The use of the DWARF Debugging Format for the Identification of
Potentially Unwanted Applications (PUAs) in WebAssembly Binaries

Calebe Helpal ,Tiago Heinrich?®?, Marcus Botacin®®®, Newton C. Will*®¢, Rafael R. Obelheiro®®9,

and Carlos A. Maziero

Lie

Y Computer Science Department, Federal University of Parand - Curitiba, Brazil 81530-015
2Max Planck Institute for Informatics (MPI) - Saarbriicken, Germany 66123
3Texas A&M University — College Station, TX, USA 77843
4Computer Science Department, Federal University of Technology - Parand - Dois Vizinhos, Brazil 85660-000

5 Computer Science Department, State University of Santa Catarina - Joinville, Brazil 89219-710
cphl9@inf.ufpr.br, theinric @ mpi-inf.mpg.de, botacin @tamu.edu, will@utfpr.edu.br, rafael.obelheiro@udesc.br,
maziero @inf.ufpr.br

Keywords:

Abstract:

WebAssembly, Intrusion Detection, Security

Debugging formats are well-known means to store information from an application, that help developers to

find errors, bugs, or unexpected behavior during the development period. The Debugging With Attributed
Record Format (DWAREF) is an example of a generic format that can be used for a range of programming
languages and formats, such as WebAssembly, a low-level binary format that provides a compilation target
for high-level languages. Given the use of debugging formats, their potential for intrusion detection is still
unknown. Our study consists of evaluating the use of data extracted with the DWARF format, and their
respective potential for an intrusion detection solution. In this context, we present a strategy for identifying
Potentially Unwanted Application (PUA) in WebAssembly binaries, through feature extraction and static
analysis using the DWARF format as a data source from WebAssembly binary. Our results are promising, with
an overall f1score performance above 96% for the algorithms.

1 INTRODUCTION

WebAssembly is a low-level binary format that pro-
vides a compilation target for high-level languages
(Hoffman, 2019). It aims to support web applications,
offering fast processing support and decreasing mem-
ory usage to load web pages (Falliere, 2018). At the
same time, it works in different browsers (Romano
et al., 2022).

DWAREF is a debugging information file format,
supported by different compilers and debuggers to
allow developers access to a high-level debugger
(DWAREF, 2023). It is supported by languages such
as C, C++, Fortran, and WebAssembly. The main
use of such a format is during the debugging process,
where breakpoints can be set, operation data can be

a2 https://orcid.org/0000-0002-8017-1293
@ https://orcid.org/0000-0001-6870-1178
https://orcid.org/0000-0003-2976-4533
4@ https://orcid.org/0000-0002-4014-6691
e https://orcid.org/0000-0003-2592-3664

o

viewed, or the tracing of code sections can be made.
The format represents information using a tree, where
the nodes represent data, types, and functions (Eager]
2012). While DWAREF information is usually pro-
duced during compilation from source, one may gen-
erate DWARF information from decompiled binaries
if source code is lacking.

The use of debugging format outside the develop-
ment environment is limited. Taking into account the
information that this type of format offers from appli-
cations, evaluation strategies can benefit. Specifically,
security solutions can use this information for a threat
investigation and detection process.

Rogue software that may compromise the privacy
of a system or weaken its security is denoted Poten-
tially Unwanted Application (PUA) (Pickard and Mi+{
ladinov, 2012). In most cases, the identification of
PUAs involves evaluating binaries using static and/or
dynamic analysis. The former depends on the extrac-
tion of information found in the binaries, while the
latter observes their behavior during execution.

WebAssembly applications have the potential for
malicious use due to the binary format, which makes
it difficult to identify the purpose of each program.
In this way, malicious users exploit the design of the
WebAssembly format to carry out cryptojacking at-
tacks and the obfuscation of malicious code (Naseem
et al., 2021). To mitigate such risks, recent studies
focus on correcting design flaws, adding new features
and improving already implemented features, evaluat-
ing memory-related issues (Michael et al., 2023) and
improving the design of the compiler (Bosamiya et al.]
2022).

Our proposal consists of evaluating the potential
of using information extracted from debugging for-
mats for an intrusion detection solution. We use the
DWAREF format and identify a set of features that can
be used to represent the application and applied in the
identification of PUAs. Since WebAssembly applica-
tions are being widely adopted by major web browsers,
and considering the security problems observed in the
field, we focus on the use of WebAssembly binaries as
a case study. We extracted information from real ap-
plications and evaluated how Machine Learning (ML)
models can be used for an intrusion detection process.
ML strategies have promising results in the security
area, allowing the classification of application behav-
iors (Ceschin et al., 2024).

Our contributions are:

* The evaluation of the DWARF debugging format
for extracting information from WebAssembly bi-
naries, for a subsequent intrusion detection pro-
cess; and

* A strategy for PUA identification in WebAssembly
binaries.

Our proposal presented a better understanding of
how information retrieved from debug formats such as
DWAREF can be used for an intrusion detection process.
We achieve interesting results for PUA identification,
with flscore above 95% and accuracy above 96% for
the algorithms tested with cross-validation.

The remainder of this paper is structured as follows:
Section [2| presents the background; Section 3|discusses
the proposal; Sectiond]presents the evaluation; Section
[B]reviews related work; and Section [6] concludes the

paper.

2 BACKGROUND

This section presents the background for under-
standing the work, including the DWARF format,
WebAssembly format, intrusion detection, and static
analysis.

2.1 DWARF Format

The Debugging With Attributed Record Format
(DWAREF) is a debugging information file that allows
source-level debugging (DWARE, 2023)). Debuggers
and compilers can use the format to represent the ap-
plications in a tree structure, in which types, variables,
and functions form the data sections of the DWARF
format (Eager, 2012).

In DWAREF, a Debugging Information Entry (DIE)
describes an attribute in a program. The structure
of DIE makes it a parent or property of one. In this
way, the structure of the program is maintained for
an evaluation process. The description found in a
DIE will present information about attributes such as
variables, constants, and references.

Code|I] presents a function that returns an integer
that is printed as output. The output of this code in
DWAREF file format is presented in Code

int foo() {
int x=1;
return x;

}

int main() {
printf ("Value: _%d", foo());
return 0;

}

Code 1: An example of code in C with a function that returns
a value to be printed.

As shown in Code [2] the entire structure of the
C program is represented through the DWARF for-
mat. From the function foo, to the variables present
throughout the code is presented in a tree-like struc-
ture. With each DIE representing the information in
the current scope of the application. In this way, the
DWAREF format presents the information in a way that
it is possible to follow the process of executing the C
code alongside the DWARF format.

In addition to this information being useful for
the debugging process, they appear to have the poten-
tial for intrusion detection solutions, since they are
capable of representing the key functionalities pre-
sented in a program. For other languages, a similar
output is expected, with additions for language fea-
tures. WebAssembly applications can be converted to
support the DWARF format even with access only to
the application binary.

2.2 WebAssembly

WebAssembly is a binary format targeted at the
Web. WebAssembly code can be generated from the

<1>:TAG_compile_unit [1] =
AT_producer (" Apple LLVM version 9.0.0 (clang
-900.0.39.2)")
AT _language (DW_LANG_C99)
AT_name("main.c")
AT _stmt_list (0x00000000)
AT _comp_dir("/Users/bar/Documents/")
AT_low_pc(0x0000000000000000)
AT_high_pc(0x00000041)
<2>: TAG_subprogram [2] =
AT_low_pc(0x0000000000000000)
AT_high_pc(0x00000010)
AT_frame_base (rbp)
AT_name("foo")
AT_decl_file("main.c")
AT_decl_line (7)
AT _type ({0x0000006b }(int))
AT _external (true)
<3>: TAG_variable [3]
AT _location (fbreg -4)
AT_name("x")
AT_decl_file("main.c")
AT _decl_line (8)
AT_type ({0x0000006b }(int))
<4>: NULL
<5>: TAG_subprogram [4]
AT_low_pc(0x0000000000000010)
AT_high_pc(0x00000031)
AT_frame_base(rbp)
AT_name("main")
AT _decl_file("main.c")
AT _decl_line(12)
AT _type({0x0000006b }(int))
AT _external (true)
<6>: TAG_base_type [5]
AT _name("int")
AT_encoding (DW_ATE_signed)
AT _byte_size (0x04)
<7>: NULL

Code 2: DWARF output example, based on the source code
presented in Code[T}

WebAssembly Text (WAT) textual format or by com-
pilers that allow the translation of codes from high-
level languages such as C, C++, Go, and Rust to
WebAssembly (Hoffman, 2019).

A module consists of a WebAssembly application,
which contains function definitions, global variables,
linear memories, and indirect call tables. Functions
and variables, as well as other program elements, are
identified by indices represented by integer numbers
(Lehmann et al., 2020). A WebAssembly module usu-
ally has three sections: Preamble with module start
information, Default which contains all application
information such as functions, and Custom which has
information for debug (Kim et al., 2022). Figure E]
shows in detail the structure of a WebAssembly bi-
nary.

Only four primitive types are supported: i32, i64,
/32, and f64, representing a 32-bit or 64-bit integer or
a 32-bit or 64-bit floating point number, respectively.

WebAssembly uses a format of binary code in-
structions that can be debugged using converters
that make the machine code readable. Tools are
available and make it more practical to analyze sec-
tions of WebAssembly code (Falliere, 2018)). The
WebAssembly instruction format was designed with
a focus on ensuring the safety of its users. Its key
features for security are:

Virtualized environment: WebAssembly modules
run in a virtual machine based on the stack model.
All input/output interactions and access to operat-
ing system resources must be performed through
functions incorporated by WebAssembly, which
must be imported by the module. Therefore,
WebAssembly is able to establish security poli-
cies for developers and is able to assure users that
their environment and system resources are being
accessed by modules in a limited and controlled
way (Rossberg, 2018)).

Linear memory: The linear memory of Web-
Assembly modules is instantiated in managed
buffers. This way, read and write operations are
limited to certain areas of memory (Kim et al.]
2022).

Control Flow Integrity (CFI): Through a structured
control flow generated during the compilation pro-
cess, WebAssembly modules are protected against
attacks such as shellcode injection or the abuse
of unrestricted jumps carried out indirectly (Kim
et al., 2022)). However, the WebAssembly CFI is
not as effective as modern CFIs used for native
binary defenses, with some calls vulnerable to ma-
licious use (Lehmann et al., 2020)).

2.3 Intrusion Detection

Intrusion Detection Systems (IDS) are security mecha-
nisms that have the purpose of monitoring hosts, ap-
plications, and networks for signs of attacks and intru-
sions (Stallings et al., 2012)). One way of performing
intrusion detection on applications is by analyzing ap-
plication code using static and/or dynamic analysis
(Chandola et al., 2009; Liu et al., 2018} |Castanhel
et al., 2021;|Lemos et al., 2022).

Static analysis is performed by extracting features
from the code, but without executing them, thus defin-
ing an abstract representation of the program’s be-
havior (Kirchmayr et al., 2016). This technique has
been widely used, especially in critical systems such
as those used in aviation and air traffic control.

Table 1: Representation of a WebAssembly binary. Structurally describing the expected composition of a WebAssembly binary

file.

Standard

Section Table

’Prea.mble Magic | Version Type | Import | Function

Memory

Custom

Global Section

Export| Start | Code | Element| Data

of data

Any kind ‘

Dynamic analysis is a software analysis technique
that allows evaluating the behavior of the program
during its execution. Dynamic analysis is performed
through tests and simulations, which makes it possible
to identify programming errors, unexpected behav-
iors, and security flaws during the interaction between
the code and the environment in which it is executed
(Kirchmayr et al., 2016; Lemos et al., 2023).

3 PROPOSAL

This section presents our proposal. Section de-
scribes the threat model. Section [3.2]presents the stud-
ied strategy. Section [3.3]discusses the characteristics
used by binaries in the detection process.

3.1 Threat model

In the threat model, we consider that the adversary
explores the WebAssembly format for the deploy-
ment of malicious content. It is assumed that access
to the DWARF data will always exist, since even a
WebAssembly binary without the DWARF informa-
tion, in a later process will be possible to generate the
data. Our PUA evaluation will be made by a static strat-
egy, where the information available in the DWARF
format will be accessed and used in a detection pro-
cess.

3.2 Strategy

Our strategy is to evaluate how debug formats, such
as DWAREF, can be used in an intrusion detection solu-
tion. The advantage of using debug formats is directly
associated with data access since the format will of-
fer access to information that would not be accessible
from other observation points.

Debug formats allow the intrusion detection strat-
egy to have an almost complete understanding of the
application and its execution process since all code
structures will be taken into account by the debugging
tools. Therefore, the use of this data for detection may
prove useful in situations in which the source is un-
known or code evaluation is possible. Achieving these
goals involves two main steps:

* extracting key characteristics from binaries in
DWAREF format; and

* defining an evaluation strategy to detect PUAs
based on these characteristics.

To evaluate the potential of the DWARF format,
we selected WebAssembly binaries from well-known
datasets (Lehmann and Pradel, 2022; |Stiévenart et al..
2022), and extracted debug information from each
binary in DWARF format using llvm-dwarfdum;ﬂ The
information extracted will be discussed in Section[3.3]

For WebAssembly binaries that lack debugging in-
formation, we apply the process shown in Figure[I]
The binary is decompiled using wastwaﬂ produc-
ing source in WAT format (1). The WAT source is
compiled with debugging symbols using wasmtime{ﬂ
(2), and the DWAREF information is extracted from the
new binary using llvm-dwarfdump (3).

WebAssembly

1
Module ————>» Transformation

‘ 3 WebAssembly
+

’ DWARF

2
L—>

WebAssembly
DWARF

Figure 1: Process of transformation of a binary to
WebAssembly to generate a binary supporting the DWARF
format.

Our PUA identification strategy uses machine
learning algorithms. We selected multi-class algo-
rithms to better understand the impact of the informa-
tion extracted from the binaries in the models. The
choice of algorithms is based on previous related work
(Galante et al., 2019; [Castanhel et al., 2020; [Lemos
et al., 2023; |[Heinrich et al., 2024).

3.3 Binary characteristics

After converting the WebAssembly binaries to support
the DWARF format, information can be extracted from
them. The DWARF format provides information from
a set of tags and attributes present in a WebAssembly
binary (as presented in Section [3.2). This informa-
tion allows a later application analysis process, for the
identification of implementation errors or, in the case
of this work, for the identification of PUAs that may
reflect an intrusion.

1https://llvm.orq/docs/CommandGuide/
llvm-dwarfdump.html

“https://github.com/WebAssembly/wabt

3https://wasmtime.dev/

https://llvm.org/docs/CommandGuide/llvm-dwarfdump.html
https://llvm.org/docs/CommandGuide/llvm-dwarfdump.html
https://github.com/WebAssembly/wabt
https://wasmtime.dev/

The DWARF format offers different tags accord-
ing to the format of the language being analyzed (as
presented in Section [2.T)). Instead of using all the tags
available for WebAssembly, we chose to select the
relevant attributes for classification. For this selection
process, we collected information about all the tags
available for the WebAssembly format and evaluated
the importance of these features for the models.

We limited our selection based on specific sections
of the WebAssembly binary (as presented in Table|[T).
The data presented in the preamble and standard sec-
tion presents the key characteristics of the application
and the functionality of the WebAssembly module,
such as functions, variables, export data, memory allo-
cation, and binary compilation.

After this process, we evaluated the tags that were
relevant to our classification strategy (Section [3.2)).
This process generated a set of key information from
the DWARF format that defined six groups covering
the extracted information’].

General Information: from the application, such as
program size, the number of labels in the code, and
the source code language. In addition to describing
the application, we hypothesize that this informa-
tion can help classifiers as it offers a view of the
language used before the port to WebAssembly;

Routines and subprograms: considering the num-
ber of declared variables, the number of decla-
rations of inline subroutines, the number of decla-
rations of subprograms, and the number of param-
eters of these subprograms. This information is
important to describe the operations that a binary
can perform;

Variables: which includes the number of type declara-
tions, declared integer types, declared unsigned in-
teger types, declared word types, and declared file
pointer types. As WebAssembly has a restricted set
of native data types, it is necessary to define these
types in WebAssembly modules, consequently, this
information also helps in describing the operations
performed by a binary;

Parameters: which consist of the information found
in each DIE, like operations performed by a func-
tion;

Memory Information: frequency of declared mem-
bers when using structures or classes. We hypothe-
size that information found in memory can assist
in a detection process; and

Shared data: includes data on the number of at-
tributes that determine whether the subroutines are
part of an external program or produce externally

4We also provide a list of tags used in the Appendix

accessible information and the number of tags and
attributes related to the use of function calls.

When extracting information from the DWARF
format, different regions of the application can be ac-
cessed in each DIE. The selected groups allow access
to 29 tags in WebAssembly DWARF format. The num-
ber of tags that can be accessed by the DWARF format
will vary according to the language supported.

The tags present specific information about the ap-
plication behavior or represent some type of operation
performed by the program. For an intrusion detection
proposal, the raw information extracted can be used, or
the frequency of appearance that may present a pattern.

4 EVALUATION

This section presents the evaluation of our proposal.
Section [4.T] describes the objective of the evaluation.
Section[4.2] presents the dataset. Section[d.3]discusses
of the results.

4.1 Objective

Our purpose is to evaluate the usefulness of employ-
ing information extracted from the debugging format
for PUA identification. We use static information
from WebAssembly binaries to identify threats, in-
vestigating the feasibility of using information present
in WebAssembly binaries through the DWARF format.

For the experiments we selected four machine
learning algorithms: Multi-layer Perceptron (MLP),
Random Forest (RF), Support Vector Machines (SVM)
and XGBoost. These models aim to demonstrate how
the learning process behaves when considering the
characteristics selected for the benign and malicious
classification classes.

4.2 Dataset

To perform the evaluation, a dataset is needed. In-
stead of building a completely new dataset, we used
already available data from two sources (Lehmann and
Pradel, 2022 [Stiévenart et al., 2022). The binaries
were selected taking into account the available sam-
ples to define both benign and malicious samples. To
balance the classes of malicious and benign samples,
we normalized the number of samples between the two
classes. We selected samples to obtain a subset with
the same characteristics as the entire dataset (our code
is publicly availableE]).

Shttps://github.com/CalebeHelpa/
webassembly-classification

https://github.com/CalebeHelpa/webassembly-classification
https://github.com/CalebeHelpa/webassembly-classification

After the selection process, the binaries were trans-
formed to support the DWARF format (as presented in
Section @ In total, 770 samples were selected for
the experiment. These samples are divided into 400
benign samples and 370 malicious samples. The pur-
pose of the samples is to present recurring behaviors
for benign applications and vulnerabilities or imple-
mentation errors for malicious samples.

Before running the experiments information needs
to be extracted from the DWARF format of each
WebAssembly application. Taking into account the
binary characteristics presented in Section we
extracted all tags in the DWARF format that were in-
corporated into the six defined groups.

The features extracted from the binaries are saved
to a file, which contains the appearance count of the
attributes and subsequent encodings of extracted vari-
ables. After this process, the information was used for
the model training and testing process.

4.3 Results

The classification results obtained by using machine
learning algorithms, trained with the information ex-
tracted by the DWARF format, are presented in this
section. The algorithms were trained and tested in a
1:1 ratio, that is, 50% of the data was used for training
and 50% for testing. An exhaustive parameter search
was made, aiming to find the best configurations for
the models. We also perform the test with 10-fold
cross-validation, as it is the standard for this type of
assessment.

Table 2] presents the results achieved by the algo-
rithms evaluated, considering the usual metrics in the
area of machine learning. The results achieved var-
ied according to the classification strategy used by the
machine learning models. However, the results are
favorable for a PUA detection strategy using the multi-
class algorithms. Multi-class algorithms are trained to
classify two or more classes, being capable of defining
patterns that represent each of the classes.

The precision highlights that models like MLP and
SVM had the biggest impact due to false positives,
with the models classifying benign samples as mali-
cious. Despite the small percentage of false positives,
the error was responsible for the impact found in the
F1Score.

The models were not affected by false negatives,
as portrayed by the recall. The best metric to describe
the model’s result is the F1Score, in which we notice
the impact of false positives. For the classification of
binaries to perform the identification of PUA, the over-
all F1Score demonstrates that the features used to train
and test the classifiers are sufficient for a classification

process.

The accuracy demonstrates the impact of true posi-
tives and true negatives, demonstrating that the mod-
els were able to adequately learn the patterns of the
binaries through the extracted features. The values
achieved by the Balanced Accuracy (BAC) are evi-
dence that the model learning persists.

With these results, we conclude that debugging
formats, such as DWAREF, have the potential to ex-
tract information from binaries that later can be used
for intrusion detection solutions. We also presented a
static strategy for PUA detection in the WebAssembly
application. Although we only explore the use of the
DWAREF format for WebAssembly applications, the
information extracted through the use of the DWARF
format showed promising results for the use of infor-
mation extracted through debugging tools to detect
PUA.

5 RELATED WORK

Some well-known strategies are used to collect data
from applications and perform intrusion detection. So-
lutions that use system calls are an example, in which,
traces of the application execution are used to define
application behavior and identify anomalies that may
correspond to an intrusion (Liu et al., 2018)).

The use of bytecode is also explored in the intru-
sion detection field. Bytecode contains a sequence of
instructions that represents the program without any
redundancy, facilitating the process of compiling or
interpreting source code into machine code. The solu-
tion proposed by (Ashouri et al., 2021) relies on Java
bytecode to intercept runtime attacks. Bytecode is also
used to detect malware on Android systems, by extract-
ing features and using convolution neural networks to
classify malicious applications (Ding et al., 2020).

In web applications, bytecode sequences are used
to detect malicious behavior in JavaScript code, such
as cross-site scripting and redirections (Rozi et al.,
2020). The use of bytecode allows to bypass JavaScript
obfuscation.

Approaches that focus on the static evaluation of
WebAssembly binaries are aimed at identifying vulner-
abilities in the developed codes that can be exploited
or cause an error in production. These tools are also
aimed at generating the flow of WebAssembly applica-
tions, aiming to identify vulnerabilities that may have
been ported from other languages (Quan et al., 2019;
Brito et al., 2022)).

To the best of our knowledge, our work is the first
to use the debugging format to extract features to apply
in an intrusion detection system. Our work is able to

Table 2: Performance of algorithms for PUA using DWARF format data.

10-Fold Cross-validation

Classifier Precision Recall F1Score Accuracy BAC
MLP 93.40% 100% 96.59% 96.62% 96.77%
RandomForest 98.24% 100% 99.11% 99.22% 99.31%
SVM 94.89% 100% 97.38% 97.66% 97.94%
XGBoost 97.34% 100% 98.65% 98.70% 98.76%
demonstrate the potential of using debug formats for REFERENCES

intrusion detection.

6 CONCLUSION

In this paper, we present a novel intrusion detection
approach using debugging formats to extract features
from application code. To validate our proposal, we
built a dataset with WebAssembly applications, a bi-
nary format that has seen rapid adoption on the Web.
The features were extracted from DWAREF format, a
debugging information file format used by many com-
pilers and debuggers to support source level debug-
ging.

We evaluated our approach with multi-class ma-
chine learning algorithms, obtaining promising re-
sults, especially with ensemble algorithms. Thus, we
showed the potential of using debugging formats to
extract information from binaries to perform intrusion
detection.

Unfortunately, using debugging formats has some
limitations. Debugging symbols increase the size of
compiled binaries and thus are usually stripped from
distributed binaries to save space. Having a process for
dealing with such binaries, as described in Section @
alleviates this problem. The DWARF format may also,
on rare occasions, not be capable of debugging the
information itself. Some languages/compilers may
not support the format, or support only a subset of its
functionalities (Bastian et al., 2019)); further experi-
mentation is needed to investigate the impact of partial
support for DWARF in our proposal.

ACKNOWLEDGEMENTS

This study was financed in part by the Coordenagdo de
Aperfeicoamento de Pessoal de Nivel Superior — Brasil
(CAPES) — Finance Code 001 and Fundacdo de Am-
paro a Pesquisa e Inovacdo do Estado de Santa Cata-
rina (FAPESC). The authors also thank the UDESC,
UFPR and UTFPR Computer Science departments.

Ashouri, M., Kreitz, C., Austin, T. H., and Bordim, J. L.
(2021). JACY: A robust JVM-based intrusion detection
and security analysis system.

Bastian, T., Kell, S., and Zappa Nardelli, F. (2019). Reli-
able and fast DWARF-based stack unwinding. Pro-
ceedings of the ACM on Programming Languages,
3(OOPSLA):1-24.

Bosamiya, J., Lim, W. S., and Parno, B. (2022).
Provably-Safe multilingual software sandboxing us-
ing WebAssembly. In Proceedings of the 31st USENIX
Security Symposium, pages 1975-1992, Boston, MA,
USA. USENIX Association.

Brito, T., Lopes, P., Santos, N., and Santos, J. F. (2022).
Wasmati: An efficient static vulnerability scanner for
WebAssembly. Computers & Security, 118:102745.

Castanhel, G. R., Heinrich, T., Ceschin, F., and Maziero,
C. A. (2020). Sliding window: The impact of trace size
in anomaly detection system for containers through ma-
chine learning. In XVIII Regional School of Computer
Networks, pages 141-146, Virtual Event. SBC.

Castanhel, G. R., Heinrich, T., Ceschin, F., and Maziero,
C. A.(2021). Taking a peek: An evaluation of anomaly
detection using system calls for containers. In Proceed-
ings of the 26th IEEE Symposium on Computers and
Communications, Athens, Greece. IEEE.

Ceschin, F., Botacin, M., Bifet, A., Pfahringer, B., Oliveira,
L. S., Gomes, H. M., and Grégio, A. (2024). Machine
learning (in) security: A stream of problems. Digital
Threats, 5(1).

Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly
detection: A survey. ACM Computing Surveys, 41(3):1-
58.

Ding, Y., Zhang, X., Hu, J., and Xu, W. (2020). Android
malware detection method based on bytecode image.
Journal of Ambient Intelligence and Humanized Com-
puting, 14(5):6401-6410.

DWAREF (2023). DWAREF debugging information format.
https://dwarfstd.org/. DWARF Debugging Infor-
mation Format Committee.

Eager, M. J. (2012). Introduction to the dwarf debugging
format. https://dwarfstd.org/doc/Debugging%
20using%20DWARF-2012.pdf.

Falliere, N. (2018). Reverse engineering
WebAssembly. https://www.pnfsoftware,
com/reversing-wasm.pdfl

Galante, L., Botacin, M., Grégio, A., and de Geus, P. (2019).
Forseti: Extragdo de caracteristicas e classificacdo de
bindrios ELF. In Anais Estendidos do XIX Simpdsio

https://dwarfstd.org/
https://dwarfstd.org/doc/Debugging%20using%20DWARF-2012.pdf
https://dwarfstd.org/doc/Debugging%20using%20DWARF-2012.pdf
https://www.pnfsoftware.com/reversing-wasm.pdf
https://www.pnfsoftware.com/reversing-wasm.pdf

Brasileiro de Seguranga da Informagdo e de Sistemas
Computacionais, pages 5-10, Sao Paulo, SP, Brazil.
SBC.

Heinrich, T., Will, N. C., Obelheiro, R. R., and Maziero,
C. A. (2024). A categorical data approach for anomaly
detection in WebAssembly applications. In Proceed-
ings of the 10th International Conference on Infor-
mation Systems Security and Privacy, pages 275-284,
Rome, Italy. SciTePress.

Hoffman, K. (2019). Programming WebAssembly with Rust:
Unified Development for Web, Mobile, and Embedded
Applications. The Pragmatic Bookshelf, Raleigh, NC,
USA.

Kim, M., Jang, H., and Shin, Y. (2022). Avengers, Assem-
ble! survey of WebAssembly security solutions. In
Proceedings of the 15th International Conference on
Cloud Computing, pages 543-553, Barcelona, Spain.
IEEE.

Kirchmayr, W., Moser, M., Nocke, L., Pichler, J., and To-
ber, R. (2016). Integration of static and dynamic code
analysis for understanding legacy source code. In Pro-
ceedings of the International Conference on Software
Maintenance and Evolution, pages 543-552, Raleigh,
NC, USA. IEEE.

Lehmann, D., Kinder, J., and Pradel, M. (2020). Everything
old is new again: Binary security of WebAssembly.
In Proceedings of the 29th USENIX Security Sympo-
sium, pages 217-234, Boston, MA, USA. USENIX
Association.

Lehmann, D. and Pradel, M. (2022). Finding the DWARF:
Recovering precise types from WebAssembly binaries.
In Proceedings of the 43rd International Conference on
Programming Language Design and Implementation,
pages 410-425, San Diego, CA, USA. ACM.

Lemos, R., Heinrich, T., Maziero, C. A., and Will, N. C.
(2022). Is it safe? identifying malicious apps through
the use of metadata and inter-process communication.
In Proceedings of the 16th Annual IEEE International
Systems Conference, pages 1-8, Montreal, QC, Canada.
IEEE.

Lemos, R., Heinrich, T., Will, N. C., Obelheiro, R. R., and
Maziero, C. A. (2023). Inspecting binder transactions
to detect anomalies in android. In Proceedings of the
17th Annual IEEE International Systems Conference,
Vancouver, BC, Canada. IEEE.

Liu, M., Xue, Z., Xu, X., Zhong, C., and Chen, J. (2018).
Host-based intrusion detection system with system
calls: Review and future trends. ACM Computing
Surveys, 51(5):98.

Michael, A. E., Gollamudi, A., Bosamiya, J., Johnson, E.,
Denlinger, A., Disselkoen, C., Watt, C., Parno, B.,
Patrignani, M., Vassena, M., and Stefan, D. (2023).
MSWasm: Soundly enforcing memory-safe execution
of unsafe code. Proceedings of the ACM on Program-
ming Languages, 7(POPL).

Naseem, F. N., Aris, A., Babun, L., Tekiner, E., and Ulua-
gac, A. S. (2021). MINOS: A lightweight real-time
cryptojacking detection system. In Proceedings of the
Network and Distributed System Security Symposium,
Virtual Event. Internet Society.

Pickard, C. and Miladinov, S. (2012). Rogue software: Pro-
tection against potentially unwanted applications. In
Proceedings of the 7th International Conference on
Malicious and Unwanted Software, Fajardo, PR, USA.
IEEE.

Quan, L., Wu, L., and Wang, H. (2019). EVulHunter: De-
tecting fake transfer vulnerabilities for EOSIO’s smart
contracts at WebAssembly-level.

Romano, A., Lehmann, D., Pradel, M., and Wang, W. (2022).
Wobfuscator: Obfuscating JavaScript malware via op-
portunistic translation to WebAssembly. In Proceed-
ings of the 43rd Symposium on Security and Privacy,
pages 1574-1589, San Francisco, CA, USA. IEEE.

Rossberg, A. (2018). Webassembly specification.
https://webassembly.github.io/spec/core/
_download/WebAssembly.pdf.

Rozi, M. F, Kim, S., and Ozawa, S. (2020). Deep neu-
ral networks for malicious javascript detection using
bytecode sequences. In Proceedings of the Interna-
tional Joint Conference on Neural Networks, pages
1-8, Glasgow, UK. IEEE.

Stallings, W., Brown, L., Bauer, M. D., and Bhattacharjee,
A. K. (2012). Computer Security: Principles and Prac-
tice. Pearson.

Stiévenart, Q., De Roover, C., and Ghafari, M. (2022). Secu-
rity risks of porting C programs to WebAssembly. In
Proceedings of the 37th Symposium on Applied Com-
puting, pages 1713-1722, Virtual Event. ACM.

A Appendix

A.1 Tags Considered in the Training
Process

lines, language, dw_tag_subprogram, dw_tag_typedef,
dw_tag_member, dw_tag_label,
dw_tag_gnu_call_site, dw_at_gnu_all_call_sites,
dw_tag_inlined_subroutine, dw_at_external,
dw_at_call_file, int_type, uint_type, string_type,
fp_type, bool_type, dw_tag_enumerator,
dw_tag_variable_int, dw_tag_variable_uint,
dw_tag_variable_string, dw_tag_variable_fp,
dw_tag_variable_bool, dw_tag_variable,
dw_tag_formal_parameter_int,
dw_tag_formal_parameter_uint,
dw_tag_formal_parameter_string,
dw_tag_formal_parameter_fp,
dw_tag_formal_parameter,
dw_tag_formal_parameter_bool

https://webassembly.github.io/spec/core/_download/WebAssembly.pdf
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf

	Introduction
	Background
	DWARF Format
	WebAssembly
	Intrusion Detection

	Proposal
	Threat model
	Strategy
	Binary characteristics

	EVALUATION
	Objective
	Dataset
	Results

	Related Work
	Conclusion
	Appendix
	Tags Considered in the Training Process

