on Privacy and
Security (TOPS), vol. 22, no. 1, pp. 1–30, 2019.

[55] B. Miller, A. Kantchelian, M. C. Tschantz, S. Afroz, R. Bachwani,
R. Faizullabhoy, L. Huang, V. Shankar, T. Wu, G. Yiu et al., “Reviewer
integration and performance measurement for malware detection,” in
Detection of Intrusions and Malware, and Vulnerability Assessment:
DIMVA 2016. Springer, 2016, pp. 122–141.

[56] M. Yong Wong, M. Landen, M. Antonakakis, D. M. Blough, E. M.
Redmiles, and M. Ahamad, “An inside look into the practice of malware
analysis,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021, pp. 3053–3069.

[57] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “DREBIN: Effective and Explainable Detection of Android
Malware in Your Pocket,” in NDSS, vol. 14, 2014, pp. 23–26.

[58] S. Zhu, J. Shi, L. Yang, B. Qin, Z. Zhang, L. Song, and G. Wang,
“Measuring and modeling the label dynamics of online Anti-Malware
engines,” in 29th USENIX Security Symposium (USENIX Security 20),
2020, pp. 2361–2378.

[59] S. Sebastián and J. Caballero, “AVClass2: Massive Malware Tag Ex-
traction from AV Labels,” in Annual Computer Security Applications
Conference, 2020, pp. 42–53.

[60] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and
G. Wang, “CADE: Detecting and explaining concept drift samples for
security applications,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 2327–2344.

[61] Y. Sun, C. Guo, and Y. Li, “React: Out-of-distribution detection with
rectified activations,” Advances in Neural Information Processing Sys-
tems, vol. 34, pp. 144–157, 2021.

[62] T. H. Team, “The Evolution of Emotet: From Banking Trojan to Threat
Distributor,” 2018. [Online]. Available: https://symantec-enterprise-blo
gs.security.com/blogs/threat-intelligence/evolution-emotet-trojan-distrib
utor

[63] A. Mantovani, S. Aonzo, X. Ugarte-Pedrero, A. Merlo, and D. Balzarotti,
“Prevalence and impact of low-entropy packing schemes in the malware
ecosystem,” in NDSS 2020, 2020.

[64] K. Lucas, S. Pai, W. Lin, L. Bauer, M. K. Reiter, and M. Sharif,
“Adversarial training for Raw-Binary malware classifiers,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023.

[65] “Is this a legitimate patch from microsoft?” 2021. [Online]. Available:
https://answers.microsoft.com/en-us/windows/forum/all/is-this-a-legit
imate-patch-from-microsoft/70fd11d4-ce77-43f6-8b09-c7c0fe3e1ba3

[66] ionstorm, “Sysmon ATT&CK Configuration,” 2024. [Online]. Available:
https://github.com/ion-storm/sysmon-config/blob/94d353f219ce3c62ae
01737c0b3d758631328dfa/sysmonconfig-export.xml#L5284

[67] J. Li, Y. Wong, Q. Zhao, and M. S. Kankanhalli, “Learning to learn
from noisy labeled data,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 5051–
5059.

[68] X. Wu, W. Guo, J. Yan, B. Coskun, and X. Xing, “From grim reality to
practical solution: Malware classification in real-world noise,” in 2023
IEEE Symposium on Security and Privacy (SP), 2023, pp. 2602–2619.

[69] E. Z. Liu, B. Haghgoo, A. S. Chen, A. Raghunathan, P. W. Koh,
S. Sagawa, P. Liang, and C. Finn, “Just train twice: Improving group
robustness without training group information,” in International Confer-
ence on Machine Learning, 2021, pp. 6781–6792.

[70] M. Zhang and C. Ré, “Contrastive adapters for foundation model group
robustness,” arXiv preprint arXiv:2207.07180, 2022.

[71] K. Cao, C. Wei, A. Gaidon, N. Arechiga, and T. Ma, “Learning imbal-
anced datasets with label-distribution-aware margin loss,” Advances in
Neural Information Processing Systems, vol. 32, 2019.

[72] P. Kirichenko, P. Izmailov, and A. G. Wilson, “Last layer re-training
is sufficient for robustness to spurious correlations,” in International
Conference on Learning Representations, 2023.

[73] P. Kotzias, L. Bilge, P.-A. Vervier, and J. Caballero, “Mind your
own business: A longitudinal study of threats and vulnerabilities in
enterprises,” in NDSS, 2019.

[74] Cisco, “ Cisco Secure Malware Analytics (Threat Grid),” Apr 2024.
[Online]. Available: https://www.cisco.com/c/en/us/products/security/th
reat-grid/index.html

[75] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and
J. Nazario, “Automated Classification and Analysis of Internet Malware,”
in Recent Advances in Intrusion Detection: RAID 2007, 2007, pp. 178–
197.

[76] D. Trizna, “Quo Vadis: hybrid machine learning meta-model based on
contextual and behavioral malware representations,” in Proceedings of
the 15th ACM Workshop on Artificial Intelligence and Security, 2022,
pp. 127–136.

[77] M. Pezeshki, O. Kaba, Y. Bengio, A. C. Courville, D. Precup, and G. La-
joie, “Gradient starvation: A learning proclivity in neural networks,”
Advances in Neural Information Processing Systems, vol. 34, pp. 1256–
1272, 2021.

[78] T. Roccia, “Evolution of malware sandbox evasion tactics – a
retrospective study,” Oct 2019. [Online]. Available: https://www.mcaf
ee.com/blogs/other-blogs/mcafee-labs/evolution-of-malware-sandbox-e
vasion-tactics-a-retrospective-study/

https://github.com/rshipp/awesome-malware-analysis
https://github.com/rshipp/awesome-malware-analysis
https://habo.qq.com/
https://habo.qq.com/
https://www.virustotal.com
https://techdocs.broadcom.com/us/en/symantec-security-software/web-and-network-security/content-analysis/3-1/about_sandboxing/services_sandboxing_scsb.html
https://techdocs.broadcom.com/us/en/symantec-security-software/web-and-network-security/content-analysis/3-1/about_sandboxing/services_sandboxing_scsb.html
https://techdocs.broadcom.com/us/en/symantec-security-software/web-and-network-security/content-analysis/3-1/about_sandboxing/services_sandboxing_scsb.html
https://www.niap-ccevs.org/MMO/Product/st_vid11286-agd3.pdf
https://www.niap-ccevs.org/MMO/Product/st_vid11286-agd3.pdf
https://www.kaspersky.com/enterprise-security/wiki-section/products/behavior-based-protection
https://www.kaspersky.com/enterprise-security/wiki-section/products/behavior-based-protection
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/evolution-emotet-trojan-distributor
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/evolution-emotet-trojan-distributor
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/evolution-emotet-trojan-distributor
https://answers.microsoft.com/en-us/windows/forum/all/is-this-a-legitimate-patch-from-microsoft/70fd11d4-ce77-43f6-8b09-c7c0fe3e1ba3
https://answers.microsoft.com/en-us/windows/forum/all/is-this-a-legitimate-patch-from-microsoft/70fd11d4-ce77-43f6-8b09-c7c0fe3e1ba3
https://github.com/ion-storm/sysmon-config/blob/94d353f219ce3c62ae01737c0b3d758631328dfa/sysmonconfig-export.xml#L5284
https://github.com/ion-storm/sysmon-config/blob/94d353f219ce3c62ae01737c0b3d758631328dfa/sysmonconfig-export.xml#L5284
https://www.cisco.com/c/en/us/products/security/threat-grid/index.html
https://www.cisco.com/c/en/us/products/security/threat-grid/index.html
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/evolution-of-malware-sandbox-evasion-tactics-a-retrospective-study/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/evolution-of-malware-sandbox-evasion-tactics-a-retrospective-study/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/evolution-of-malware-sandbox-evasion-tactics-a-retrospective-study/

[79] S. Purushwalkam and A. Gupta, “Demystifying contrastive self-
supervised learning: Invariances, augmentations and dataset biases,”
Advances in Neural Information Processing Systems, vol. 33, pp. 3407–
3418, 2020.

[80] X. Chen and K. He, “Exploring Simple Siamese Representation Learn-
ing,” in IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2021, pp. 15 750–15 758.

[81] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, no. 11, 2008.

[82] A. VPN, “Over 95% of all new malware threats discovered in
2022 are aimed at Windows,” Nov 2022. [Online]. Available:
https://atlasvpn.com/blog/over-95-of-all-new-malware-threats-discove
red-in-2022-are-aimed-at-windows

[83] S. Zhu, J. Shi, L. Yang, B. Qin, Z. Zhang, L. Song, and G. Wang,
“Measuring and Modeling the Label Dynamics of Online Anti-Malware
Engines,” in 29th USENIX Security Symposium (USENIX Security 20),
2020, pp. 2361–2378.

[84] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,” in
International Conference on Learning Representations, 2014.

[85] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial examples for malware detection,” in ESORICS 2017: 22nd
European Symposium on Research in Computer Security, 2017, pp. 62–
79.

[86] “Executable process memory analysis,” Apr 2024. [Online]. Available:
https://www.hybrid-analysis.com/executable-process-memory-analysis

[87] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg,
“Feature hashing for large scale multitask learning,” in International
Conference on Machine Learning, 2009, pp. 1113–1120.

[88] Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko, “Revisiting
deep learning models for tabular data,” Advances in Neural Information
Processing Systems, vol. 34, pp. 18 932–18 943, 2021.

APPENDIX A
TRACE STANDARDIZATION

A. Technical Details

Our EP traces contain high-level information the vendor can
seamlessly collect and analyze at endpoint hosts, including
file, process, and mutex creations, registry key creations and
deletions, and process injections. Sandboxes also record lower-
level information (such as memory dumps [86]) as they
are less computationally constrained. In a standardized trace,
first, we only keep the action types that all formats in our
datasets share: file creation, registry key creation and deletion,
process creation and injection, and mutex creation. Second,
we clean up the strings (e.g., file names) in each trace by
removing white spaces, capitalization, punctuation, non-ASCII
characters, and so on. Third, we replace certain file and
directory names to minimize differences caused by operating
system versions or logging conventions. Fourth, we use regular
expressions to replace MAC addresses, Windows security and
resource identifiers, hashes (SHA-256, SHA-1, MD5), and
epoch timestamps with special tokens (e.g. <macaddress>),
to prevent introducing artifacts to our ML models. Fifth,
we tokenize the entries in each trace (e.g., split a full file
path into its components) and save a trace as a sequence of
tokens, following [6]. We will release our sandbox dataset
in this standardized format. Moreover, this format enables
researchers to submit their detectors to be evaluated against
our endpoint dataset (detailed in §VIII) by providing them with
an expected input format their detectors should accept. When
we train a model, we only keep the top-10K tokens in terms
of frequency in the training traces and replace the remaining

tokens with special tokens, such as <rare_file_name>,
again following [6], [7]. This makes the task more suitable
for learning by eliminating uninformative tokens and reducing
the feature dimensionality.

B. The Performance Impact

We run the following experiment to understand whether
our standardization hurts detection performance. We trained
NGR models on unstandardized SB1 traces, which contain
more action types (e.g., file reads, registry reads, and mod-
ules loaded) than standardized traces. We also kept the top-
25K tokens (instead of the top-10K) from these traces for
tokenization. The best model achieves 97.8% TPR on the
SB1 test set (up from 95.0% when trained on standardized
traces). However, its performance is 53.4% TPR on the SB2
test set (down from 60.7% when trained on standardized
traces). This suggests that trace standardization moderately
hurts the in-domain performance (on the test traces from
the training sandbox) while improving generalization to other
domains (to traces from other sandboxes). We hypothesize that
standardization reduces overfitting to domain-specific features
(discussed in §VII-C), which is desirable in our study as
we aim to maximize the performance of a sandbox-based
model on endpoint traces. Note that, even after removing some
features from sandbox traces, the classifier’s performance is
still competitive with prior work (e.g., Neurlux [6]) that uses
the full sandbox report. This is because different features (e.g.,
registry reads and registry creations) are already correlated and
have redundancy, making each additional feature less effective.

APPENDIX B
FURTHER MACHINE LEARNING DETAILS

NGR (based on Maldy [5]). We convert each trace into a list of
2-grams. For example, the file path a/b/c.jpg is turned into
three 2-grams: <a/b>, <b/c> and <c.jpg>. As this results
in an intractable number of unique 2-grams (mostly very rare),
we apply the hashing trick [87] that assigns a numerical value
up to 214 to each 2-gram. The final feature vector—x—for a
trace is a 214-dimensional vector and each dimension is set
to the number of occurrences of the corresponding 2-gram in
the trace. We use a ResNet-based architecture [88] to train on
these features.
HYB (based on Neurlux [6]). We treat a trace as a natural
language document and train an attention-convolution-hybrid
sequence classification model. This approach eliminates the
need for feature engineering (unlike the n-gram approach) and
can extract useful features from long sequences thanks to the
attention mechanism.
ATT (based on Nebula [7]). We treat a trace the same way
as HYB (a sequence) and train a self-attention transformer-
based architecture that is claimed to be robust to heterogeneous
information (e.g., different report format).

Overall, these approaches represent an increasing level
of complexity, NGR being the simplest and most traditional
and ATT being the most advanced. Although more advanced
models seem to perform better in sandbox-based scenarios, we

https://atlasvpn.com/blog/over-95-of-all-new-malware-threats-discovered-in-2022-are-aimed-at-windows
https://atlasvpn.com/blog/over-95-of-all-new-malware-threats-discovered-in-2022-are-aimed-at-windows
https://www.hybrid-analysis.com/executable-process-memory-analysis

are interested in whether this trend changes in the endpoint
scenario.

APPENDIX C
HOW TO DO MODEL SELECTION IN SB->EP

Following our observation in §V-A, in this section, we
assess whether finding a better model for SB->EP is possible
by selecting the models using traces from an unseen sandbox
(not used for training). We rank our models (100+ in each
setting) based on their SB1, SB2, and EP performances
(TPR) and compute Spearman’s correlation coefficients be-
tween these rankings. Table XI reveals that (except for one
setting) (i) the rankings based on the training sandbox correlate
poorly (sometimes negatively) with EP rankings, (ii) rankings
based on an unseen sandbox correlate more strongly with EP
rankings. For example, for ATT trained on SB1, the rankings
based on SB1 and SB2 have 0.03 and 0.45 correlation with
the rankings based on EP, respectively. These results support
our claim that it yields better results when model selection in
SB->EP is performed using traces from a different, unseen
sandbox that is not used for training.

Trained on SB1 Trained on SB2
SB1-SB2 SB1-EP SB2-EP SB1-SB2 SB1-EP SB2-EP

NGR 0.47 0.03 0.45 −0.24 0.39 −0.46
HYB 0.88 0.84 0.75 −0.17 0.59 0.33
ATT 0.56 −0.17 0.31 0.51 0.58 0.35

TABLE XI: Ranking correlations of sandbox-trained models
according to their performances (TPR) on different test sets.

APPENDIX D
CASE STUDIES ON SANDBOX-SPECIFIC ARTIFACTS

Here, we dive deeper into the sandbox-specific artifacts we
identified in Table IX.
SogouExplorer is a Chinese web browser that exists

only in malware traces (100% MalR.) in SB1; whereas it
does not exist in any SB2 traces and very few EP traces.
The samples that interact with it mainly belong to families
such as Sivis and Memery, all tagged as file infectors
that attach their code to other programs. Considering that a
Chinese vendor developed SB1, we believe they pre-installed
this browser on their sandboxes to generate an analysis
environment representative of Chinese hosts. This, however,
creates features specific to SB1 as samples interact with the
programs in the environment. Although this artifact exists in
a few endpoint traces from hosts in China, its prevalence is
almost zero.
PersonalBankPortal, according to our research, is a

program distributed by a Chinese bank to its customers. The
samples that inject into this program belong to families such
as Tinba and Ramnit, all considered as banking trojans that
specifically ex-filtrate banking data. We believe the vendor pre-
installs this program to lure malware samples into exhibiting
their behaviors. Although this practice is useful for analyzing
a sample [56] (and for SB->SB), it causes artifacts that are
rarely observed in the wild.

Among the artifacts found in SB2, Spotify is a popular
music streaming service, and Python is the interpreter for
Python programming language. Both programs are targeted
and injected by file infectors, similar to SogouExplorer
in SB1. These programs are much less prevalent in endpoint
traces than in SB2 traces. We believe the SB2 vendor, based
in the US, pre-installs them to create an environment repre-
sentative of the hosts in the US.

APPENDIX E
THE IMPACT OF SANDBOX EVASION

Recent works have measured that 40-80% of malware
uses at least one evasive technique [17] to avoid analysis
or terminate early if it is running in a sandbox [21], [78].
Evasion makes sandbox traces dissimilar to endpoint traces.
Although sandbox evasion is well understood, its implications
for endpoint detection have not been measured.

We explore the impact of sandbox evasion. We use a
standard heuristic and treat a sample as evasive if the number
of actions it performs is too low [16], [21], [28]. We first
find the malware families common between our EP and SB1
test sets (30 total). We then compute the average trace length
of each common family using the traces of the samples
belonging to it. We count only registry actions, as they can
be recorded unambiguously, unlike actions such as process
injections, which might have vendor-specific definitions. We
then find the length differences between SB1 and EP traces
of each family. For example, Wannacry and Gandcrypt
have differences of +11 and −6, respectively. We then split
the families into two sets: the 21 families whose SB traces
are longer (e.g., Wannacry) are deemed less likely to be
evasive, and the 9 families whose SB traces are shorter (e.g.,
Gandcrypt) are deemed more likely. The median length
differences for the non-evasive and evasive families are +4.4
and −4.3, respectively, with a few outliers on both sides,
e.g., +81 for Vobfus and −85 for Bypassuac. Finally, we
measure the TPR of our model in SB1->SB1 and SB1->EP
on these two malware sets individually while keeping the
benign samples the same.

Families #Fams #EP #SB1 SB1->EP SB1->SB1

All 30 169 5.8K 23.1% 86.4%
Evasive 9 49 2.9K 20.4% 89.8%
Non-Eva. 21 120 2.9K 23.3% 83.0%

TABLE XII: The performance (TPR) on malw. families more
(Evasive) or less (Non-Eva) likely to be evading sandboxes.

The trace length of a sample monotonically increases as its
execution continues. This means the discrepancies between the
execution durations in SB1 and endpoint hosts might confound
our measurements. Before presenting our results, we confirm
this is unlikely to be the case: 82% of our EP traces are
from executions that lasted less than 90 seconds. Although
we do not know the exact configuration of SB1, allowing one
to two minutes of execution is standard for most sandboxes in
practice [28].

Based on the results in Table XII, we observe: (i) SB1->EP
performance is higher (by 3%) on non-evasive families than on
evasive families; (ii) SB1->SB1 performance is significantly
higher (by 7%) on evasive families than on non-evasive
families. This suggests that the classifier exploits short traces
(evasiveness) as a feature, which is beneficial for SB->SB,
though it does not generalize to SB->EP. However, the non-
trivial SB1->EP performance on evasive families might hint
that there are still features useful for endpoint detection in the
sandbox traces of evasive samples. Although we are limited
to observational data, a controlled study on evasive malware
to disentangle these features is a promising direction.
The Trace Length Bias. Building on the previous experiment,
we hypothesize that a model in SB->EP might learn an
inverse correlation between trace length and malware-ness,
i.e., evasive malware creates short traces, and, therefore, short
traces are more likely to be malware. In Figure 5, we present
the model’s average predicted scores on traces with a certain
length in SB1 and EP test sets. For both SB and EP test sets,
we also measure the ratio of malware traces of a given length
labeled among all traces of that length. For example, if there
are 100 total traces of length L and 70 of them are labeled as
malware in the ground truth, the malware ratio would be 0.7
for the traces of length L.

These plots support our hypothesis: the model predicts a
higher score for the shortest traces in both test sets, i.e., it has
a length bias. This bias leads to accurate predictions in the
SB set, where very short traces are much more likely to be
malware (the malware ratio on the leftmost side of the upper
plot is high). However, this bias leads to inaccurate predictions
in the EP set, where very short are not more likely to be
malware. On the EP traces shorter than 10 actions (∼20%
of all EP traces), the model achieves 15% TPR (vs. 20%
when all traces are kept). Ultimately, trace length is a spurious
correlation learned from sandbox traces that fails to generalize
to endpoint traces. Evidence suggests this is introduced by
evasive malware that tends to produce short sandbox traces in
the same execution time. Methods preventing the model from
learning such correlations [72], [77] offer a promising next
step.

Fig. 5: Comparing the correlations between trace length and
malware-ness prediction scores of the model. Malware ratio
is the ground truth ratio of malware traces of a certain length
among all traces of that length in a dataset.

APPENDIX F
FINE-TUNING A SANDBOX-BASED MODEL ON ENDPOINT

TRACES

For the experiments in Figure 6, we select two endpoint
traces per sample and implement two fine-tuning strategies:
(i) freezing the encoder layers enc of our model and tuning
only the classification layer g, and (ii) tuning all layers
without freezing. We train models on increasing portions of
the samples in our EP training set (randomly selected) and
average the results over 10 models. We make the following
observations. In low-data regimes (below 30% of the EP data),
fine-tuning only g outperforms the other options in terms of
TPR by ∼3–5%. However, with more data, it starts to perform
significantly worse, due to being less flexible in learning from
the EP traces. Finally, fine-tuning all layers is generally the
worst option, and training from scratch is the best when more
EP data is available. These experiments show that starting from
a well-performing model in SB->EP is beneficial in regimes
with limited EP data, highlighting a promising direction for
future work.

Fig. 6: The results of fine-tuning a sandbox-based model in
SB->EP on endpoint traces. The dashed line indicates our
best model SB->EP. Experiments on NGR.

APPENDIX G
MORE DETAILS ON THE ARTIFACT RELEASE

We will release the following artifacts to the
community (visit our website for more details
https://malwaredetectioninthewild.github.io/):
Sandbox Dataset. We will release the training portion of
our sandbox datasets in Table III, stored in the standardized
format discussed in §IV-A. We avoid releasing the testing
portion publicly to prevent researchers who wish to participate
in our realistic evaluation leaderboard from obtaining an
impractical advantage by training their detectors on it (will be
released if requested in exchange for being excluded from the
leaderboard). This will level the playing field for participants
and ensure they all have access to the same sandbox data for
development. Further, as this data contains traces from two
sandboxes, participants can leverage our observations in §V
and tune their hyper-parameters on a second sandbox, not
seen during training, for improving the endpoint performance
or train their models on data from both sandboxes. They can
also apply invariant learning techniques, which have shown
promising results in §VII-D.
Sample Metadata. We will release the metadata relating to
the training samples in all datasets, including their SHA-256
hashes, ground truth labels, family tags (if malware), and first-
seen timestamps. Additionally, our metadata also annotates the
source of a sample, e.g., EMBER [49], SOREL [53], or our
endpoint dataset. This allows researchers to compute realistic
priors over malware families for endpoint detection and make
use of our findings and improvements in §VI-C. Moreover,
they can also create realistic testing distributions over samples
using these malware family priors (and avoid the problems we
discussed in §VI.

APPENDIX H
ADDITIONAL TABLES AND FIGURES

Statistics on the Endpoint Traces

(a) The number of traces per
sample.

(b) The average ratio of seen
traces per sample as a function
of time.

Fig. 7: Statistics on the endpoint traces in our dataset.

Soft Labeling Function

Fig. 8: Our function for assigning probabilistic (soft) labels to
each sample based on the number of VirusTotal detections.

Histogram of Prediction Score Standard Deviations on
Endpoint Traces of the Same Sample for Models Trained

With the Invariance Loss.

Fig. 9: Prediction score standard deviations on the endpoint
traces of each sample in the EP test set; for a model in
SB1->EP (left), and EP->EP (right).

https://malwaredetectioninthewild.github.io/

Sel.
Test
Set

Trained on SB1 Trained on SB2 Trained on EP
SB1->SB1 SB1->SB2 SB1->EP SB2->SB1 SB2->SB2 SB2->EP EP->EP

NGR HYB ATT NGR HYB ATT NGR HYB ATT NGR HYB ATT NGR HYB ATT NGR HYB ATT NGR HYB ATT
SB1 99.1 99.0 98.9 93.8 91.3 92.6 76.1 70.7 72.8 89.5 83.4 89.1 97.7 94.1 96.9 72.0 68.2 70.8 85.6 85.2 84.3
SB2 99.0 98.6 98.8 94.9 93.2 93.5 76.6 71.3 74.4 81.7 71.5 86.4 98.7 98.5 98.2 71.6 66.7 72.7 85.4 85.9 84.8
EP 99.0 98.6 98.7 92.9 91.2 92.9 78.4 74.1 74.9 84.4 71.8 88.3 98.0 97.8 98.0 74.6 72.0 73.4 87.5 86.8 86.8

TABLE XIII: The performance (AUC%) of three ML approaches (NGR, HYB, ATT) in seven detection scenarios (based on
Table II). The models are selected using the test set in each row, and the average AUC of the top 20 models is reported.

Top Malware Families and Benign Publishers

EP Test Set SB Test Set
Name EP% SB1% Name SB1% EP%

GENERIC 23.8% 4.8% GENERIC 4.8% 23.8%
Chindo 9.0% 0.0% Gepys 4.4% 0.0%
Emotet 7.6% 0.5% Sivis 4.3% 0.3%
Gandcrab 6.0% 3.6% Flystudio 4.2% 0.3%
Loadmoney 6.0% 0.1% Upatre 3.8% 0.8%
Khalesi 5.0% 0.3% Gandcrab 3.6% 6.0%
Installcore 4.5% 0.0% Shipup 3.5% 0.0%

UNSIGNED 29.6% 47.2% UNSIGNED 47.2% 28.4%
Microsoft 7.8% 0.4% Google 4.7% 0.2%
Tencent 2.6% 0.5% Mozilla 3.7% 0.1%
Qihoo 2.2% 0.2% Digital R. 3.5% 0.0%
Zoho 1.3% 0.1% Yandex 2.7% 1.0%
Opera 1.2% 0.1% ScreenC. 2.2% 0.0%
Yandex 1.0% 2.7% Zoom 2.0% 0.3%

TABLE XIV: Top malware families (top) and benign (bottom)
publishers in our EP (left) and SB (right) test sets, along with
their shares in each dataset.

Case Study on Wannacry and Its
Indicators-Of-Compromise

Trace
Type

Ratio Avg. Pred. Score
SB1 SB2 EP SB1->EP SB2->EP EP->EP

Any IOC 89.9% 100% 97.7% 82.0% 75.6% 97.4%
No IOC 10.1% 0.0% 2.3% 77.7% 67.7% 51.8%

TABLE XV: For Wannacry traces in our SB1, SB2, and EP
datasets, we first measure the ratio of traces with at least one
and no IOC. We then measure the average prediction score
of our NGR models in SB1->EP, SB2->EP and EP->EP on
these traces.

	Introduction
	Background and Related Work
	Endpoint Malware Detection
	Malware Detection Pipeline
	Model Training and Evaluation Scenarios
	Success Metrics for Endpoint Detection

	Technical Setup
	Datasets
	Machine Learning Details

	Endpoint Detection Evaluations
	Evaluating the SB->EP Scenario
	Evaluating the EP->EP Scenario

	Endpoint Detection Deals With Difficult-To-Classify Samples
	The Impact of Sample Distributions
	Case Studies
	Combating Sample Distribution Challenges

	Environment-Sensitive Program Behaviors Hurt Endpoint Detection
	The Diversity Among Endpoint Traces
	Case Studies
	Spurious Features From Sandboxes
	Invariant Learning to Counter Environment-Sensitivity

	Discussion and Limitations
	Conclusion
	Acknowledgements
	References
	Appendix A: Trace Standardization
	Technical Details
	The Performance Impact

	Appendix B: Further Machine Learning Details
	Appendix C: How to Do Model Selection in SB->EP
	Appendix D: Case Studies on Sandbox-Specific Artifacts
	Appendix E: The Impact of Sandbox Evasion
	Appendix F: Fine-Tuning a Sandbox-Based Model on Endpoint Traces
	Appendix G: More Details on the Artifact Release
	Appendix H: Additional Tables and Figures

