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Is This a Good Password?

Lw7ONcQhZ#£3GvXsT2rY
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Passwords Are Gonel

@ This is a strong password.
@ But can you remember it? Most people can't.

@ So we switched to something better. ..

Figure 1. Generated by Al
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What About Passphrases?

this 1s a strong password
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Enter The Passphrase!

this is a strong password

@ Passphrases are easier to remember and just as strong.
@ They've become the best practice for humans typing passwords.
@ Problem solved? Not quite. ..

Metric Passphrase Random Password
this is a strong password | Lw7@NcQhZ#f8GvXsT2rY

Charset Size 58 94

Shannon Entropy 86.49 bits 86.44 bits

Combinations 1.22 x 10* 2.90 x 10%°

Table 1: Entropy comparison of a passhphrase and a random password.

Both are equally secure!?

! Ref: https://alecmccutcheon.github.io/Password-Entropy-Calculator/
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Passphrases are strong and memorable, but are they truly secure in every
environment?
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They Can Still Be Stolen

@ Even your passphrase isn't safe if someone is listening.

@ Acoustic Side-Channel Attacks (ASCAs) exploit the sound of
your keyboard.

Figure 2: Generated by Al
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Figure 3: The attacker doesn't need access to your device. Just a recording—from a call or a nearby
phone.
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If the setup is simple, what’s stopping attackers from succeeding in real-world
scenarios?
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Figure 4: ASCAs on keyboards always had one big weakness: noise. 2

2Al-Generated
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Noise Destroys The Features

Mel Spectrogram - Clean Keystroke "0"
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Figure 5: (a) and (b) show clean and noisy spectrograms, respectively. Light noise (10%) masks the

distinctive keystroke patterns.
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(b) CoAtNet on noisy audio (58% accuracy)

—
>
(]
(o]
P -
3
(O]
(8]
[y
=]
o~
=)
=
SN—
.0
S
3
@
o
[go;
<@
(6]
c
o
-
(]
=2
)
<
o
O
—
(o]
o

, respectively.

noisy audio

clean and

on

trices of CoAtNet

show the confusion m

)

) and (b

(a

Figure 6:
Texas A&M University

13 /28

USENIX WOOT 2025



What if we change the model? Will VTs help?
If the best models struggle, how can we make ASCAs viable in noisy
conditions?
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Split the Problem

. Time Shift
> — — "
Separate Key Strokes —>|  Background Noise Augmentation Mel-spectrogam

Frequency and Time Masking —>  Classification with CoAtNet and VT Models —> LLMs

Figure 7: After preprocessing, a Vision Transformer (e.g., Swin) or CoAtNet classifies individual
keystroke spectrograms, producing a sequence of noisy character predictions; then, a Large Language
Model (e.g., GPT-40 or LLaMA) corrects transcription errors to produce clean, intelligible text.
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Before and After: The LLM Fixes It

N
R
g;;zz;e this is a strong password
tNet
Cgﬁfpj rhia 6a a atravh paaa808d
LLM
Output this is a tough password

Figure 8: The initial text sequence (top) represents the ideal output. The noisy prediction (bottom)
introduces typographical and semantic errors due to environmental noise or model inaccuracies.
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Stage 1: Spectrogram — Character (Keystroke Detection)

e
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Figure 9: Stage 1

o Pre-Processing: Time-shift, time/freq masking data augmentation, transforming into
64x64 mel-spectrogram.
e Vision Models: CoAtNet (Baseline), Vision Transformers (ViT, Swin, DeiT, CLIP, BEIT)

e Datasets: Zoom, Phone (36 keys x 25)
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Key Results

Phone Dataset: Max Accuracy and Mean * Std over 5 Iterations
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Figure 10: This plot compares max and
average accuracies of different models on
the Phone dataset. Max values are in
blue, mean =+ std in red.
Highlights:

@ O-CoAtNet achieves highest scores.

@ CLIP consistently underperforms.

@ BEIT and Swin show strong
accuracy.
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Stage 2: LLM for Context-Aware Correction

@ Gaussian noise is added to the dataset at varying levels. sl
@ Models make mistakes (accuracy drops) due to the noise. 4

@ The output sequences often contain typos and, in some
cases, are unreadable.

e Can an LLM fix this?
Table 2: Noise factor () applied to each dataset: low, medium, and

high correspond to approximately 10%, 20%, and 50% accuracy
reductions, respectively.

Dataset Noise factor (1)
Low Medium High

Phone 0.012 0.024 0.06
Zoom 0.1 0.5 1.0
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Stage 2: LLM Prompt Structure

System Role:
You are an expert in correcting typos in sentences.

User Role:
Here are pairs of sentences with typos; learn from them:

sentence: { Sl }

corrected: { SL. }

sentence: { SZ.4 }

corrected: { 5t2rue }

Now, please correct these sentences and output only the corrected version with no additional text:

{ Sprea }

This few-shot prompt guides the LLM to learn correction patterns and apply them to a new input.

T = T—— S kel
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Stage 2: Evaluation Metrics

Measures precision of overlapping n-grams (1-4) between model output and reference. Penalizes
overly short outputs.

Uses precision + recall with flexible matching (stems, synonyms, paraphrases) and a penalty for word
order differences.

ROUGE-1 / ROUGE-2

Recall-oriented: counts overlapping unigrams (ROUGE-1) or bigrams (ROUGE-2), capturing vocabulary
coverage and short phrase accuracy.

Based on the longest common subsequence between output and reference, reflecting structural
similarity and word order.
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Stage 2: Key Results

Zoom Dataset Performance by Metric and Noise Level
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Figure 12: Performance of various models on the Zoom dataset across BLEU, METEOR, and ROUGE
metrics under different noise levels. GPT-40 consistently outperforms smaller models, especially under
high noise conditions.
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GPT-40 outperforms all models. We cannot use it offline, and other big
models are resource intensive. Can we achieve the same performance with a
much smaller model?

Texas A&M University USENIX WOOT 2025



Can Smaller Models Match the Giants?

The Challenge
While LLaMA-3.1-8B and GPT-40 (~ 200B) achieve state-of-the-art performance, they are:

@ Resource-intensive (need 16-30+ GB RAM/VRAM)
@ Impractical for low-resource or stealthy attack scenarios

@ Expensive to deploy at scale

Investigate whether a much smaller model, like LLaMA-3.2-3B, can be:

@ Fine-tuned or prompted effectively
@ Competitive in performance with large models

@ Suitable for practical, real-world attacks
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Small Model, Big Results

Fine-Tuned LLaMA-3.2-3B vs GPT-40 on Zoom Dataset
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Figure 13: GPT-4o vs fine-tuned LLaMA-3.2-3B (LoRA) across metrics and noise levels on the Zoom
dataset.

— Achieves 90% of GPT-40 performance with 1.5% of its model size.
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Limitations & Future Work

Field-Wide Gaps

e Dataset Availability: Public ASCA datasets are tiny (36 keys, no space/backspace),
limiting what any research can currently test.

@ Noise Realism: Community datasets lack real-world ambient noise — most use synthetic
Gaussian noise as a proxy.

e Hardware Diversity: Nearly all public datasets focus on a single device type (e.g.,
MacBook Pro), making cross-device benchmarks rare.

Call to the Community

o Collaboratively build and release large, open-access ASCA datasets.
@ Include recordings with realistic ambient noise conditions.

@ Cover diverse devices and keyboards to enable true generalization.
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Key Takeaways & Conclusion

What We Showed

e Vision Transformers (VTs) achieved accuracy close to the current state-of-the-art
(CoAtNet), showing strong potential for keystroke spectrogram recognition.

@ LLMs are essential for handling real-world noise in post-processing.

@ Fine-tuned small models enable portable and practical attacks.

o First end-to-end VT + LLM pipeline for keyboard ASCAs under noise.
@ Achieved >95% text recovery under medium noise with a small model.

Security Implication

Keystrokes can be inferred acoustically—even strong passphrases are vulnerable.
Adopt MFA and biometrics to mitigate this risk.
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Thank You!

ali.a@tamu.edu | ali-ayati.com

Slides and code: github.com/Botacin-s-Lab/EchoCrypt
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